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Abstract
As is well known, equilibrium analysis of evolutionary partnership games can be done by
studying a so-called standard quadratic optimization problem, where a possibly indefinite
quadratic form is maximized over the standard (probability) simplex. Despite the mathe-
matical simplicity of this model, the nonconvex instances in this problem class allow for
remarkably rich patterns of coexisting (strict) local solutions, which correspond to evolu-
tionarily stable states (ESSs) in the game; seen from a dynamic perspective, ESSs form the
asymptotically stable fixed points under the continuous-time replicator dynamics. In this
study, we develop perturbation methods to enrich existing ESS patterns by a new technique,
continuing the research strategy started by Chris Cannings and coworkers in the last quarter
of the past century.

Keywords Local solutions · Quadratic optimization · Evolutionary stability · Global
optimization

1 Introduction

1.1 Motivation

We consider the Standard Quadratic Optimization Problem (StQP) given by

max
x∈�n

x�Ax (1)

where A ∈ Sn (Sn denoting symmetric n × n-matrices) and �n is the standard-simplex

�n =
{
x ∈ R

n :
n∑

i=1

xi = 1, xi ≥ 0 for all i ∈ N

}
,

where N = {1, . . . , n}, also denoted as [1 :n].
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Despite its mathematical simplicity, above model serves in different domains of applied
mathematics: apart from straightforward applications like in portfolio optimization [15], it
can be used in mathematical biology [12,13] as well as in Evolutionary Game Theory and
Game Dynamics [1,11,17,20]. For a more detailed account on the interrelation between these
domains, we refer to [3,4] and references therein. Here, we want to focus on perturbation
approaches to generate richer ESSs patterns from existing ones, building upon the semi-
nal work of Chris Cannings and coworkers [6–9,18,19], as well as upon the more recent
study [5].

1.2 Notation and Preliminaries

Given any set S ⊆ R
n , we denote by conv S the convex hull of S, and the linear hull is

denoted by span S, while closure and interior of S are denoted by cl S and S◦, respectively.
For a (convex) set C , the set of its extreme points is denoted by ExtC . Later, we will use
the relation Ext conv S ⊆ S holding for any set S ⊆ R

n . For matrices {A, B} ⊂ Sn we write
A ≺ B or B 	 A if B − A is positive-definite, and likewise A 
 B or B � A if B − A is
positive-semidefinite (in particular, if either of them coincides with the zero matrix denoted
by O in this paper). Treating {A, B} as points in a Euclidean space, we consider the Frobenius
inner product A • B := trace(AB) and the norm ‖A‖ = √

A • A; as usual, we abbreviate
A ⊥ B for A•B = 0. Additional usual notation involving (sometimes also non-square or non-
symmetric) matrices is ker A := {v : Av = o} and colspace(A) := {Av : v ∈ R

n}. Returning
to A ∈ Sn , by

SOL(A) :=
{
x̄ ∈ �n : x̄�Ax̄ = max

x∈�n
x�Ax

}
= Argmax

{
x�Ax : x ∈ �n

}
we denote the set of all global solutions to (1). For n ≥ 2 and A = (a1, . . . , an) ∈ Sn define

B(A) := (e a�n + an e� − A− anne e�)[1:n−1]×[1:n−1] = −(In−1 − e)A
(

In−1

−e�
)

,

where Ik ∈ Sk is the identity matrix, and e denotes the all ones vector of appropriate dimen-
sion. We note

B(A+ λee�) = B(A) for all λ ∈ R (2)

and
v̄�B(A)v̄ = −v�Av whenever v ⊥ e and v̄ = v[1:n−1] . (3)

Clearly we have rank A ≥ rank B(A). Furthermore, for x ∈ �n , let

I (x) = {i ∈ N : xi > 0}
be the support of x, and �I := {x ∈ �n : I (x) ⊆ I }. The extended support with respect to
A is given by

JA(x) =
{
i ∈ N : [Ax]i = x�Ax

}
.

We will use some more convenient notation (again, we refer to [3] for background on the
interplay of optimization and game equilibrium notions): given A ∈ Sn , we denote by

ESS(A) := {x ∈ �n : x is an ESS for A
}

the set of all strict local maximizers of (1), which is always finite but may be empty; by

NSS(A) := {x ∈ �n : x is an NSS for A
}
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the set of all local maximizers of (1), and by

NES(A) :=
{
x ∈ �n : x is an NES for A, i.e., Ax ≤ (x�Ax) e

}
the set of all KKT points of (1). The latter two sets are never empty; however, they may
be infinite. Given A ∈ Sn with finite NES(A), the procedures FINDEQ and CHECKSTAB
discussed, e.g., in [2,5], find all points in NES(A) and all members of ESS(A), respectively.
Obviously,

SOL(A) ⊆ ESS(A) ∪ SOL(A) ⊆ NSS(A) ⊆ NES(A) (4)

with the equality SOL(A) = NSS(A) = NES(A) if A is negative-semidefinite. For indefinite
A these sets may differ. We furthermore denote

pattern(A) := {I (x) : x ∈ ESS(A)}
and a subset thereof, containing only the supports of the quasistrict members of ESS(A),

qpattern(A) := {I (x) : x ∈ ESS(A), JA(x) = I (x)} .

Note that any p ∈ NES(A) satisfies I (p) ⊆ JA(p), and quasistrictness of p means that these
two index sets coincide.

A further set of interest is

E(A) :=
{
x ∈ �n : Ax ≤ (x�Ax) e and |I (x)| > 1 ⇒ B(AI (x)×I (x)) 	 O

}
∪ {ei : ei ∈ NES(A)} .

The significance of the latter two sets is the following: We try to find a perturbation Ã of a
matrix A such that ESS(̃A) contains perturbations of some members of E(A). These will be
quasistrict ESSs of Ã, with supports not contained in pattern(A), and the enrichment of the
pattern can be expressed as qpattern(A) being a strict subset of qpattern(̃A).

For the readers’ convenience, we provide a short glossary of the sets used in our analysis,
all refer to a fixed instance of (1) given by a symmetric matrix A ∈ Sn :

SOL(A) all global solutions (maximizers) to (1);
NSS(A) all local solutions to (1)≡ all neutrally stable states of evolutionary game based

on A;
ESS(A) all strict local solutions to (1) ≡ all evolutionarily stable states of evol. game

based on A;
NES(A) all KKT/first-order stationary points (1) ≡ all Nash equilibrium states of game

based on A;
E(A) all p ∈ NES(A) which either are pure or have a strictly concave objective on

their face �I (p);
pattern(A) ESS pattern = system of supports of all ESSs of evolutionary game based on A;

qpattern(A) quasistrict ESS pattern = system of supports of all quasistrict ESSs of evol. game
based on A.

We collect some basic properties of the set E(A) in the following

Proposition 1 (a) E(A) is nonempty and finite; to be more precise, we have

p ∈ E(A) �⇒ NES(A) ∩ �I (p) = {p} (5)



Dynamic Games and Applications (2020) 10:618–640 621

and
∅ �= Ext conv SOL(A) ⊆ Ext conv NSS(A) ⊆ E(A) ⊆ Ext conv NES(A) , (6)

and all set inclusions above are strict in general.
(b) Further we have ESS(A) ⊆ E(A) ⊆ NES(A), but in general E(A) and NSS(A) are

incomparable.
(c) However, any p ∈ E(A)with I (p) = JA(p) satisfies already p ∈ ESS(A). In other words,

any p ∈ E(A) \ ESS(A) is a not quasistrict NES. Yet p being a not quasistrict NES does
not imply p ∈ E(A).

(d) In case that A = −FF� for some F ∈ R
n×k we have E(A) = Ext(SOL(A)). Moreover,

we have E(A) = Ext(�n ∩ ker F�), provided the latter set is not empty, in which case
we have JA(p) = [1 :n] for any p ∈ E(A).

Proof Denote by f (x) := 1
2x

�Ax with directional derivative ∂v f (x) = v�Ax.

(a) Implication (5) comes from f (x) < f (p) for all x ∈ �I (p) \ {p} due to (3) using
v = x−p ⊥ e and v�Ap = 0. Further, the inequality 0 > f (x)− f (p) = 1

2 (x−p)�Ax
excludes the equilibrium condition (Ax) ≤ (x�Ax)e at x. Let us turn towards the set
relations in (6); we deal with them from left to right;

(i) SOL(A) is nonempty and closed, so conv SOL(A) �= ∅ is compact, thus
Ext conv SOL(A) �= ∅.

(ii) Let p ∈ Ext conv SOL(A). Then p ∈ SOL(A) ⊆ NSS(A), and extremality in this
set is obviously settled in case |I (p)| = 1. Turning to the case |I (p)| > 1, we note
extremality of p in conv SOL(A) implies

p = λx + (1− λ)y with 0 < λ < 1, {x, y} ⊆ SOL(A) �⇒ x = y = p .

Hence we deduce �I (p) ∩ SOL(A) = {p}. But this in turn even implies
�I (p) ∩ NES(A) = {p} because f (x) < f (p) must hold for any x ∈ �I (p) \ {p},
and therefore the directional derivative (p − x)�Ax = ∂p−x f (x) > 0, meaning
x /∈ NES(A). Obviously then also �I (p) ∩ Ext conv NSS(A) = {p} holds. If now
{x, y} ⊆ conv NSS(A) \ {p} and 0 < λ < 1 such that p = λx + (1 − λ)y,
then {x, y} ⊆ �I (p), implying x = y = p, so p is extremal in conv NSS(A). For
A = Diag (1, 2) we have SOL(A) = {e2} but also e1 ∈ Ext conv NSS(A).

(iii) Let p ∈ Ext conv NSS(A) ⊆ NSS(A) ⊆ NES(A), so the case |I (p)| = 1 is set-
tled. In case that |I (p)| > 1 we claim that f (x) < f (p) for all x ∈ �I (p) \ {p}.
Otherwise, since f is quadratic, there would be a whole segment (the intersection
of a straight line with �I (p)) of points along which f is constantly equalling f (p),
because ∂x−p f (p) = 0 for all x ∈ �I (p). Due to extremality of p, this segment cannot
contain two members of NSS(A) on either side of p. So there must be points pk on
this segment arbitrarily close to p, say ‖p − pk‖ < 1

k , that are not in NSS(A), thus
there are points qk ∈ �n with ‖pk − qk‖ < 1

k and f (qk) > f (pk) = f (p). These
points qk get arbitrarily close to p, meaning that p is not in NSS(A), a contradiction.
For A = Diag (0, 1) we have e1 ∈ E(A) \ NSS(A) = E(A) \ ESS(A).

(iv) Let p ∈ E(A) ⊆ NES(A) ⊆ conv NES(A). Since ei are the extreme points of �n

we are done in case |I (p)| = 1. Moreover, if |I (p)| > 1, we have f (x) < f (p)

for all x ∈ �I (p) \ {p} as observed when proving (5) above, and, arguing as in
(ii), �I (p) ∩ conv NES(A) = {p} = �I (p) ∩ NES(A). As p = λx + (1 − λ)y with
0 < λ < 1 and {x, y} ⊆ conv NES(A) requires {x, y} ⊆ �I (p), we obtain x = y = p,
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i.e. extremality of p in conv NES(A). For

A =
(
1 1 0
1 1 2
0 2 1

)
, p =

[
1/2
1/2
0

]
, and q =

[
0
1/2
1/2

]

we have NES(A) = {q} ∪ conv {e1,p}, but p /∈ E(A) and p is not quasistrict.

(b) The leftmost inclusion follows similarly as in the proof of (5), while the rightmost
is a consequence of (6) and of the generally valid relation Ext conv S ⊆ S which we
used already in our proofs of (ai) and (aii). Examples of p ∈ E(A) \ NSS(A) or q ∈
NSS(A)\E(A) are p = e1 forA = Diag (0, 1) – see the proof of (aiii)— and q = [ 12 , 1

2 ]�
for A = O, respectively.
(c) If JA(p) = I (p) and p ∈ E(A), then any x ∈ �n with x�Ap = p�Ap must lie in
�I (p), therefore as in the proof of (aiv) we have p�Ax = x�Ap > x�Ax unless x = p,
which shows p ∈ ESS(A). The example p given in the proof of (aiv) proves the last
assertion.
(d) is obvious from the fact that SOL(A) is convex itself, and that all critical points of a
smooth concave maximization problem are global solutions, so SOL(A) = NSS(A) =
NES(A). ��

2 Main Results

Our aim is to increase the number of ESSs of a matrix A by perturbing it in a way such that
members of E(A) \ ESS(A) get perturbed into (quasistrict) ESSs of the perturbed matrix.
To this end, we consider perturbations of A of the form Ã = A + εB, with ε small. We
seek simple sufficient conditions on B that lead to successful perturbations in the sense that
|qpattern(̃A)| > |qpattern(A)|.We further aim at results telling us that we have found amatrix
with the largest number of quasistrict ESSs of prescribed support size.

The plan of this section is as follows: In Sect. 2.1 (Lemma 2), we keep both A and
x ∈ E(A) fixed and derive a sufficient condition on B guaranteeing I (x) ∈ qpattern(̃A) for
ε > 0 small enough. This is accomplished by studying the first-order expansion in ε of
the first-order optimality condition for the StQP with matrix Ã. In Sect. 2.2 (Lemma 3), we
prove, loosely speaking, that if close to A there are sufficiently many matrices A satisfying
I (x) ∈ qpattern(A), then there will be B satisfying the sufficient condition of Lemma 2,
such that also I (x) ∈ qpattern(̃A) for ε > 0 small enough. Further results (Theorems 8 and
9) explore ways to restrict A and B to smaller sets of matrices, varying either A or B while
not losing any generality in qpattern(̃A). Negative-semidefinite matrices A are particularly
interesting starting points for perturbation, as they have large sets E(A). Proposition 6 and
Corollary 10 deal with those. In Sect. 2.3, we introduce n×n cyclically symmetric matrices,
forming a vector space Cn of dimension

⌈ n−1
2

⌉
. With those, a further simplification allows to

restrict our perturbation procedure to a finite set of candidate matrices A, with B ranging in a
certain linear subspace of Cn depending on A. In Sect. 2.4, the preceding results are applied
to the setting of negative-semidefinite candidate matrices A ∈ Cn , where the task is to find
a maximal subset P ⊆ E(A), such that there is B ∈ Cn satisfying the sufficient condition
of Lemma 2 for any x ∈ P. Examples 12 and 13 for n ∈ {6, 7} explicate the procedure. In
Sect. 2.5, we report on our results for orders n ∈ [4 : 23]. The subsections are interspersed
with several examples illustrating our results, some also show limitations.
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2.1 First-Order Conditions

The following lemma deals with perturbations of the form A+ εB and fathoms what can be
deduced from a first-order expansion of the resulting FINDEQ inequalities.

Lemma 2 Let A ∈ Sn, x ∈ �n, I := I (x), and J := JA(x) �= I . Assume (Ax)i = v for i ∈ J
and (Ax)i < v for i /∈ J , as well as B(AI×I ) 	 O, in case that |I | ≥ 2. Thus x ∈ E(A). Let
A1 := AI×I , A2 := A(J\I )×I , and similarly define submatrices B1 and B2 of B ∈ Sn. Further

let Ā1 :=
(
A1 e
e� 0

)
and B̄1 :=

(
B1 o
o� 0

)
, where e is the all ones and o the zero vector of suitable

dimension. We abbreviate the relation b− a ∈ int Rd+ by a < b.
a) If B satisfies [

(B2 | o) − (A2 | e)Ā−1
1 B̄1

]( xI
−v

)
< o , (7)

then for ε > 0 small enough, A+ εB will have an ESS xε such that I (xε) = JA+εB(xε) = I ,
and hence we have I ∈ qpattern(A+ εB).

b) If B violates
[
(B2 | o) − (A2 | e)Ā−1

1 B̄1
]( xI

−v

)
≤ o, then for ε > 0 small enough,

A+ εB will not have an NES xε such that I (xε) = I .

Proof From B(A1) 	 O we deduce that Ā1 is invertible,1 so we have(
xI
−v

)
= Ā

−1
1

(
o
1

)
. For ε > 0 small enough, Ā1+εB̄1 will therefore be invertible as well, and(

(xε)I
−vε

)
:= (Ā1 + εB̄1)−1

(
o
1

)
with (xε)N\I := o gives rise to a candidate xε for an ESS

of A + εB, satisfying I (xε) = I . By continuity, for ε > 0 small enough we will have
B(A1 + εB1) 	 O and

(
(A + εB)xε

)
i < vε for i /∈ J . Showing

(
(A + εB)xε

)
i < vε for

i ∈ J \ I is the only remaining task in the proof of a). The latter inequality can be restated as

[(A2 | e) + ε(B2 | o)]
(

(xε)I
−vε

)
< o. Using now (Ā1+ εB̄1)−1 = Ā

−1
1 − εĀ

−1
1 B̄1Ā

−1
1 +O(ε2)

we obtain

(
(xε)I
−vε

)
=
(
xI
−v

)
− εĀ

−1
1 B̄1

(
xI
−v

)
+ O(ε2), so that indeed we have, using

(A2 | e)
(
xI
−v

)
= o,

[(A2 | e) + ε(B2 | o)]
(

(xε)I
−vε

)
= ε

[
(B2 | o) − (A2 | e)Ā−1

1 B̄1
]( xI

−v

)
+O(ε2) < o, (8)

for ε > 0 small enough, by our assumption (7). Turning to b), by the assumption made there,
at least one component of the L.H.S. of (8) will become positive for ε > 0 small enough,
showing xε /∈ NES(A+ εB). ��
Remark 1 For A and x fixed, also I , J and v are fixed, so the matrices B satisfying (7) form
the interior of a polyhedral cone, and thus a convex cone.

1 Assume that Ā1 is not invertible. Then there is a vector z and a scalar u such that Ā1

(
z
u

)
=
(
A1z+ ue

e�z

)
= o,

while

(
z
u

)
�= o. This implies z �= o, e�z = 0, and z�A1z = 0. Denote m := |I | and z̄ := z[1:m−1] and

observe that z̄ �= o. Furthermore, denoting columns and elements of A1 by ai resp. ai j , and using B(A1) 	 O,

we derive 0 < z̄�B(A1)z̄ = z�(e a�m + am e� − A1 − amme e�)z = −z�A1z = 0, a contradiction.
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2.2 Perturbation

If there are (in a certain sense) enough arbitrarily small perturbations Ā of A that transform
x ∈ E(A) \ ESS(A) into x̄ ∈ ESS(Ā), with I (x) = I (x̄) = JĀ(x̄), then there will be a matrix
B that satisfies (7), as the following lemma claims.

Lemma 3 Let A ∈ Sn and P ⊆ E(A) \ ESS(A). Fix k ≥ 1 and let V be a linear subspace of
Sn of dimension k + 1, and for a > 0 define

Va,A,P := {B ∈ V : {I (p) : p ∈ P} ⊆ qpattern(A+ B) and 0 < ‖B‖ ≤ a} .

Suppose that s := inf
a>0

σ k
({

B
‖B‖ : B ∈ Va,A,P

})
> 0, where σ k denotes spherical measure.

Then there is B ∈ V such that

h I ,K (B) :=
[
(BK×I | o) − (AK×I | e)

(
AI×I e
e� 0

)−1 (BI×I o
o� 0

)](
AI×I e
e� 0

)−1 (o
1

)
< o,

(9)

holds for all (I , K ) ∈ IP :=
{(

I (p), JA(p) \ I (p)
)
: p ∈ P

}
.

Proof We have to show that the polyhedral coneC := {B ∈ V : hI ,K (B) ≤ o,∀(I , K ) ∈ IP}
has nonempty interior. By assumption, for every � ∈ N there is B(1)

� ∈ V 1
�
,A,P. Then the

sequence

(
B(1)

�

‖B(1)
� ‖

)
�≥1

of points on a k-sphere Sk of radius 1 has an accumulation point

B(1) ∈ V . Now, by calculations similar to those that led to the L.H.S. of inequality (8), we

have hI ,K (B(1)
� )+O

(
‖B(1)

� ‖2
)

< o as � → ∞. This implies that hI ,K (B(1)) ≤ o is satisfied

for all (I , K ) ∈ IP, therefore B(1) ∈ C .
Next define N1 := {B ∈ V ∩ Sk : det �(B(1), B) ≤ δ1}, where �(·) denotes the Gram matrix
of a set of vectors (or vectorized matrices), and δ1 > 0 is chosen such that σ k(N1) ≤ s

2 , and

C1 := cone(N1). Further let B
(2)
� ∈ V 1

�
,A,P \ C1 �= ∅ as σ k

({
B

‖B‖ : B ∈ V 1
�
,A,P \ C1

})
> 0.

Again, the sequence

(
B(2)

�

‖B(2)
� ‖

)
�≥1

has an accumulation point B(2) ∈ V , that satisfies

B(2) ∈ C . Moreover, B(1) and B(2) are linearly independent. Assume now that for
r ≤ k we have found linearly independent elements B(1), . . . , B(r) ∈ C . Then define
Nr := {B ∈ V ∩ Sk : det �(B(1), . . . , B(r), B) ≤ δr }, where δr > 0 is chosen such
that σ k(Nr ) ≤ s

2 , and Cr := cone(Nr ). Further let B(r+1)
� ∈ V 1

�
,A,P \ Cr . Such a

sequence does indeed exist because of inf
a>0

σ k
({

B
‖B‖ : B ∈ Va,A,P \ Cr

})
≥ s

2 > 0, and

the sequence

(
B(r+1)

�

‖B(r+1)
� ‖

)
�≥1

has a limit point B(r+1) ∈ C . Summarizing, we have found

B(1), . . . , B(k+1) ∈ C , spanning a subcone of C of full dimension k + 1. Therefore C has
nonempty interior C◦, and any B ∈ C◦ satisfies (9) for all (I , K ) ∈ IP. ��
Does Lemma 3 also hold for k = 0, in which case we always have s ∈ {0, 1} ? That is, if
there is B ∈ Sn and a sequence (εm) of positive reals such that εm → 0 and {I (p) : p ∈
P} ⊆ qpattern(A + εmB) holds for all m ≥ 1, does that imply that (9) is satisfied for all
(I , K ) ∈ IP? The answer is no, as the following example shows.
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Example 4 LetA :=
(−1 1 1

1 −1 −1
1 −1 −1

)
and B :=

( 1 0 −1
0 0 1−1 1 0

)
. Then E(A) = { 12 (e1+e2), 1

2 (e1+e3)}
and ESS(A) = ∅. We let P := {p}, where p = 1

2 (e1 + e2), I = I (p) = {1, 2},
JA(p) = {1, 2, 3}, K = {3}. It is easily checked that hI ,K (B) = o, i.e., (9) is violated. Next

we compute

(
(pε)I
−vε

)
=
(−1+ε 1 1

1 −1 1
1 1 0

)−1
(
o
1

)
= 1

4−ε

[ 2
2−ε−ε

]
, with pε ∈ �3 for 0 < ε ≤ 2

and I (pε) = {1, 2} for 0 < ε < 2. Moreover, (A + εB)K×I (pε)I = vε − ε2

4−ε
< vε for

0 < ε < 4, meaning JA+εB(pε) = {1, 2}, and B((A+εB)I×I
) 	 O for 0 < ε < 4. Therefore

pε ∈ ESS(A+ εB) is quasistrict, and thus I ∈ qpattern(A+ εB) for all ε > 0 small enough.

Remark 2 If, in the setting of Lemma 3, we have sa := σ k
({

B
‖B‖ : B ∈ Va,A,P

})
> 0 for

all a > 0, but lim
a↘0

sa = 0 (this can happen, as the next example shows), then for each

B ∈ ⋂
a>0

cl
(Va,A,P

)
we have hI ,K (B) ≤ o, but no such B will satisfy hI ,K (B) < o.

Example 5 Let k = 1, A :=
(−1 1 1 2

1 −1 −1 −2
1 −1 −1 −2
2 −2 −2 −4

)
, B :=

(
1 0 −1 −1
0 0 1 1/2
−1 1 0 0
−1 1/2 0 0

)
, C :=

( 0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

)
,

and V := span (B,C). We let p = 1
2 (e1 + e2) ∈ E(A) \ ESS(A), I := I (p) = {1, 2} and

K = {3, 4}.We now look for pε,δ ∈ ESS(A+εB+δC), obtaining pε,δ = 1
4−ε

[2, 2−ε, 0, 0]�,
with I (pε,δ) = {1, 2} for 0 < ε < 2, and vε,δ = ε

4−ε
. Moreover, for 0 < ε < 2 fixed,

(A+ εB+ δC)K×I (pε,δ)I − vε,δe = 1
4−ε

[
2δ−ε2

δ(ε−2)−ε2/2

]
< o if and only if− 1

2
ε2

2−ε
< δ < ε2

2 .

From this we conclude sa := σ 1
({

B
‖B‖ : B ∈ Va,A,P

})
> 0 for a > 0, as well as sa = O(a),

as a ↘ 0.

For A ∈ Sn and P ⊆ E(A) we now define the following convex cone

CA(P) := {A′ ∈ Sn :A′x ≤ (x�A′x) e, JA(x) ⊆ JA′(x), and

|I (x)| > 1 ⇒ B(A′
I (x)×I (x)) 	 O , for all x ∈ P},

which clearly satisfies CA(P) = ⋂
p∈P

CA({p}). Observe also that A + λee� ∈ CA(P) for all

λ ∈ R due to (2).
Further members of CA(P), in case that A is negative-semidefinite, will be identified in

the next result.

Proposition 6 Let A = −FF�, where F ∈ R
n×k for some k and assume �n ∩ ker F� �= ∅.

Then

(a) for every p ∈ E(A) we have |I (p)| ≤ rank F+ 1, and for every positive-definite L ∈ Sk

we have A′ := −FLF� ∈ CA({p}) with rank A = rank A′.
(b) For m ≥ 1 fixed define

Pm := {p ∈ E(A) : |I (p)| = m} .

If for some m the set Pm �= ∅, then there is a matrix A′′ = −HH� ∈ Sn of rank m − 1, such
that colspace(H) ⊆ colspace(F), satisfying p�A′′p = 0 for all p ∈ E(A), and Pm ⊆ E(A′′).

Proof (a) follows by Proposition 1(d); note that A′ = −F′(F′)� with F′ = F
√
L where

√
L

denotes the symmetric square root factorization of L. (b) Assume that Pm is nonempty. Then
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from (a) we know that rank F ≥ m − 1, and clearly k ≥ rank F. If rank F = m − 1 we can
simply choose H = F. So we assume rank F ≥ m, and consider H = FB, where B ∈ R

k×(m−1)

satisfies rank FB = m − 1. (Those B constitute an open dense subset of Rk×(m−1).) Then
rank A′′ = m − 1 and colspace(H) ⊆ colspace(F). Furthermore, Ext(�n ∩ ker H�) �= ∅,
and thus, by Proposition 1(d), we have E(A′′) = Ext(�n ∩ ker H�). To show Pm ⊆ E(A′′)
it is sufficient to have that p ∈ Pm and q ∈ �I (p) \ {p} together imply q /∈ ker H�. This
would follow if the map from �I (p) to R

m−1 taking x to B�F�x is one-to-one, which again
is satisfied by all B in an open dense subset of Rk×(m−1). As Pm is a finite set, we find B as
needed in a finite intersection of open dense subsets of Rk×(m−1). ��

So when searching for negative-semidefinite matrices A of order n with many points of
support size m in their sets E(A), we may restrict our search to matrices of the minimal
possible rank m − 1. However, not every element of CA({p}) need have a representation as
in Proposition 6(a):

Example 7 Let A = −FF� and A′ = −GG� where F� =
(

1 −1 1 −1 0 0
1 −1 0 0 1 −1
0 0 1 −1 1 −1

)
and

G� = ( 1 −1 1 −1 0 0
1 −1 0 0 1 −1

)
. Then P := E(A) = { 12 (e1 + e2), 1

2 (e3 + e4), 1
2 (e5 + e6)} ⊆ E(A′) =

E(A) ∪ { 13 (e1 + e4 + e6), 1
3 (e2 + e3 + e5)}, furthermore JA(p) = JA′(p) = [1 : n] for all

p ∈ P. Therefore A′ ∈ CA(P), but rank A �= rank A′. Regarding Proposition 6(b), we have
n = 6, k = 3,m = 2,P2 = P and we may choose H� = (1,−1, 1,−1, 1,−1), leading to
P2 ⊆ E(A′′) = { 12 (e2i−1 + e2 j ) : i, j ∈ [1 :3]}.

Suppose now that (9) is satisfied for certain A, B, I , K . In which ways can we change
either A or B while keeping (9) intact? We start considering variations B′ of B.

Theorem 8 Let A ∈ Sn and p ∈ E(A) such that |I (p)| < |JA(p)|. Suppose that (9) holds for
some B ∈ Sn, where I = I (p) and K = JA(p) \ I . Then for any B̄ ∈ span CA({p}) and any
λ ∈ R, the matrix B′ := B+ λB̄ will also satisfy (9).

Proof From the observations(
AI×I e
e� 0

)−1 (o
1

)
=
(
pI

−v

)
, where v = p�

I (AI×I )pI ,(
B̄I×I o
o� 0

)(
pI

−v

)
= w

(
e
0

)
and

(
B̄K×I o

) (pI

−v

)
= we, where w = p�

I (B̄I×I )pI ,

(
AK×I e

) (AI×I e
e� 0

)−1 (e
0

)
= (AK×I e

) (o
1

)
= e,

we conclude that hI ,K , defined in (9), satisfies

hI ,K (B̄) =
[
(B̄K×I | o) − (AK×I | e)

(
AI×I e
e� 0

)−1 (
B̄I×I o
o� 0

)](
AI×I e
e� 0

)−1 (o
1

)
= o.

Since hI ,K is linear, we conclude hI ,K (B′) = hI ,K (B), and this completes the proof. ��
Now we turn to variations A′ of A. Any matrix A′ ∈ CA(P) is a candidate for some

perturbation A′ + εB to yield {I (p) : p ∈ P} ⊆ qpattern(A′ + εB); however, in general, not
every A′, if any, will achieve this goal. Anyway, the search for a suitable A′ can be restricted
to the set C′A(P) := {A′ ∈ CA(P) : A′ ⊥ ee� , ‖A′‖ = 1}.
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Fixing now p ∈ E(A) with |JA(p)| > |I (p)|, and fixing B satisfying (9) with
I = I (p), K = JA(p) \ I , we ask whether (9) will stay satisfied if we replace A with
some A′ ∈ CA({p}). The answer will clearly be yes, if JA′(p) = JA(p) =: J and
A′
J×J = γAJ×J + λee� for some γ > 0, λ ∈ R, but there are other cases as well, as

the following theorem tells.

Theorem 9 Let A ∈ Sn and p ∈ E(A) such that |I | < |J |, where I = I (p), J = JA(p),
K = J \ I , and also assume p�Ap = 0. Denote the L.H.S. of (9) by g(A, B) [there it is
denoted by hI ,K (B) but we want to fix B ∈ Sn now]. Then for any A′ ∈ CA({p}) satisfying
p�A′p = 0 and colspace(A′

J×I ) = colspace(AJ×I ) we have g(A, B) = g(A′, B).

Proof Our assumptions p ∈ E(A) and p�Ap = 0 imply AJ×IpI = o. Then also AI×IpI = o,
and from B(AI×I ) 	 O we deduce rank(AI×I ) = |I | − 1 and AI×I 
 O. Moreover, every
principal submatrix of order |I | − 1 of AI×I is negative definite.2 Next we show that there is
a full rank matrix F ∈ R

|J |×(|I |−1) such that (−FF�)[1:|J |]×[1:|I |] = AJ×I . In fact, denoting
the upper left principal submatrix of order |I | − 1 of AI×I (corresponding to the index
set I ′ ⊆ I ) by Ã, we have −Ã = RR� 	 O for some invertible R ∈ S|I |−1, and may
choose F := AJ×I ′(R

�)−1. Indeed, it is easy to see (−FF�)[1:|J |]×[1:|I |−1] = AJ×I ′ , and from[
(A+ FF�)p

]
[1:|J |] = owe deduce exactmatch of the |I |th columns of bothmatrices. Clearly

we have colspace(AJ×I ) = colspace(F). Now the same conclusions can be made about A′,
resulting in a full rank matrix F′ ∈ R

|J |×(|I |−1) spanning the same column space as F, so there
has to be a positive-definite matrix Q ∈ S|I |−1 such that A′

J×I = (−FQF�)[1:|J |]×[1:|I |]. We
may and do assume that Q = Diag(λ1, . . . , λ|I |−1) 	 O. It remains to show that the linear

maps represented by M := (AK×I | e)
(
AI×I e
e� 0

)−1

and M′ := (A′
K×I | e)

(
A′
I×I e
e� 0

)−1

coincide on a set of vectors spanning R|I |+1.
We choose the set {(o1), (e0), (f10), . . . , (f|I |−1

0

)}, where F[1:|I |]×[1:|I |−1] = (f1, . . . , f|I |−1).

Linear independence of those vectors is established by noting that
(fi
0

)
i∈[1:|I |−1] are linearly

independent because F has full column rank, and by observing F�pI = o (implying f�i pI = 0
for 1 ≤ i ≤ |I | − 1) and e�pI = 1. First of all note

M
(o
1

) = (AK×I | e)(pI0 ) = o = (A′
K×I | e)(pI0 ) = M′(o

1

)
because of JA ⊆ JA′ , and

M
(
e
0

)
= (AK×I | e)

(
o
1

)
= e = (A′

K×I | e)
(
o
1

)
= M′

(
e
0

)
.

Next fix i ∈ [1 : |I | − 1] and choose vi ∈ R
|I | such that (employing the Kronecker delta)

f�j vi = δi j for j ∈ [1 : |I | − 1] and e�vi = 0. It can be easily checked that

(
AI×I e
e� 0

)(vi
0

)
=
(

(−FF�)[1:|I |]×[1:|I |] e
e� 0

)(vi
0

)
= (−fi

0

)
and

(
A′
I×I e

e� 0

)(vi
0

)
=
(

(−FQF�)[1:|I |]×[1:|I |] e
e� 0

)(vi
0

)
= (−λi fi

0

)
.

2 Just note that B(AI×I ) 	 O is equivalent to x�AI×I x < 0 for all x ∈ e⊥ \ {o}, and then, because of
AI×I pI = o, we have (λpI + x)�AI×I (λpI + x) ≤ 0, for λ ∈ R and x ⊥ e, which means AI×I 
 O. If
for some I ′ ⊂ I with |I ′| = |I | − 1 the matrix AI ′×I ′ had not full rank, there would be q ∈ �|I | satisfying
I (q) = I ′, such that AI×I q = o. Thus the dimension of the kernel of AI×I would be at least 2, and the rank
of AI×I would have to be less than |I | − 1, which is a contradiction.
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From this we obtain

M
(fi
0

) = (AK×I | e)(−vi
0

) = gi and M′(fi
0

) = λ−1
i (A′

K×I | e)(−vi
0

) = gi ,

where F[|I |+1:|J |]×[1:|I |−1] = (g1, . . . , g|I |−1), which finishes the proof. ��
Corollary 10 Let A = −FF�, where F ∈ R

n×k , and assume �n ∩ ker F� �= ∅. Then
for every fixed p ∈ E(A) = Ext(�n ∩ ker F�) and every fixed diagonal matrix � 	 O
we have A′ := −F�F� ∈ CA({p}), and JA′(p) = JA(p) = [1 : n]. Moreover,
colspace(A[1:n]×I (p)) = colspace(A′

[1:n]×I (p)), therefore, by Theorem 9, for fixed B ∈ Sn,
we have g(A, B) = g(A′, B).

That is, for every P ⊆ E(A) and for every � 	 O, if {I (p) : p ∈ P} ⊆ qpattern(A+ εB)
for some B ∈ Sn and for ε > 0 small enough, then also {I (p) : p ∈ P} ⊆ qpattern(A′ + εB)
for that same B ∈ Sn and for ε > 0 small enough.

2.3 Cyclic Symmetry

We call a subset P ⊆ R
n closed under cyclic permutations, if p ∈ P ⇒ Pp ∈ P, where

P = (pi j ) satisfies pi j = 1 for j ≡ i + 1( mod n), and otherwise pi j = 0. We call A ∈ Sn

cyclically symmetric (or symmetric circulant), if it satisfies A = P�AP, and employ the
notation C(a) for a cyclically symmetric matrix whose first column is a. Note that for an
n×n cyclically symmetric matrix A the set E(A) is closed under cyclic permutations. In case
that A is cyclically symmetric, there are well-behaved subsets of E(A), where the “transfer”
can be achieved by cyclically symmetric perturbations, whenever it can be achieved by certain
symmetric perturbations, as the following theorem tells.

Theorem 11 Let A ∈ Sn be cyclically symmetric, let P ⊆ E(A) be closed under cyclic
permutations, and let P′ := {p ∈ P : |I (p)| < |JA(p)|}, which is then also closed under
cyclic permutations.

Suppose that there is B ∈ Sn satisfying (9) for all (I , K ) ∈ IP′ . Then the matrix
C :=∑n

i=1(P
i )�BPi is cyclically symmetric and satisfies

h I ,K (C) =
[
(CK×I | o) − (AK×I | e)

(
AI×I e
e� 0

)−1 (CI×I o
o� 0

)](
AI×I e
e� 0

)−1 (o
1

)
< o ,

(10)
also for all (I , K ) ∈ IP′ .

Thus, by Lemma 2, for ε > 0 small enough, we have {I (p) : p ∈ P} ⊆ qpattern(A+ εC).

Proof From C = P�CP it is clear that C is cyclically symmetric. Next observe that
(P�BP)K×I = BK ′×I ′ , where I = I (p), I ′ = I (Pp), K = JA(p)\ I , and K ′ = JA(Pp)\ I ′, as
well as (P�BP)I×I = BI ′×I ′ , for some {p, Pp} ⊆ P. SinceA is cyclically symmetric, we have
AK ′×I ′ = AK×I and AI ′×I ′ = AI×I . Thus, if (9) is satisfied, it stays satisfied if we replace B
by (Pi )�BPi . Summing over i then finishes the proof of (10). Finally, I (p) ∈ qpattern(A+εC),
for ε > 0 small enough, is true for p ∈ P′ by Lemma 2, and true for p ∈ P\P′ by a continuity
argument (quasistrictness of NESs is preserved, as is negative-definiteness). ��
Remark 3 Note that cyclic symmetry of C has the following implication. If for some p ∈ �n

the inequalities (10) are satisfied for (I , K ) ∈ I{p}, those inequalities will be satisfied for
all (I , K ) ∈ IZp , where Zp := {p, Pp, . . . , Pn−1p, Rp, PRp, . . . , Pn−1Rp}, with Rp :=
[pn, pn−1, . . . , p1]� denoting the vector with the coordinates of p in reverse order.
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Remark 4 Note that Proposition 6 is not valid if we require A and A′′ to be cyclically sym-
metric, as is demonstrated by the following example: For the cyclically symmetric matrix
A := C([−1, 0, 1, 0,−1, 0, 1, 0]�) of rank 2 we have E(A) = { 12 (ei + ei+2) : i ∈ [1 : 8]},
with i+2 ∈ [1 :8] computed modulo 8, so all supports have size 2. Now there is no cyclically
symmetric matrix A′ of rank 1 satisfying E(A) ⊆ E(A′), but we have E(A) ⊆ E(A′′) for the
rank 1 matrix A′′ := −HH�, where H� := (1, 1,−1,−1, 1, 1,−1,−1). Also observe that
Aε := C([−1, 0, 1+ε, 0,−1−ε, 0, 1+ε, 0]�) satisfies ESS(Aε) = E(A) for arbitrarily small
ε > 0, so in this example, perturbation of A yields a cyclically symmetric matrix as desired,
whereas we can even get E(A) ⊆ ESS(A′′

ε ) with |ESS(A′′
ε )| = 16, where A′′

ε := A′′ + εI8,
when not insisting on cyclic symmetry.

The vector space Cn := {A ∈ Sn : A is cyclically symmetric}, on which we now concen-
trate, has dimension n′ + 1, where n′ := � n−1

2  , a basis being {Pi + P−i : i ∈ [0 : n′]}. As
Cn is a subspace of the space of all circulant matrices (see [14]) of order n, all members of
Cn are simultaneously diagonalizable, and because of their symmetry, a common orthogonal
basis of real eigenvectors can be used for that purpose. Those are the nonzero vectors in the
set {ci , si : i ∈ [0 :n′]}, where
ci :=

[
cos

2iπ

n
, cos

4iπ

n
, . . . , cos

2niπ

n

]�
and si :=

[
sin

2iπ

n
, sin

4iπ

n
, . . . , sin

2niπ

n

]�
.

This leads to a basis for Cn , consisting of low rank matrices Vi := cic�i + si s�i , with those
ranks adding up to n, that will bemore convenient. The set {Vi : i ∈ [0 :n′]} indeed constitutes
such a basis. Just note that V0 = ee� has rank 1, Vn′ = cn′c�n′ in case of even n has rank
1 as well, and all remaining matrices Vi are seen to have rank 2 by orthogonality of {ci , si }
for each i ∈ [1 : n′] (and also for i = n′ if n is odd). Moreover, employing trigonometric
identities, we obtain (Vi )k,� = cos 2(k−�)iπ

n , which depends on k, � only via the residue class
of |k − �| mod n, showing that Vi ∈ Cn for all i ∈ [0 : n′]. Linear independence of the set
{Vi : i ∈ [0 :n′]} follows from linear independence of corresponding column spaces, which
follows from the observation that {ci , si : i ∈ [0 : n′]} \ {o} constitutes a basis of Rn . Note
that with respect to the Frobenius inner product, we have Vi • V j = 0 if i �= j .

2.4 Construction

Now consider negative-semidefinite matrices A ∈ Cn satisfying A•V0 = 0. That is, there is a
representation A = −FF� = −∑i∈L λiVi for some L ⊆ [1 :n′], λi > 0 for i ∈ L , F ∈ R

n×k ,
and the columns of F are nonzero multiples of vectors in the set {ci , si �= o : i ∈ L}.
(Note that, if n is odd then k := rank (A) = 2|L| is even.) Also 1

n e ∈ �n ∩ ker F�,
therefore Corollary 10 applies. So when perturbing negative-semidefinite matrices A ∈ Cn \
{O} satisfying A•V0 = 0, we may restrict our attention to the finite set of candidate matrices
An := {AL : ∅ �= L ⊆ [1 :n′]}, where AL := −∑i∈L Vi . Moreover, by Theorem 8, we may
restrict the matrix B, used to perturb AL via AL + εB, to span {V j : j ∈ [1 :n′] \ L}.

As we can restrict ourselves to matrices with zero diagonal, yet another basis will even
better serve our needs: {Wi : i ∈ [0 : n′]}, where W0 = V0 and Wi = 1

2 (ee
� − Vi ) for

i ∈ [1 : n′], with (Wi )k,� = sin2 (k−�)iπ
n . The last two sentences of the preceding paragraph

remain true with AL :=∑i∈L Wi and B ∈ span {W j : j ∈ [1 :n′] \ L}.
We are only interested in the size of qpattern(A), so we would not distinguish between

A ∈ Cn and A′ := P̄AP̄
�
, where P̄ is a permutation matrix. If A′ = P̄AP̄

� ∈ Cn , but A′ �= A,
this allows for a further reduction of the set of candidate matrices. In particular, if for some
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permutation τ of the set [1 : n′], we have P̄Wi P̄
� = Wτ(i) for i ∈ [1 : n′], then for sets

L ⊆ [1 :n′] and τ L := {τ(i) : i ∈ L} we have
p ∈ ESS(AL + εB) ⇔ P̄p ∈ ESS(Aτ L + εB′),

where B′ = P̄BP̄
�
. That is, we can further restrict our set of candidate matrices to a sub-

set Ān ⊆ An by ensuring that for every L ⊆ [1 : n′] exactly one matrix from the set
{AL ,Aτ L ,Aτ 2L , . . .} is contained in Ān .

Example 12 For n = 6 we obtain

W0 =
⎛
⎝ 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎞
⎠ , W1 = 1

4

⎛
⎝ 0 1 3 4 3 1

1 0 1 3 4 3
3 1 0 1 3 4
4 3 1 0 1 3
3 4 3 1 0 1
1 3 4 3 1 0

⎞
⎠ , W2 = 1

4

⎛
⎝ 0 3 3 0 3 3

3 0 3 3 0 3
3 3 0 3 3 0
0 3 3 0 3 3
3 0 3 3 0 3
3 3 0 3 3 0

⎞
⎠ ,W3 =

⎛
⎝ 0 1 0 1 0 1

1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

⎞
⎠ .

The only permutation τ that can be introduced via a permutation matrix P̄ as above is the
identity, so the set of candidate matrices will be Ā6 = A6 = {AL : ∅ �= L ⊆ [1 :3]}.

For n = 7, we obtain

W0 = ee�, W1 = C([0, sin2 π
7 , sin2 2π

7 , sin2 3π
7 , sin2 3π

7 , sin2 2π
7 , sin2 π

7 ]�),

W2 = P̄W1P̄
�
, W3 = P̄W2P̄

�
,

where P̄ = ( p̄i j ) satisfies p̄i j = 1 for j ≡ 2i( mod n), and otherwise p̄i j = 0. Then also

W1 = P̄W3P̄
�

holds. So P̄ induces a non-trivial permutation τ on [1 : 3], and the set of
candidate matrices reduces to Ā7 := {A{1},A{1,2},A{1,2,3}}.

Note that for the candidate matrix A := A[1:n′] ∈ Ān we have E(A) = ESS(A) = { 1n e},
and the latter set will not change, if A is slightly perturbed. Therefore we exclude that
candidate matrix from further considerations. For the remaining candidate matrices AL we
have L ′ := [1 : n′] \ L �= ∅, and for α ∈ R

L ′
we define Bα := ∑

i∈L ′ αiWi . For every
p ∈ E(AL), we denote by LL,p the solution set of inequality (9), where I = I (p) and
K = JAL (p) \ I , and clearly that inequality is linear in α. Next, we denote byRL a maximal
subset of E(AL) consisting only of p of maximal support size, i.e., |I (p)| = rank (AL) + 1,
and satisfying Zp ∩RL = {p} for every p ∈ RL , where Zp is introduced in Remark 3. Our
aim is then to find a subset R̄L ⊆ RL of largest size(R̄L) :=∑p∈R̄L

|Zp|, such that⋂
p∈R̄L

LL,p �= ∅.

Any α in that nonempty intersection will then lead to a matrix Bα , such that for ε > 0 small
enough

|ESS(AL + εBα)| ≥ size(R̄L).

A natural further reduction of the set of candidate matrices is via the definition ¯̄An := {AL ∈
Ān : RL �= ∅}.
Example 13 (Continuation of Example 12) For n = 6 we have E(A{1}) = Zp1 ∪ Zp2 ,
E(A{2}) = Zp1 ∪ Zp3 , E(A{3}) = Zp2 ∪ Zp4 , E(A{1,2}) = Zp1 , E(A{1,3}) = Zp2 , E(A{2,3}) =
Zp5 , where

p1 := 1
3 (e1 + e3 + e5),p2 := 1

2 (e1 + e4), p3 := 1
3 (e1 + e2 + e3),

p4 := 1
2 (e1 + e2),p5 := 1

6 (e1 + 2e2 + 2e3 + e4),
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resulting in the following setsRL for L ⊆ [1 :3], 0 < |L| < 3:

R{1} = {p1} , R{2} = {p1,p3}, R{3} = {p2,p4} , R{1,2} = ∅ , R{1,3} = ∅ , R{2,3} = {p5} ,

with maximizing sets R̄L = RL for all L and respective sizes

size(R{1}) = 2, size(R{2}) = 8, size(R{3}) = 9, size(R{2,3}) = 6.

Corresponding matrices with 9 ESSs of support size 2 (resp. 8 ESSs of support size 3,
resp. 6 ESSs of support size 4) are given in Table 2. Also note that we have just derived
¯̄A6 = {A{1},A{2},A{3},A{2,3}}.
Let us consider L = {2} in more detail: We have A{2} = W2, Bα = α1W1 + α2W3, and for
I = I (p3) = {1, 2, 3}, K = {4, 5, 6}, inequality (9) reads

1

4

[(
4α1+4α2 3α1 α1+4α2 0

3α1 4α1+4α2 3α1 0
α1+4α2 3α1 4α1+4α2 0

)
−
(
0 3 3 4
3 0 3 4
3 3 0 4

)( 0 3 3 4
3 0 3 4
3 3 0 4
4 4 4 0

)−1
(

0 α1+4α2 3α1 0
α1+4α2 0 α1+4α2 0
3α1 α1+4α2 0 0
0 0 0 0

)][
1/3
1/3
1/3
0

]
<o ,

simplifying to 1
12

⎡
⎣ 4α1 + 4α2

8α1 − 4α2

4α1 + 4α2

⎤
⎦ < o. Moreover, for I = I (p1) = {1, 3, 5}, K = {2, 4, 6},

inequality (9) reads

1

4

[(
α1+4α2 α1+4α2 4α1+4α2 0
4α1+4α2 α1+4α2 α1+4α2 0
α1+4α2 4α1+4α2 α1+4α2 0

)
−
(
3 3 0 4
0 3 3 4
3 0 3 4

)( 0 3 3 4
3 0 3 4
3 3 0 4
4 4 4 0

)−1
(

0 3α1 3α1 0
3α1 0 3α1 0
3α1 3α1 0 0
0 0 0 0

)][
1/3
1/3
1/3
0

]
=
[ α2

α2
α2

]
<o ,

This results in L{2},p3 = {α ∈ R
2 : α1 + α2 < 0, 2α1 − α2 < 0} and

L{2},p1 = {α ∈ R
2 : α2 < 0}. These two sets have nonempty intersection, containing

α = −[1, 1]�, which gives rise to Bα . Numerical experiments with varying ε yield that
ε := 1

4 is small enough for our purposes:WithM := A{2}+εBα = C([0, 7
16 ,

9
16 ,− 1

2 ,
9
16 ,

7
16 ]�)

we have ESS(M) = Zp̄3 ∪Zp1 , with p̄3 = 1
19 [7, 5, 7, 0, 0, 0]�, and in particular |ESS(M)| =

8. Likewise, by choosing α ∈ L{2},p3 \ cl(L{2},p1), resp. α ∈ L{2},p1 \ cl(L{2},p3), we can
construct matrices having 6 resp. 2 ESSs.

Figure 1 shows part of the search space for n = 6. Note that we may get rid of two of the
four parameters, that matrices from C6 depend on, by assuming a zero diagonal and a fixed
sum of entries. In the figure we have fixed the sum of entries of the first row to 2. The interior
of the white triangle corresponds to matrices with one single ESS, namely 1

6e. The boundary
of the white triangle consists of negative-semidefinite matrices (up to an additive multiple
of ee�), the three vertices corresponding to (positive multiples of) matricesW1,W2 andW3.
The matrix M from above then belongs to the dark gray region. There is a circle attached to
each shaded region containing information regarding the pattern of matrices in the interior of
that region, e.g., 83 indicates that there are 8 ESSs, each of support size 3. Note that the figure
clearly misses matrices where entries sum to 0 or a negative value, and indeed the pattern
61 attained at the matrix C([0,−1,−1,−1,−1,−1]�) does not show up in the figure; see,
however, [5, Figure 1] for the whole search space.

In terms of our perturbation approach, matrix A{2,3} is our entry to region 64, matrix A{3}
to regions 32, 62 and 92, matrix A{2} to regions 23, 63 and 83, and matrix A{1} is our entry to
the interior of cl(23 ∪ 2332). Note that, in the latter case, p2 ∈ E(A{1}) \Zp1 has insufficient
support size and thus does not enter the inequalities restricting α. Matrices found near A{1}
may lie on either side of, or straight on, the boundary 23-2332.

We conclude this example by some further remarks concerning the regions in Fig. 1, and
their boundaries. For matrices A from one of the regions, we always have ESS(A) = E(A).
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A{2}

M

[1, 0, 0]

[0, 1, 0] [0, 0, 1]

A{3}

A{1}

A{2,3}

64

16

83

23

2332

32

926263

Fig. 1 Part of the search space for n = 6 on the hyperplane characterized by a + b + c = 1, where points
[a, b, c] depicted in barycentric coordinates correspond to positivemultiples ofmatricesC([0, a, b, 2c, b, a]�)

Regarding boundaries, we have ESS(A) = ∅, |NSS(A)| = ∞ and 1
6e ∈ NSS(A) for every

A on the boundary of the white triangle. There are 8 remaining boundary pieces in the
complement of the closure of the white triangle, which are listed in Table 1. We observe
two types of behavior. Either for a matrix A on a boundary, |ESS(A)| is the minimum of the
numbers of ESSs found in the two regions separated by that boundary, while |E(A)| is the
maximum of those, and NSS(A) = ESS(A). Or ESS(A) = ∅, while

NSS(A) =
⋃

p1,p2∈E(A)

I (p1)⊆JA(p2)

conv ({p1,p2})

is infinite. The relative interiors of the sides of the white triangle, that we added to the table,
are also of the latter type, with the simplification, resulting from JA(p) = [1 :6] in the second
to last column, that NSS(A) = conv E(A). There may be further types of n′ − 2-dimensional
boundaries for higher orders n.

In general, we would desire a more detailed picture, such as given in Fig. 2, where
pattern(A) enters the definition of a “region” directly and not just via the sizes of the elements
of pattern(A). This would, however, not change Fig. 1. The question arises, if those newly
defined “regions”, which in general have to be thought of as being confined to a hyperplane
not containing the origin, are connected or even convex (the latter is not always the case, as
can be seen in Fig. 1).



Dynamic Games and Applications (2020) 10:618–640 633

Table 1 Boundary pieces of regions in Fig. 1

Boundary piece Equation satisfied |ESS(A)| |E(A)| |JA(p)| for p ∈
E(A) \ ESS(A)

Type

63-83 a − b + c = 0 6 8 6 1

32-2332 a − b + c = 0 3 5 6 1

23-2332 a + b − 2c = 0 2 5 6 1

23-83 a2 − ab − 2ac + bc = 0 2 8 4 1

62-92 a + b − 2c = 0 6 9 6 1

32-92 b + 2c − a = 0 3 9 4 1

62-63 b = 0 0 6 4 2

63-64 a2 + b2 − 2ab − 2ac = 0 0 6 5 2

16-64 b + 2c − a = 0 0 6 6 2

16-23 a − b + c = 0 0 2 6 2

16-32 a + b − 2c = 0 0 3 6 2

A{1}

A{1,2}

{1, 5}

{1, 2}

{1, 3}

{1, 2, 5}

{1, 2, 3}

{1, 3, 5}

{1,2,4,5}
{1,2,3,4}

{1,3,5,7}

{1,2,4,5,6}
{1,2,3,4,5}

{1,2,3,5,7}

[1, 0, 0]

[0, 1, 0] [0, 0, 1]

Fig. 2 Part of the search space for n = 7 on the hyperplane characterized by a+b+c = 1,where points [a, b, c]
depicted in barycentric coordinates correspond to positive multiples of matrices C([0, a, b, c, c, b, a]�)
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2.5 Results

We used the construction outlined in the previous subsection to find cyclically symmetric
matrices of orders n ∈ [4 :23] with many ESSs of support size k ∈ [2 :n − 2], with k either
2 or odd, when n is odd. We wanted those matrices to have integer entries to facilitate the
computation of the set of ESSs.While ourmain goalwas tomaximize the number of ESSs, we
also made efforts to keep the integer entries small. Our results can be found in Tables 2, 3 and
4, containing a box for each order n ∈ [4 :23], the order always being indicated by the bold
number in the lower left of that box, with a row for each support size. The row [8524 | 1 5 4 2]
in the box corresponding to order 8 tells us that the matrix C([0, 1, 5, 4, 2, 4, 5, 1]�) has 8
ESSs of support size 5, but also 2 “spurious” ESSs of support size 4. It was not our aim to
get a “pure” result 85 by introducing further inequalities on α. Indeed, cases of “spurious”
ESSs of slightly smaller support sizes than aimed at appear also in other places of the tables,
mainly for even orders. In some cases that information was suppressed due to lack of space,
but we give it here; the corresponding vector a can be found in row [x |a�] in Tables 2, 3

Table 2 Cyclically symmetric matrices of orders from 4 up to 19 with many ESSs of prescribed support size

The bold number in the lower left of each box indicates the order ofmatrices in that box, and the row [143 | 1 5 8]
in the box corresponding to order 7 tells us that the matrix C([0, 1, 5, 8, 8, 5, 1]�) has 14 ESSs of support
size 3
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Table 3 Cyclically symmetric matrices of orders 20 and 21 with many ESSs of prescribed support size

1002 1 −1 1 −1 1 −1 1 −1 1 −1
3203 1 3 3 1 −1 1 3 3 1 −1
8004 21 14 30 5 15 5 30 14 21 −1

11845254 39 151 298 435 523 544 505 435 372 347
22406 13 11 23 11 18 11 23 11 13 −1

1720760645 670934 1565862 1774786 1277258 944237 1860904 2884941 3093863 2467220 1888590
25608 9 6 11 9 8 9 11 6 9 −1

1580970845 20802 59866 75781 58483 37194 40441 62568 77590 75786 71515
152010 9816 7149 12134 8738 8460 9400 12134 6486 9816 655

840114010 157024 188864 153287 201508 210994 316553 204951 172076 240613 175750
122512 14 13 14 11 14 23 14 11 14 18

420132012210 29716 30986 41555 57575 31062 46923 32632 41639 67516 50743
36014 8 6 7 4 7 7 7 8 8 6

60152014512 427 720 525 649 695 553 631 615 597 675
10016 8 9 8 6 8 11 8 9 8 8
2017210 14 19 14 18 15 17 16 15 17 15
2018 12 13 12 12 13 11 14 11 14 10
632 1 −1 1 −1 1 −1 −1 −1 −1 −1
3853 1 11 34 64 97 131 163 191 212 219
17015 2 4 3 3 4 2 −1 2 4 3
23767 360975 592543 1150574 1539916 1725899 2137635 2261970 2907588 3197338 3582088
44109 15 15 7 15 15 7 7 15 7 15

20791114937 82591 217944 244806 188657 179951 229457 243152 205939 191442 213086
102913 544204 653438 465125 937091 818322 653739 729842 635706 769056 731486
40615 4771 7913 7205 8412 7913 8031 5892 4771 8694 8412
12617 3389 5684 4643 4418 4896 5497 5985 5949 4194 4924
2119 12 15 12 15 13 14 13 14 13 14

Table 4 Cyclically symmetric matrices of orders 22 and 23 with many ESSs of prescribed support size

1212 1 −1 1 −1 1 −1 1 −1 1 −1 1
4403 1 5 13 20 23 23 20 13 5 1 −1
11224 25541 24537 66953 69589 101311 82414 88522 48013 43471 6633 18857
21125 1 4 6 6 5 5 6 6 4 1 −1
30256 12 1 12 5 12 13 12 20 12 23 12
42247 8 12 12 17 10 10 17 12 12 8 −1
44448 2434323 1057798 2948856 695523 2698449 721840 2672139 972246 3034410 457710 1976371
56329 5 8 6 7 6 6 7 6 8 5 −1
442210 684876 1281651 2190757 1933610 1866035 1391942 1815986 1779453 2064073 1577524 1724349
295011 2226626 6164519 7513582 6164520 5308733 6164520 6830692 6164521 5580439 6164518 6724943
277212 11 8 11 8 11 8 11 8 11 8 2
154013 1819315 1858140 1919344 1997977 2087664 2181129 2270816 2349450 2410653 2449478 656656
126514 1372902 1150952 2144657 2037304 1546156 1866844 1440909 2072746 1798400 1740258 1660594
55015 6368316 7582714 7226700 6214175 6671549 8258502 8715875 7703352 7347337 8561734 3981238
44016 22801 21808 25273 17871 23675 23753 29557 22155 25619 24626 15933
8817 162263 210812 219039 197387 195359 213733 211705 190053 198280 246830 144368
12118 6 5 6 8 6 6 6 7 6 6 6
2219 14 18 16 17 18 16 17 18 15 19 14
2220 20 20 21 18 23 17 22 19 20 21 19
922 1 −1 1 −1 1 −1 1 −1 −1 −1 −1
5063 1 17 42 74 112 152 191 227 256 277 287
27605 13777 51750 104635 159847 204956 231032 234933 219898 194267 168766 153140
56127 1139411 3967973 7061004 8983982 9094095 7838202 6385670 5848673 6590399 8051221 9181803
58429 5433685 17400081 26917514 28433148 24074247 20336942 21173719 24682768 26276531 24230460 21371440
526711 379497 1084450 1390556 1190266 982320 1080275 1248913 1197078 1047012 1070000 1212305
280613 784170 1960130 2377665 2279891 2049365 2245727 2552376 2096509 1707404 2117294 2525749
133415 51352 99269 66787 54099 80291 70084 54462 72058 75098 66310 77901
46017 159 242 234 199 224 246 180 255 203 222 222
11519 134 143 173 140 151 150 161 148 135 181 137
2321 23 27 23 27 23 27 23 26 24 26 25
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and 4, where x is the first part of the regular-type faced entries in the five row vectors of the
following four lines:

(12 : 72543, 2472634, 12926) , (14 : 42914827) ,

(16 : 112384, 3525204, 3687326, 224928, 4811161028, 161328) ,

(18 : 668954836, 34211181089, 7213181229, 181529) ,

(22 : 29501119810, 1540136612211, 550154414211, 88172216, 2219211) .

For instance, for 2472634 with order n = 12 we have a� = [2, 7, 7, 5, 6, 7] from Table 2.
All calculations were done with MapleTM and the matrices listed in the tables were double-
checked with Reinhard Ullrich’s program ref (rational equilibrium finder). For fixed n, the
first task is to find the set Ān of candidate matrices. Containing at most one matrix indexed
by any of the subsets L of [1 :n′], its size is bounded by 2n′ , but a further reduction in size to
roughly 2

ϕ(n)
2n

′
, where ϕ denotes the Euler totient function, is possible, by keeping just one

member of each orbit {AL ,Aτ L ,Aτ 2L , . . .}, where τ is a permutation on [1 :n′] generating a
cyclic group of order φ(n)

2 . That resulted in, e.g., |Ā22| = 394, which is much smaller then
211.

Next, we fixed A = AL ∈ Ān of rank k − 1 and computed RL . Potential supports of
members of RL are all subsets of [1 : n] of size k. Among a certain subset and all its shifts
and reflected shifts only one set has to be taken into account, which reduces the number
of potential supports to roughly 1

2n

(n
k

)
. For any such support I we then checked if there

is p ∈ E(A) with I (p) = I , i.e., we numerically solved AI×IpI = o, e�pI = 1. If the
system appeared to lack a unique solution, we discarded that support. We also did that, if the
solution was outside the simplex �k or apparently on its boundary. Only if the solution p
was clearly in the interior of �k , and LL,p �= ∅ was fulfilled, did we include I in RL . E.g.,
for n = 22 and k = 10 we obtain 14938 (shift- and reflection-reduced) potential supports,
of which not more than 280 belong to any set RL : There are 42 candidate matrices of rank
9 in Ā22. Corresponding sets RL satisfy 280 ≥ |RL | ≥ 1 and 11011 ≥ size(RL) ≥ 22 for
L in a suitable 42-element set. For each such L we have to maximize size(R̄L) under the
constraints R̄L ⊆ RL ,

⋂
p∈R̄L

LL,p �= ∅. We would work our way down starting with the
most promising L corresponding to size(RL) = 11011, thus finding the largest value 4422
of size(R̄L) for L = {1, 2, 3, 4, 11}, with size(RL) = 6138 being the 28th-largest among
the corresponding 42 values.

We replaced the “< 0”-inequalities originating in (9), that are present in the constraints of
the maximization problem, by “≤ −δ”-inequalities for some fixed δ > 0. The problem can
be regarded as a Maximum Feasible Subsystem Problem, see [16]. For small n, we solved
the problem by exhaustive search, for larger n we used a heuristic approach to generate
good lower bounds for the optimal value (basically, we repeatedly started with a list built
from a random permutation of the points in RL and, starting at the beginning of the list,
greedily included points p while maintaining nonempty intersection of the corresponding
sets LL,p). For n up to 19 we also computed upper bounds for the optimal values, derived
from formulations as Min IIS (irreducible inconsistent subsystem) Cover problems [16],
with those upper bounds matching the lower bounds. So we can be sure to have solved the
maximization problems for n ∈ [4 : 19] to optimality, but we do not know whether some of
our lower bounds for n ∈ [20 :23] leading to entries in Tables 3 and 4 are actually the optimal
objective values for the corresponding problems.

Having solved (or having found a good lower bound m for) the maximization problem
means that we now know a matrix Bα such that A + εBα will have many quasistrict ESSs.
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As we want integer entries for our matrices, we would rather consider matrices r1A+ r2Bα

with r1 large and r2 of moderate size, and we would round the entries of that matrix to the
nearest integers. Clearly r2 may not be too small, otherwise Bα’s influence will get wiped out
by the rounding. Also r1

r2
= 1

ε
may not be too small, as we need ε small. So suitable r1, r2

will lead to a matrix with m quasistrict ESSs of support size k, having typically very large
integer entries. Computing a series of ever smaller multiples of that matrix and rounding
again—which is what we did—can reduce the entries of the matrix to some extent. Trying
to have integer entries close to the minimal values possible would require considering all α
in the nonempty intersection of the sets LL,p and all matrices A′ as defined in Corollary 10,
for all L for which size(R̄L) = m. We did not pursue that approach.

Summarizing, for orders n ∈ [4 : 19] and prescribed support sizes k ∈ [2 : n − 2],
with k odd when n is odd, we have constructed matrices in Cn with a maximum number of
quasistrict ESSs of support size k. Here maximality is meant amongmatrices in Cn occurring,
in positive proportion, arbitrarily close to some negative-semidefinite matrix of rank k − 1.
We do, however, not claim that the matrices we found are close to negative-semidefinite ones
in the sense that there is a continuous path in Cn from one to the other along which the pattern
does not change, as we do not know if there may be disconnected regions within Cn that share
the same pattern, so that our rounding procedure could have led to a jump from one region
to another. This holds in particular in some cases where n = n1n2 is not a prime number. If
the best result we found for some fixed k was not better than what we got by constructing
a matrix from suitable matrices of orders n1 and n2 using construction techniques from [5],
we would list the latter in our table, when it had entries of smaller size. Note that, in view
of Lemma 3 and Example 4, our approach need not have worked for k = n − 2, but it
did: It is known from [6, Thm. 5], that max

A∈Cn
|{p ∈ ESS(A) : |I (p)| = n − 2}| = n, and our

construction method produced matrices with integer entries achieving this maximal value for
all n ∈ [4 :23].
Remark 5 Special attention to cyclically symmetric matrices has been payed by [6], from
which we can deduce that

max
A∈Cn

|{p ∈ ESS(A) : |I (p)| = k}| = max
A∈Sn

|{p ∈ ESS(A) : |I (p)| = k}| , if k ∈ {1, n − 2, n},

and also if n is even and k = 2. The L.H.S. is, however, strictly smaller than the R.H.S. if
n ≥ 3 and k = n−1, and also if n ≥ 3 is odd and k = 2. (See also the next section for the case
k = 2.) Furthermore, the best lower bound for the constant γ introduced in [6, Thm. 2], that

is currently known, is 15120
1
24 ≈ 1.4933, and originates from a matrix A ∈ C24 satisfying

|ESS(A)| = 15120, see [5]. The main reason we concentrated on cyclically symmetric
matrices is however that they are particularly well suited for our perturbation method. There
are only finitely many column spaces associated with matrices in Cn , which, by invoking
Corollary 10, led to finite sets Ān of candidate matrices, something we cannot hope for if we
replace Cn by (other interesting subsets of) Sn .

3 Even Support Sizes of ESSsWhen the Order is Odd

The construction method described in Sect. 2 is not suited for finding cyclically symmetric
matrices of odd order that have many ESSs of even support size, simply because Ān does
not contain matrices of odd rank when n is odd. Remark 4 above addresses a related issue.
Figure 2 nevertheless shows that for order n = 7 matrices with 7 ESSs of support size 4
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can be found by perturbing the matrix A{1} ∈ Ā7. Furthermore, it is seen in Fig. 2 that
for some matrices of order 7, there are 7 ESSs of support size 2, but those matrices do
not result from small perturbations of matrices in the set Ā7. In Fig. 2 regions of matrices
sharing the same pattern are visualized by their shading, a particular support attached to
some region always indicating just one member of a whole class of 7 cyclic shifts of that
support. The (middle gray) 73 regions actually overlap, and their intersections, the dark gray
triangle shaped regions, correspond to matrices with 14 ESSs of support size 3. The white
triangle corresponds to matrices with 1 ESS of support size 7. The 74 regions are bounded
by segments of the three ellipses (b − c)2 = ab, (c − a)2 = bc, and (a − b)2 = ca. Two
sides of the dark gray triangle shaped regions are actually curved, and are segments of the
three hyperbolae ac + 3bc = ab + 2c2, ab + 3ac = bc + 2a2, and bc + 3ab = ac + 2b2,
the third sides are the straight lines a = 0, b = 0, c = 0. The 72 regions are bounded by the
lines a = 0, 2b = c, resp. b = 0, 2c = a, resp. c = 0, 2a = b. The union of the three lines
forming the boundary of the 17 region satisfies the equation

a3 + b3 + c3 + 3(a2b + b2c + c2a) − 4(ab2 + bc2 + ca2) − abc = 0.

Figure 2 suggests that for given odd n, matrices in Cn with many ESSs of even support size k
could be found by perturbing a negative-semidefinite cyclically symmetric matrix A of rank
k − 2 in such a way that points p ∈ conv {p1,p2}, with p1,p2 ∈ E(A), |I (p1)| = |I (p2)| =
|I (p1)∩ I (p2)|+1 = k−1, get perturbed into quasistrict ESSs of the perturbedmatrix. (This
should also be considered in the case of even n and k of any parity, as suggested by Fig. 1,
where we can enter the 63 region by perturbing A{3}.) Since there is no straightforward way
to adapt our construction method to that setting, we leave this approach to future research.
We do however have results for k = 2, which are also given in Tables 2, 3 and 4.

3.1 Support Size 2

FixA ∈ Sn and consider the graphG with vertex setV (G) = [1 :n] and an edge {i, j} ∈ E(G)

iff {i, j} = I (p) for some p ∈ ESS(A). Then we know from [19, Thm. 2 and Corollaries]
that G is triangle-free. For a given triangle-free graph G let now A(G) = (ai j ) ∈ Sn be
defined by aii = 0 for i ∈ [1 : n], ai j = 1 ⇔ {i, j} ∈ E(G), 1 ≤ i < j ≤ n, and
ai j = −1 otherwise. Then we know from [9, Thm. 1], that pattern(A(G)) = E(G). So, as
noted in [9, Thm. 5 and Corollaries], the maximum number of ESSs of support size 2 a matrix

A ∈ Sn can have is
⌈
n2−1
4

⌉
, corresponding to a complete bipartite graph with maximally

balanced partition. For even n, the matrix A(G), obtained from the complete bipartite graph
G with [1 : n] partitioned into odd and even numbers, turns out to belong to Cn , therefore
n2
4 = max

A∈Cn
|{p ∈ ESS(A) : |I (p)| = 2}| is attained.

Not so for n odd. Note thatA(G) ∈ Cn means thatG is a circulant graph on V (G) = [1 :n],
being determined by a subset S ⊆ [1 :n − 1] such that {i, j} ∈ E(G) ⇔ i − j ≡ s mod n
for some s ∈ S. In order that G be triangle-free, S has to be a symmetric sum-free subset
of [1 : n − 1], i. e., s ∈ S ⇒ n − s ∈ S, and s1 + s2 ≡ s mod n has no solution with
s1, s2, s ∈ S. For small odd n, the maximal sizes mn of such symmetric sum-free subsets of
[1 :n − 1] are easily found,

(m2k+1
2 : k ∈ [2 :32])

= (1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 4, 5, 5, 6, 7, 6, 6, 7, 7, 9, 8, 8, 9, 9, 11, 9, 10, 10, 10, 13),
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and it is observed that

n − 3

6
≤ mn

2
≤ n

5

holds for that range. Note that we are interested in mn
2 , because |E(G)| = |S|

2 n. The inequality
n−3
3 ≤ mn holds for all odd n, as is seen by observing that

{2k − 1 : k ∈ Ln} ∪ {n + 1− 2k : k ∈ Ln},where Ln = [1 : � n−3
6  ],

is a symmetric sum-free subset of [1 :n − 1] of at least n−3
3 elements. The inequality mn

2 ≤ n
5 ,

on the other hand, is not surprising in the light of [10, Prop. 1.3, Thm. 1.5], from which we
can deduce that the maximal size possible for a sum-free subset of [1 : n − 1] (without the
requirement of being symmetric) is upper bounded by n

5 . Interestingly, this upper bound is
attained infinitely often also by symmetric sum-free sets, i. e., the equality mn

2 = n
5 holds for

all n ∈ {10k−5 : k ≥ 1}. This is seen by observing that {1, 4, 6, 9, 11, 14, . . . , 10k−6} (with
differences of consecutive elements alternating between 3 and 2) is a symmetric sum-free
subset of [1 :10k − 6] of size 4k − 2.

So we conclude, that Mn := max
A∈Cn

|{p ∈ ESS(A) : |I (p)| = 2}| satisfies

Mn ≥ n(n−3)
6 for any odd n, Mn = n2

5 for infinitely many odd n, and Mn > n2
5 for no odd n,

in particular, the maximum n2−1
4 for matrices constructed from bipartite graphs is never

attained by Mn for odd n ≥ 3.
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