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Abstract We consider the repeated prisoner’s dilemma (PD). We assume that players make
their choices knowing only average payoffs from the previous stages. A player’s strategy
is a function from the convex hull S of the set of payoffs into the set {C, D} (C means
cooperation, D—defection). Smale (Econometrica 48:1617–1634, 1980) presented an idea
of good strategies in the repeated PD. If both players play good strategies then the average
payoffs tend to the payoff corresponding to the profile (C,C) in PD. We adopt the Smale
idea to define semi-cooperative strategies—players do not take as a referencing point the
payoff corresponding to the profile (C,C), but they can take an arbitrary payoff belonging to
the β-core of PD. We show that if both players choose the same point in the β-core then the
strategy profile is an equilibrium in the repeated game. If the players choose different points
in the β-core then the sequence of the average payoffs tends to a point in S. The obtained
limit can be treated as a payoff in a new game. In this game, the set of players’ actions is the
set of points in S that corresponds to the β-core payoffs.

Keywords Repeated prisoner’s dilemma · Beta core · Smale’s good strategies · Semi-
cooperative strategies

Mathematics Subject Classification Primary 91A20; Secondary 91A10 · 91A05

1 Introduction

The strategic conflict between individual rationality and corporate optimality occurs in many
real-life situations (comp. [6]). The prisoner’s dilemma (PD) is a simple model of that
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divergence of individual and group interests. Cooperation is an irrational strategy in PD,
but regardless it is observed in many social dilemmas. The explanation of this phenomena
was provided at the bases of different models. The fundamental reason motivating agents for
cooperation is the reiteration of the game. In the model of the repeated prisoner’s dilemma
(RPD), the game is reiterated infinitely many times with the same agents participation (comp.
[13]). Infinite number of repetition is an approximation of a real situation when the number
of repetition is large and random. A different model explaining these phenomena bases on
the assumption that a large population of agents are matched afresh every period to play the
PD (comp. [10]). Our aim is to consider yet another model.

We would like to consider the model of a population of agents matching afresh every
period to play the repeated prisoner’s dilemma. The RPD has too complicated structure to
analyse it using evolutionary games and population dynamics methods. Our aim in this paper
is to replace the RPD by a simpler game.

In this simpler game, we assume that the set of strategies is equivalent to a subset of vector
payoffs that correspond to the β-core in the PD. This can be justified in the followingway.We
assume that players are rational. So we restrict the set of vector payoffs to that payoffs that
correspond to a Nash equilibrium strategy profile in the RPD. By Folk Theorem, we restrict
to vector payoffs that are individually rational. Further restriction bases on Aumann results
concerning strong equilibria in repeated games (comp. [2–5]). Strong equilibria are resistant
not only to an individual player deviation but also to a coalition’s deviation. Aumann proved
that strong equilibria in repeated games correspond to the β-core payoffs. In the considered
case, β-core consists of individually rational and Pareto-optimal payoffs. Optimal choice of
the full coalition should be Pareto optimal. So the postulation that players are individually
rational and corporately effective provides as a conclusion that the set of strategies in the
simpler game is equivalent to the set of vector payoffs illustrated in Fig. 1. By Aumann
results, we know that to every payoff in the β-core it corresponds a strong equilibrium profile
in the repeated game. The construction of that strategy profile is complex. The course of
the repeated game seems heavy to forecast when players strategies—constructed as above—
correspond to different points in the β-core.

Motivated by Smale idea [12], we construct semi-cooperative strategies that correspond to
points in the β-core. Having a payoff v in the β core, we construct semi-cooperative strategies
profile (s1(v), s2(v)) that is a Nash equilibrium in the RPD. Moreover, the semi-cooperative
strategies have a supplementary crucial property. If the semi-cooperative strategy s1(v) of
player 1 and the semi-cooperative strategy s2(v′) of player 2 correspond to different points
v, v′ in the β-core then the vector payoff in the RPD corresponding to the strategy profile
(s1(v), s2(v′)) is uniquely defined and described in the main result of the paper—Theorem
4.2. Thus, we obtain the payoff function in the simpler game that replace the RPD in a model
of population dynamics.

We consider two players prisoner’s dilemma (PD) with payoffs given by

C D
C (2, 2) (0, 3)
D (3, 0) (1, 1)

(1)

where C means to cooperate and D—to defect. The set of β-core payoffs for the PD is
presented in Fig. 1 [bold segments with ends (1, 2.5), (2, 2), (2.5, 1)].

We assume that in the repeated game players know only both players average payoffs
from the previous stages. So a player’s strategy is a function from the convex hull S of the
set of vector payoffs into the set of his actions. The vector payoff function u given by (1), the
strategy profile s : S → {C, D}2 and an initial point x̄1 determine a sequence of average
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Fig. 1 The β-core of the prisoner’s dilemma

Fig. 2 The semi-cooperative strategies

payoffs x̄t by

x̄t+1 = t x̄t + u(s(x̄t ))

t + 1
(2)

The strategies of player 1 and player 2 corresponding to a point v = (v1, v2) in the β-
core are presented in Fig. 2. The strategies are called semi-cooperative strategies and are
determined by the point v and a positive constant ε. We show that for an arbitrary initial point
x̄1, the sequence of average payoffs x̄t is convergent to the point v when the strategy profile
s = sv consists of the semi-cooperative strategies corresponding to the point v. The profile
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sv is a Nash equilibrium. The case v = (2, 2) was considered by Smale [12]. The idea of
semi-cooperative strategies is motivated by Smale’s idea of good strategies.

The main problem, that we consider in the paper, is to study the limit properties of the
dynamical system given by (2) in the case when players 1 and 2 choose different points
v in the β-core—player 1 chooses point a and player 2 chooses point b. Our main result
formulated in Theorem 4.2 states that for an arbitrary initial point the sequence of average
payoffs is convergent and the limit is given by

xt −−−→
t→∞

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a if a1 = b1
(2, 2) if a1 � 2 � b1
b if a1 < b1 ≤ 2
a if 2 ≤ a1 < b1
≈ (1, 1) if b1 < a1

The Smale approach to the repeated PD has been recently applied by Akin [1]. E. Akin
showed that if player’s 1 strategy s1 is simple, i.e.

s1(x) =
{
D if L(x) > 0
C if L(x) < 0

where L(x1, x2) = ax1 + bx2 + c is an affine map such that L(1, 1), L(3, 0) ≤ 0 ≤
L(2, 2), L(0, 3), then every sequence of average payoffs is attracted by the interval {x ∈
S : L(x) = 0}, for an arbitrary strategy of player 2. If both players adopt simple strategies
then every sequence of average payoffs tends to a point being the intersection of separation
lines. In [1], the evolutionary dynamics is used to analyse competition among certain simple
strategies. Simple strategies introduced in [1] correspond to the type of players that we call
Balanced player or Egoist (comp. Fig. 4). Roughly speaking, Theorem 5.10 in [1] says that
the balanced strategy is a globally stable equilibrium in a population consisting of balanced
players and egoists.

We considered the replicator dynamics for a population consisting of Altruists [v =
(1.5, 2.25)], Balanced players (v = (2, 2) and Egoists [v = (2.25, 1.5)]. The payoff is
given by

A B E
A 2 2 1.5
B 2 2 1
E 2.25 1 1

We obtained that the state ( 23 , 0,
1
3 ) is the evolutionary stable strategy. So the presence of

Altruists completely changes the replicator dynamics.
The game with the payoff given by Theorem 4.2 has a continuous strategy set. In the next

paper, we intend to analyse its replicator dynamics using methods presented in [11].

2 Smale’s Good Strategies in the Repeated Prisoner’s Dilemma

In this section, we provide a brief presentation of Smale’s approach to the repeated prisoner’s
dilemma which is presented in [12].
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Smale considers PD with payoffs given by (1). The players’ actions are interpreted as
follows: C means to cooperate and D—to defect.1 The game is symmetric, and the action
D dominates the action C for each player (3 > 2 and 1 > 0). The Nash equilibrium is the
pair of action (D, D), and the Nash payoff is (1, 1). The Nash payoff is not Pareto optimal.
The Pareto frontier contains two segments: the first one is jointing (0, 3) to (2, 2), the second
one—(2, 2) to (3, 0). Smale distinguishes one Pareto-optimal payoff (2, 2).

He constructs a strategy profile in the repeated PD that is a Nash equilibrium with the
payoff equals to (2, 2). This kind of result can be treated as a special case of the FolkTheorem.
What makes Smale’s approach not typical is the way of choosing actions in each repetition.
At each stage, the players make their decision basing on the average vector payoffs from the
previous repetitions. It means that the domain of strategies is no longer the set of histories, but
now it is the convex hull of the payoffs. Such strategies are called memory strategies. Each
player chooses his memory strategy before the iterated game is started. Players’ strategies
are fixed during the iteration.

Let the function u : {C, D}2 → S be given by (1) whereS denotes the convex hull of all
possible payoffs, i.e. S = conv{(2, 2), (0, 3), (3, 0), (1, 1)}. A memory strategy of player i
is a map si : S → {C, D}. A strategy profile is the pair s = (s1, s2) : S → {C, D}2. The
strategy profile s and an initial point x1 ∈ S determines the course of the repeated game in
the following way:

x1 := x1, xt+1 := u(s(xt )), xt+1 := x1 + · · · + xt+1

t + 1
for t � 1.

The sequence (xt )t�1 is the sequence of payoffs, and the sequence (xt )t�1 is the sequence
of average payoffs in the repeated game.

Fix ε > 0. A good strategy of player 1 is a map s∗
1 : S → {C, D} given by

s∗
1 (a, b) =

{
C if b < a + ε and a ≥ 1 and b ≤ 2
D elsewhere in S

A good strategy of player 2 is a map s∗
2 : S → {C, D} given by

s∗
2 (a, b) =

{
C if a < b + ε and b ≥ 1 and a ≤ 2
D elsewhere in S

The good strategies are illustrated in Fig. 3.
The main result presented in section 1 of [12] is the following theorem.

Theorem 2.1 (Smale)

1. If player 1 plays a good strategy s∗
1 and player 2 plays an arbitrary strategy s2 then the

sequence of average payoffs xt = (x1t , x
2
t ) satisfies

lim inf
t→∞ x1t � 1 and lim sup

t→∞
x2t � 2

for every x1 ∈ S.
2. If both players play good strategies s∗

1 , s
∗
2 , then

xt −−−→
t→∞ (2, 2)

for every x1 ∈ S.

1 Originally, in the paper [12], Smale understands the game (1) in the meaning of the arms race. In his paper,
the action C is marked with E—easy—which means to disarm, and the action D is marked with T—tough—
means to arm.
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Fig. 3 Good strategies

If the payoff in the repeated game is defined as the upper limit of average payoffs then the
strategy profile s∗ = (s∗

1 , s
∗
2 ) is a Nash equilibrium in the set of memory strategies.

TheBanach limit Lim is a continuous linear functional defined on the space l∞ of bounded
scalar sequences2 that is an extension of the functional which associates any convergent
sequence with its limit. If the payoff is defined as a Banach limit of the sequence of the
average payoffs then the Nash equilibrium s∗ has an additional interesting property. The
construction of good strategies guarantees that the deviating player’s payoff will not exceed
the good strategy player’s payoff by more than ε. We define the payoff in the repeated game
by

u∞
i (s, x1) = Lim xit for i = 1, 2.

Proposition 2.2 Suppose player 1 plays a good strategy s∗
1 . If s = (s∗

1 , s2), where s2 is an
arbitrary memory strategy of player 2, then

u∞
2 (s, x1) � u∞

1 (s, x1) + ε

for every x1 ∈ S.

It means that if player 1 plays a good strategy, then his payoff is not smaller than his
opponent’s payoff minus ε. But the constant ε is controlled by the player 1, so he can choose
it as small as he wish. In this sense, we can say that good strategies not only are Nash
equilibria in the set of memory strategies, but also they are safe Nash equilibria.

3 Some Properties of the Dynamical Systems Generated by Memory
Strategies

We consider a normal form gameG = (N , (Ai )i∈N , (ui )i∈N ), whereN = {1, . . . , N } is the
set of players, Ai is a finite set of actions of player i and ui : A = A1 × A2 ×· · ·× AN → R

is the payoff function of player i .

2 The definition and properties of Banach limit can be found in [9].
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A memory strategy of player i is a function si : S → Ai , where S := conv{u(a) : a ∈ A}
is the convex hull of the set of vector payoffs u = (u1, u2, . . . , uN ). The strategy profile
s = (s1, s2, . . . , sN ) determines a map f s : S → S by

f s(x) = (u ◦ s)(x). (3)

and the dynamical system βs = (βs
t )t≥1

βs
t (x) = t x + f s(x)

t + 1
. (4)

We say that a sequence (xt )t≥t0 ⊂ S is a trajectory of the dynamical system βs if

xt+1 = βs
t (xt ) (5)

Observe that if xt0 is the given average payoff after stage t0 then the trajectory (xt )t≥t0 ⊂ S

of the dynamical system βs given by (5) is the sequence of average payoffs

xt+1 = t0xt0 + f s(xt0) + · · · + f s(xt )

t + 1

Since

βs
t (x̄) − x̄ = f s(x̄) − x̄

t + 1

and the set S is bounded, then

∀ε>0 ∃T ∀t>T ∀x̄∈S |βs
t (x̄) − x̄ | < ε (6)

So, for every ε > 0, there exists T such that for an arbitrary trajectory (xt )t≥t0 of the
dynamical system βs it holds

∀t>max{t0,T } |xt+1 − xt | < ε. (7)

The following proposition is the deterministic version of the Blackwell approachability
result (see [7]). An elementary proof is presented in [8].

Proposition 3.1 Suppose that a set W ⊂ S is closed and a trajectory (xt )t≥t0 of the dynam-
ical system βs satisfies

∀t ≥ t0, ∃yt ∈ W, |xt − yt | = dist(xt ,W ) and 〈xt − yt , f s(xt ) − yt 〉 ≤ 0. (8)

Then,

lim
t→∞ dist(xt ,W ) = 0.

The point yt in (8) is a proximal point in the set W to the point xt . If the set W is convex
and closed and f s(xt ) ∈ W for t ≥ t0 then (8) holds true. As a corollary from Proposition
3.1, we obtain that

Corollary 3.2 If the set W ⊂ S is closed and convex and a trajectory (xt )t≥t0 of the
dynamical system βs satisfies

∃t≥t0 ∀t>t f s(xt ) ∈ W, (9)

then

∀ε>0 ∃tε>t ∀t>tε xt ∈ W ε .
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Taking W = (−∞, c] in Proposition 3.1, we obtain the following property of real
sequences.

Corollary 3.3 Suppose that (an)∞n=1 is a bounded sequence inR and (ān)∞n=1 is the sequence
of arithmetic means, i.e. ān = 1

n

∑n
k=1 ak.If we have

(ān > c ⇒ an+1 ≤ c)

for almost all n and a fixed constant c ∈ R, then

lim sup
n→∞

ān ≤ c.

Definition 3.4 Let s be a memory strategies profile. We say that a set Z ⊂ S is:

1. invariant for the dynamical system βs iff

∃tZ≥1 ∀x∈Z ∀t�tZ
t x + f s(x)

t + 1
∈ Z ,

2. an escape set for the dynamical system βs iff every trajectory (xt )t≥t0 of the dynamical
system βs satisfies

∀τ≥t0 ∃t>τ xt /∈ Z .

3. an absorbing set for the dynamical systemβs iff every trajectory (xt )t≥t0 of the dynamical
system βs satisfies

∀τ≥t0 ∃t>τ xt ∈ Z .

In the next section, we study limit properties of some dynamical systems generated by
memory strategies. To show that a trajectory is convergent to a point we will construct a
family of absorbing and invariant neighbourhoods of the limit points. Invariance is usually
easy to check. To show that a neighbourhood is absorbing, we shall use the following lemmas.
Hereafter to the end of the section, we fix a memory strategies profile s and consider the
dynamical system βs .

Lemma 3.5 Let V = conv f s(S), ε > 0 and V ε = A ∪ B ∪C ∪ Z, where the sets A, B,C
are pairwise disjoint. Suppose that the set B∪C∪Z is invariant and A,C are the escape sets.
If there exist a convex set W ⊂ V ε and δ > 0 such that f s(B∪C) ⊂ W andW δ∩(B\Z) = ∅
then the set Z is absorbing.

Proof Suppose, contrary to our claim, that the set Z is not absorbing. Then, there exists a
trajectory (xt )t≥t0 such that

∃t1>max t0,tε ∀t>t1 xt /∈ Z

where tε is from Corollary 3.2, such that xt ∈ V ε for all t > tε . Since the set B ∪ C ∪ Z is
invariant, there exists t2 := tB∪C∪Z such that βs

t (x̄) ∈ B ∪ C ∪ Z for every x̄ ∈ B ∪ C ∪ Z
and t > t2. Since A is an escape set

∃t3 > max{t1, t2}, x̄t3 /∈ A

So x̄t3 ∈ B ∪ C and by the invariance of the set B ∪ C ∪ Z , we obtain that

∀t ≥ t3, x̄t ∈ B ∪ C ∪ Z



Dyn Games Appl (2019) 9:217–235 225

By Corollary 3.2, there exists tδ > t3 such that

x̄t ∈ W δ for t > tδ

Since C is an escape set, there exists t̄ > tδ such that x̄t̄ /∈ C . So x̄t̄ ∈ (B \ Z) ∩ W δ , which
contradicts the assumption that (B \ Z) ∩ W δ = ∅. ��
Lemma 3.6 Assume that a set D ⊂ S is invariant and absorbing and D = B ∪ Z. If there
exists a closed convex set W ⊂ S and ε > 0 such that f s(B) ⊂ W and W ε ∩ (B\Z) = ∅
then the set Z is absorbing.

Proof Suppose, contrary to our claim, that the set Z is not absorbing. Then, there exists a
trajectory (xt )t≥t0 such that

∃t1>t0 ∀t>t1 xt /∈ Z .

Since the set D is invariant and absorbing, there exists t2 > t1 such that

∀t > t2, xt ∈ D

So xt ∈ B \ Z for t > t2. Thus, f s(xt ) ∈ W , for t > t2 and by Corollary 3.2 there
exists tε > t2 such that xt ∈ W ε for t > tε . This is a contradiction to the assumption
W ε ∩ (B \ Z) = ∅. ��
Lemma 3.7 Suppose that Z ⊂ S and f s(Z) ⊂ W, where W is a closed convex subset of
S. If there exists ε > 0 such that W ε ∩ Z = ∅ then Z is an escape set.

Proof Suppose, contrary to our claim, that Z is not an escape set. So there exists a trajectory
(xt )t≥t0 such that

∃τ > t0, ∀t > τ, xt ∈ Z . (10)

So f s(xt ) ∈ W for t > τ . By Corollary 3.2, there exists tε > τ such that xt ∈ W ε for all
t > tε , which contradicts to (10) and the assumption W ε ∩ Z = ∅. ��

4 Semi-cooperative Strategies

In this section, we introduce semi-cooperative strategies in the repeated PD that are a gener-
alisation of Smale’s good strategies. The semi-cooperative strategy of a player is determined
by the choice of a point v in the β-core of PD and a positive constant. If both players choose
the same point v then the obtained strategy profile is a Nash equilibrium and the vector pay-
off in the repeated game equals to v. This can be regarded as a very special case of Robert
Aumann results presented in [2–5], where it was shown that each payoff from the β-core of
the stage game can be received as a strongNash equilibrium in the repeated game.Muchmore
interesting is the situation when players choose semi-cooperative strategies corresponding to
different points in the β-core. The limits of trajectories of the dynamical system determined
by a semi-cooperative profile are described in Theorem 4.2, which is the main result of the
paper.

To recall the definition of the β-core assume that G is a normal form game like in Sect. 3.
A correlated strategy cK of the coalitionK ⊂ N is a probability distributions over (the finite
set) AK = ∏

i∈K Ai . The set of correlated strategies of the coalition K is denoted by CK.
The correlated strategy cK of the coalition K and the correlated strategy cN\K of the anti-
coalitionN \K determine a correlated strategy c = (

cK, cN\K) ∈ CN of the full coalition.
In the usual way, we extend payoffs functions ui onto the set of correlated strategies CN .
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A correlated strategy c̃ ∈ CN belongs to the β-core
(
c̃ ∈ Cβ(G)

)
iff

∀K⊂N ,K �=∅ ∃cN \K∈CN \K ∀cK∈CK ∃ j∈K u j

(
cK, cN\K)

� u j (c̃). (11)

Taking K = N in (11), we obtain that

∀c ∈ CN , ∃ j ∈ N , u j (c) ≤ u j (c̃),

which is the weak Pareto optimal condition.
Taking a coalitionK = {i} in (11), we obtain that the payoff u(c̃) is individually rational, i.e

∀i ∈ N , ui (c̃) ≥ min
cN \{i}∈CN \{i}

max
c{i}∈C{i}

ui (c
{i}, cN\{i}).

Hereafter, G denotes the considered PD with payoffs given by (1). The set of Pareto-optimal
and individually rational payoffs for G is illustrated in Fig. 1. The β-core for PD (in fact its
image by u) is the sum of intervals

u(Cβ(G)) =
{(

x, 3 − x

2

)
: 1 ≤ x ≤ 2

}
∪

{(
3 − y

2
, y

)
: 1 ≤ y ≤ 2

}

Let us fix a point v in the β-core different to the end points, i.e

v ∈ u(Cβ(G)) \ {(1, 2.5), (2.5, 1)}.
Roughly speaking, player 1 cooperates if the average payoff is located below the line going
through the points (1, 1) and v. A semi-cooperative strategy of player 1, determined by the
point v and a positive constant ε > 0, is a map sv,ε

1 : S → {C, D} given by

sv,ε
1 (x) =

{
C if x ∈ K1(v, ε)

D elsewhere in S
,

where
K1(v, ε) := (T1(v))ε ∩ {x ∈ S : x1 � 1 and x2 � v2}, (12)

and

T1(v) :=
{

x ∈ S : x2 � v2 − 1

v1 − 1
x1 + v1 − v2

v1 − 1

}

.

A semi-cooperative strategy of player 2, determined by the point v and ε > 0, is a map
sv,ε
2 : S → {C, D} given by the formula:

sv,ε
2 (x) =

{
C if x ∈ K2(v, ε)

D elsewhere in S
,

where
K2(v, ε) := (T2(t))

ε ∩ {x ∈ S : x1 � v1 and x2 � 1}. (13)

and

T2(v) :=
{

x ∈ S : x2 � v2 − 1

v1 − 1
x1 + v1 − v2

v1 − 1

}

.

Semi-cooperative strategies are illustrated in Fig. 2.
We say that player 1 is: an egoist if v1 > v2; an altruist if v1 < v2; a balanced player if
v1 = v2(= 2). The second player is: an egoist if v2 > v1; an altruist if v2 < v1; a balanced
player if v1 = v2(= 2). This is illustrated in Fig. 4.



Dyn Games Appl (2019) 9:217–235 227

Fig. 4 The models of the players’ behaviour

If both players choose the same point v = (v1, v2) ∈ u(Cβ(G)) to determine their semi-
cooperative strategies, then the strategy profile is a Nash equilibrium.We obtain the following
result which is similar to Smale’s one.

Theorem 4.1 Suppose that both players play semi-cooperative strategies sv,ε1
1 , sv,ε2

2 deter-
mined by the same v ∈ u(Cβ(G)) \ {(1, 2.5), (2.5, 1)} and positive constants ε1, ε2 > 0. If
(x̄t )t≥1 is an arbitrary trajectory of the dynamical system determined by the strategy profile
(sv,ε1

1 , sv,ε2
2 ), then

xt −−−→
t→∞ v.

If player 1 plays the semi-cooperative strategy sv,ε1
1 and player 2 plays an arbitrary

memory strategy s2 then an arbitrary trajectory (x̄t )t≥1 of the dynamical system determined
by the strategy profile (sv,ε1

1 , s2) satisfies:

lim inf
t→∞ x1t � 1 and lim sup

t→∞
x2t � v2.

Proof Fix v ∈ u(Cβ(G)) \ {(1, 2.5), (2.5, 1)} and ε1, ε2 > 0. Let (x̄t )t≥1 be a trajectory of
the dynamical system βsv , where sv = (sv,ε1

1 , sv,ε2
2 ) and f v = u ◦ sv .

Let

� := K1(v, ε1) ∩ K2(v, ε2)

�1 := S\K1(t1, ε1)

�2 := S\K2(t2, ε2)

The set � is convex; the sets �, �1, �1 are pairwise disjoint andS = � ∪ �1 ∪ �1. This
situation is illustrated in Fig. 5.

Observe that

f v (xt ) =
⎧
⎨

⎩

(2, 2) if xt ∈ �

(3, 0) if xt ∈ �1

(0, 3) if xt ∈ �2

. (14)
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Fig. 5 The partition of S

To show that the trajectory (x̄t )t≥1 converges to v we construct an invariant and absorbing
neighbourhood Oδ(v) of the point v. Fix δ ∈ (0,min {ε1, ε2}). We will denote by l(a, b) the
line going through the points a, b ∈ R

2. Set

l1 = l(Pδ, (3, 0))
l2 = l(Pδ, (0, 3))
l3 = l(Rδ, (2, 2))

(15)

where Pδ = (v1 − δ, v2 − δ) and Rδ is the intersection point of l2 and the line {x1 = v1}.
The half-plane over (under) a line l ⊂ R

2 will be denoted by e(l) (h(l)). The neighbourhood
Oδ(v) illustrated in Fig. 6 is given by

Oδ(v) := e(l1) ∩ e(l2) ∩ e(l3) ∩ {x ∈ S : x1 � v1 + δ}. (16)

To show that the neighbourhood Oδ(v) is invariant we divide it into three parts: Z1 :=
�1 ∩ Oδ(v), Z2 := �2 ∩ Oδ(v), Z3 := � ∩ Oδ(v). By (7), there exists t1 > 1 such that for
any t > t1

|βsv
t (x) − x | < δ. (17)

If x̄ ∈ Z1 then f v(x̄) = (3, 0). So βsv
t (x) ∈ e(l1). If t > t1 then βsv

t (x) ∈ {x ∈ S : x1 <

v1 + δ, x2 > v2 − δ}. Since e(l1)∩ {x ∈ S : x1 < v1 + δ, x2 > v2 − δ} ⊂ Oδ(v) we obtain
that βsv

t (x) ∈ Oδ(v).
If x̄ ∈ Z2 then f v(x̄) = (0, 3). So βsv

t (x) ∈ e(l2) ∩ e(l3). If t > t1 then βsv
t (x) ∈ {x ∈

S : v1 − δ < x1 < v1 + δ}. Since e(l2)∩ e(l3)∩ {x ∈ S : v1 − δ < x1 < v1 + δ} ⊂ Oδ(v),
we obtain that βsv

t (x) ∈ Oδ(v).
If x̄ ∈ Z3 then f v(x̄) = (2, 2). So βsv

t (x) ∈ e(l1) ∩ e(l2) ∩ e(l3). If t > t1 then βsv
t (x) ∈

{x ∈ S : x1 < v1 + δ}. Since e(l1) ∩ e(l2) ∩ e(l3) ∩ {x ∈ S : x1 < v1 + δ} = Oδ(v), we
obtain that βsv

t (x) ∈ Oδ(v).
So the neighbourhood Oδ(v) is invariant.
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Fig. 6 The neighbourhood Oδ(v)

To show that the set Oδ(v) is absorbing we set V = conv f v(S) = conv{(2, 2), (0, 3),
(3, 0)} and
A = �1 ∩ V δ, B = � ∩ V δ, C = �2 ∩ V δ, Z = Oδ(y), W = conv{(2, 2), (0, 3)}.

(18)
The set B ∪ C ∪ Z is invariant, and A and C are escape sets. We have f v(B ∪ C) ⊂ W .
There exists a constant θ > 0 such that W θ ∩ (B\Z) = ∅ (see Fig. 7). By Lemma 3.5, we
obtain that the set Z = Oδ(v) is absorbing.

Since the diameter of the neighbourhoods Oδ(v) tends to zero as δ → 0, we obtain the
convergence of the trajectory (x̄t ) to the point v.

Now, we consider the dynamics of the system when player 2 chooses an arbitrary memory
strategy and player 1 plays the semi-cooperative strategy sv,ε1

1 . If x̄2t > v2 then player 1
defects in the next stage and so player’s 2 payoff belongs to {0, 1}. By Corollary 3.3, we
obtain that

lim sup
t→∞

x2t � v2.

The proof of the inequality

lim inf
t→∞ x1t � 1

is similar. ��
If players have no opportunity to agree the choice of the point v then we should not expect

that they will choose the same point. We can treat the choice of the point v as an action of
a player in a new game. To define payoffs in this new game, we have to know the payoffs
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Fig. 7 The illustration of the condition W θ ∩ (B\Z) = ∅

in the repeated PD when players 1 and 2 play semi-cooperative strategies corresponding to
points a, b, respectively, in the β-core. The main result of the paper concerns this situation
in the following.

Theorem 4.2 Let a = (a1, a2), b = (b1, b2) ∈ u(Cβ(G)) \ {(1, 2.5), (2.5, 1)} and ε1, ε2 >

0. If (x̄t ) is an arbitrary trajectory of the dynamical system determined by the strategy profile
(sa,ε1

1 , sb,ε22 ), then

xt −−−→
t→∞

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a if a1 = b1
(2, 2) if a1 � 2 � b1
b if a1 < b1 ≤ 2
a if 2 ≤ a1 < b1
yε1,ε2 if b1 < a1

where yε1,ε2 is a point in S and

yε1,ε2 −−−−−→
ε1,ε2→0

(1, 1).

The case a = b was considered in Theorem 4.1.

Proof Set s∗ = (sa,ε1
1 , sb,ε22 ), f ∗ = u ◦ s∗ and

δ0 :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
{

ε1
4 , ε2

4 ,
||a−b||

4

}
if a1 < b1 � 2 or 2 � a1 < b1

min
{

ε1
4 , ε2

4 ,
||a−(2,2)||

4 ,
||b−(2,2)||

4

}
if a1 � 2 � b1

min
{

ε1
4 , ε2

4 ,
||yε1,ε2−(1,1)||

4

}
if b1 > a1

(19)
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Fig. 8 The partition of S when a1 < b1 < 2

For δ ∈ (0, δ0) there exists tδ > 1 such that the condition (17) is satisfied for t > tδ .
We denote by β∗ the dynamical system determined by the strategy s∗, i.e. β∗

t (x̄) = t x̄+ f ∗(x̄)
t+1 .

Set
� := K1(a, ε1) ∩ K2(b, ε2)
�1 := K2(b, ε2)\�
�2 := K1(a, ε1)\�
�3 := S\(K1(a, ε1) ∪ K2(b, ε2))

. (20)

If a1 ≤ b1 then �3 = ∅. The case a1 = b1 has been proved in Theorem 4.1.
In the case a1 < 2 ≤ b1, we set V = conv{(0, 3), (2, 2), (3, 0)} and observe that V ε ∩� is
absorbing (comp. Corollary 3.2). Since f ∗(x) = (2, 2) for x ∈ V ε ∩� and (2, 2) ∈ V ε ∩�,
every trajectory is convergent to (2, 2).

The case a1 ≤ 2 < b1 is symmetric to the above one.
The case a1 < b1 < 2 is illustrated in Fig. 8.
We construct two neighbourhoods of the point b:

Oδ(b) := e(l1) ∩ e(l2) ∩ e(l3) ∩ {x ∈ S; x1 � b1 + δ}.
Uδ(b) := Oδ(b) ∩ {x ∈ S : b1 − δ � x1}.

where the lines l1, l2, l3 are given by (15) for Pδ = (a1 − δ, a2 − δ) and Rδ being the
intersection point of l2 and the line {x1 = b1}. Invariance of the sets Uδ(b), Oδ(b) is a
conclusion from its construction (see Fig. 9). By Lemma 3.5, we obtain that the set Oδ(b)
is absorbing using the same notation as in (18). To obtain that Uδ(b) is absorbing we apply
Lemma 3.6 setting D = Oδ(b), Z = Uδ(b), B = D \ Z , W = conv{(3, 0), (2, 2)}.
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Fig. 9 The neighbourhoods Oδ(b)

The case 2 < a1 < b1 is symmetric to the case considered above.
The last situation is b1 < a1. Two possible choices of a and b are presented in Fig. 10.
Obviously, we have

f ∗(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(2, 2) if x ∈ �

(3, 0) if x ∈ �1

(0, 3) if x ∈ �2

(1, 1) if x ∈ �3

.

The limit of an arbitrary trajectory is a point y = yε1 ε2 which is the intersection cl(�) ∩
cl(�3). Let Pδ ∈ �3 be the unique point satisfying dist (Pδ, �1) = dist (Pδ, �2) = δ. Set

l1 = l(Pδ, (0, 3))
l2 = l(Pδ, (3, 0))
l3 = l((1, 1), b)
l4 = l((1, 1), a)

l5 = l(Pδ, yε1 ε2)

(21)

We construct the neighbourhood of the set �:

Oδ(�) := �δ ∪ (h(l1) ∩ h(l2) ∩ h(l3) ∩ e(l4))

which is illustrated in Fig. 11.
We show that Oδ(�) is invariant. Fix x̄ = (x1, x2) ∈ Oδ(�) and t > tδ . Set C :=

h(l1) ∩ h(l2) ∩ h(l3) ∩ e(l4).
Consider the case x̄ ∈ �1 and x2 > y2. Then x̄ and f ∗(x̄) = (3, 0) belong to h(l2) ∩ h(l3).
So β∗

t (x̄) ∈ h(l2) ∩ h(l3). Since dist(x̄, h(l4)) ≥ ε1 > δ dist(β∗
t (x̄), h(l4)) > 0 and
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Fig. 10 On the left—the partition of S when both players are egoists and on the right—the partition of S
when b1 < a1 and player 1 is the altruist and the player 2 is the egoist

Fig. 11 The neighbourhood Oδ(�)

so β∗
t (x̄) ∈ e(l4). Since dist(x̄, e(l3)) < ε2 dist(β∗

t (x̄), e(l3)) < ε2 + δ. We have {z ∈
S : dist(z, e(l3)) < ε2 + δ} ∩ h(l2) ⊂ h(l1). So β∗

t (x̄) ∈ h(l1). Thus, we obtain that
β∗
t (x̄) ∈ C ⊂ Oδ(�).

If x̄ ∈ �1 and x2 � y2 then β∗
t (x̄) ∈ Oδ(�).

The case x̄ ∈ �2 is symmetric to the above one.
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Fig. 12 The sets A, B and C in one possible situation when b1 < a1

In the case x̄ ∈ �3, observe that x̄ and f ∗(x̄) = (1, 1) belong to the convex set C . Thus,
β∗
t (x̄) ∈ C .

In the last case x̄ ∈ �, we have β∗
t (x̄) ∈ �δ .

To obtain that Oδ(�) is absorbing, we set

A := e(l5) \ Oδ(�) ⊂ �1 ∪ �3,

B := (h(l5) ∩ �3) \ Oδ(�),

C := �2 \ Oδ(�),

Z := Oδ(�),

V := S,

W := conv{(1, 1), (0, 3)}

(22)

and we apply Lemma 3.5. The above sets are illustrated in Fig. 12. The set B ∪ C ∪ Z is
invariant, and the sets A, C are escape sets. We have f ∗(B ∪ C) ⊂ W . The neighbourhood
Oδ(�) is defined in such way that there exists a constant θ > 0 such that

W θ ∩ (B\Z) = W θ ∩ B = ∅.

By Lemma 3.5, the neighbourhood Oδ(�) is absorbing.
We define the neighbourhood Oδ(y) of the point y by

Oδ(y) := Oδ(�) ∩ e(l6),

where l6 is the line given by the equation: x1 + x2 = y1 + y2 − δ.
Using similar arguments as in the proof of the invariance of Oδ(�), we show that Oδ(y) is
invariant. Set D = Oδ(�), Z = Oδ(y), B = D \ Z and W = conv{(0, 3), (2, 2), (3, 0)}.
By Lemma 3.6, we obtain that Oδ(y) is absorbing.
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Since the diameter of Oδ(y) tends to zero as δ → 0, y is the limit of an arbitrary trajectory
in the considered case.

Using elementary calculations, we obtain that the distance between the point yε1 ε2 and
the point (1, 1) equals to

ε1 + ε2 + √
(ε1 + ε2)2 + 4ε1ε2 tan2 α

2 tan α
,

where α denotes the angle between lines l((1, 1), a) and l((1, 1), b). ��
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