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Abstract In game theoretic models, it is possible that not all individuals are active players
exhibiting strategies; some of them are passive carriers of the strategy genes. A nontrivial
illustration of this problem is the sex ratio evolution. The classical sex ratio models can
be divided into two classes. The first class contains the static strategic models related to
the Dusing–Fisher–Shaw–Mohler fitness measure, based on the reproductive value of the
offspring of the focal female. The second class contains the population geneticmodels focused
on the dynamics of allele frequencies. The approaches are not fully compatible because the
strategic models disregard the role of the male individuals as the passive carriers of the
strategy genes. In the previous two papers in this cycle, a new synthetic model combining the
strategic analysis with more rigorous genetics and considering male carriers was presented.
The new model shows that sex ratio self-regulation is a complex multistage process that can
be regarded as an example of multilevel selection. One of the elements of this process is the
dynamic equilibrium between passive male and active female gene carriers associated with
convergence of the dynamics to the manifold termed the male subpopulation equilibrium
(MSE). This paper attempts to explain this phenomenon and analyse its properties. We show
that sex ratio self-regulation is the by-product of the convergence of the stable sex ratios
in the monomorphic subpopulations of particular gene carriers to the MSE manifold. We
present a method of derivation of static fitness measures from the dynamic model based on
the double-level selection process. This will lead to a new fitness measure free from the
bias of the classical approach. We also show that the classical Dusing–Fisher–Shaw–Mohler
fitness measure is a biased approximation of the new approach and that an alternative simple
approximation of the new approach is possible.
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List of symbols

y Number of males
x Number of females
u Number of individual strategies
fi = xi/x Frequency of females with strategy Pi
mi = yi/y Frequency of males with strategy Pi
f = [ f1, . . . , fu] Vector of the state of the female subpopulation
m = [m1, . . . , mu] Vector of the state of the male subpopulation
P = y/(y + x) Frequency of males in the population (secondary

sex ratio)
� = x/y = (1 − P)/P Number of females per singlemale individual (aux-

iliary parameter)
P̄pr = ∑

j f j Pj Mean strategy in the female subpopulation (pri-
mary sex ratio)

Gi = xi+yi
x+y = Pmi + (1 − P) fi Frequency of a gene encoding the i th strategy

G = [G1, . . . , Gu] Vector of a state of a gene pool
Mi = yi

xi+yi
= Pmi

Pmi+(1−P) fi
Sex ratio among carriers of the i th strategy

Wm(Pi , P, f, m)

= k 1−P
2P

(∑
j f j Pj + fi

mi
Pi

) Male payoff function

W f (Pi , P, f, m)

= k
2

(
(1 − Pi ) + mi

fi

(
1 − ∑

j f j Pj

)) Female payoff function

Wg(Pi , G, M) = k
2 (�Mi + (1 − Mi )) Fitness function of a gene encoding strategy Pi

1 Introduction

Basic approaches to evolutionary game theory assume that the individuals are players, strate-
gies are inheritable traits, and fitness constitutes the payoff. However, we can imagine
situations where not all individuals that are carriers of the strategy genes are active inter-
acting players. This can occur when sexual reproduction is explicitly considered and only
one sex can express the strategies. The classical problem of this type is the evolution of
the sex ratio, which was the first problem in evolutionary theory that involved mathematical
reasoning. This was done by German biologist Carl Dusing [11]. He argued that the fitness
of a female using a given sex ratio strategy could be described by the number of her grand-
offspring. In the simplest version derived under assumptions of equal mortality rates and
parental expenditures for both sexes, this function can be denoted in the following way:

W (Pi , P) = k2

4
(1 − P)

(
1 − Pi
1 − P

+ Pi
P

)

= k2

4

(

1 − Pi + 1 − P

P
Pi

)

, (1)

where Pi is the individual strategy (offspring’s sex ratio), P is the population sex ratio and
k is the average brood size of the female. By the individual strategy, we understand that
female control over offspring can be realized by selective abortions; this implies that the
female individual can be assumed as the strategic agent. Note that (1) considers only the
reproductive success of the focal female as the active strategic agent. The impact of males
as passive carriers is not explicitly considered. The interpretation of (1) in the light of the
new results will be discussed in this paper in Sects. 3.1 and 4. Similar verbal reasoning
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was proposed by Fisher (1930). By application of this fitness measure, it can be shown
that the average female strategy of 0.5 is evolutionarily stable. This approach to strategic
analysis has dominated the game theoretic literature [7,19,30,33,34]) and can be found in
books on population genetics [10,20]. Sex ratio theory has inspired the development of
other theoretic approaches, such as sex allocation theory [8,36] and local mate competition
models ([18]; Schall 2008). However, population genetics provides an alternative way of
modelling sex ratio evolution based on the explicit tracing of the gene frequencies, mainly
using discrete dynamics ([12,13,20] and summarized in [20]) or other methods such as
calculation of the ancestral paths [16,17]. In the population geneticmodels, evolution of states
of subpopulations for both sexes is explicitly described by respective equations. Thus, the
analysis is not limited to females as focal individuals as inDusing’smodel (1). The population
genetic approach produces different predictions from the basic phenotypic models. It shows
that stable population states should be characterized by stable compositions not only of the
female but also of the male subpopulation, not simply by the average strategy of females
as in basic game theoretic approaches. This leads to the distinction between two classes of
modelling approaches, phenotypic and genetic, related to the sex ratio [36].

The genetic models can be analysed and interpreted in the spirit of the ESS approach, i.e.,
they can be used in the analysis of the fate of the rare mutant in the resident population (see,
for example, [9] for the sex ratio case, and in general [14,22,23]). However, these approaches
do not use core game theoretic notions, such as explicitly derived strategic payoff functions.
We can imagine a complementary approach in which basic game theoretic methods (payoff
functions associated with continuous replicator dynamics) are extended by description of the
underlying genetic structure. In two previous papers [3,4], an alternative synthetic approach
to the modelling of sex ratio evolution was introduced. This was the first application of
multipopulation replicator dynamics [2]. The newmodel focuses on the dynamics of sex ratio
evolution and tries to combine the phenotypic strategic approach with an explicit genetic
analysis. This new approach also combines game dynamics with sexual reproduction. It
explicitly considers parental male individuals as the passive carriers of female sex ratio
strategies (similarly to the population genetics models, [20]) that can be expressed by their
daughters if they inherit the strategy from the father. This is important, since the rare invading
mutants can be not only females but also males.

The first formulation of the model [3] focused on the trajectories of general population
parameters (“global” in the sense that they affect the whole population), such as the primary
and the secondary sex ratios, and showed that sex ratio evolution dynamics are biphasic.
This is caused by the fact that simpler equations describing the male subpopulation and the
secondary sex ratio converge to the neighbourhood of their attracting manifolds (nullclines)
faster than the nonlinear dynamics of the female subpopulation (however, without separation
of timescales). During the second, longer, phase, they follow the changes in their nullclines
caused by the ongoing dynamics of the female subpopulation. During the first, shorter, phase,
the population converges to equality between the primary and the secondary sex ratios.

In addition, another phenomenon can be observed, which is one of the topics of this paper.
During the rapid phase, the male subpopulation is attracted by a unique state, conditional
on the current state of the female subpopulation, called the male subpopulation equilibrium
(thus the dynamics converge to the neighbourhood of the MSE manifold). This phenomenon
is caused by the contribution of an individual to the fitness of individuals of other types
(such as different sexes) by producing newborns of their type [3]. This result shows that
the role of passive male carriers as fathers, not only as sons, is also very important. This
means that the sex ratio of 0.5 cannot be regarded as just an example of the basic, single
population evolutionarily stable strategy or state (ESS). However, this interpretation can be
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found in the basic textbooks [19,33,34]. In the sex ratio case, we need notions describing
both sexes’ subpopulations and the proportion between them (similarly to the population
genetic models).

This riddle was partially solved in the second paper [4], which focused on the selection of
genes encoding individual strategies (“local” scope focused on the dynamics of the subpop-
ulations of carriers of the particular strategy genes). Selection of these genes depends only
on sex ratios in carrier subpopulations rather than directly on trait values encoded by such
genes (this self-regulation process can be called the Fisherian mechanism; see Sections 2 and
3.1 in [4] for details). However, sex ratios in carriers’ subpopulations are determined by the
action of female carriers of these genes and female partners of male carriers randomly drawn
from the population in a process called the tug of war. This means that the activity of female
carriers attracts the sex ratio among carriers of the particular gene to the value encoded by
that gene, and the activity of random female partners attracts it to the actual value of the pri-
mary sex ratio. Then, the encoded traits are “local variables” affecting only the compositions
of carrier subpopulations and are not explicitly visible in the “global” selection dynamics.
The Fisherian mechanism and tug of war together constitute a process that can be regarded
as double-level selection. Thus, the classical problem of sex ratio evolution is an important
example in the current debate on the mechanisms of multilevel selection [25,26,32].

A question that arises concerns the role of the MSE phenomenon revealed by the first
formulation [3] in the double-level selection process shown by the second formulation [4].
When the MSE state is reached, selection of strategies appears to work according to the
values encoded by the genes. (This was shown by Lemma 1 in [3].) The new theory produces
predictions similar to the classical theory; however, the mechanistic interpretation of the
MSE phenomenon remained a mystery and will be analysed in the present paper. It should
be emphasized that the MSE is a specific example of a more general problem. The impact
of the passive carriers of unexpressed genes (strategies) on the proliferation of those genes
(strategies) may appear in many applications of population genetics and evolutionary game
theory. Similar dynamic population equilibria can emerge in problems other than sex ratio
evolution, where some fraction of individuals does not exhibit inherited traits but transfer
them to their offspring. However, sex ratio evolution is one of the many possible examples
of complex self-regulation, where the passive gene carriers play an important role in the
underlying mechanisms operating on many levels.

Therefore, the main goal of this paper is to show the importance of the passive carriers in
the population processes. We will investigate the relationships between the MSE mechanism
from [3] and the dynamic self-regulationmechanisms from [4] (i.e., theFisherianmechanism
and the tug of war) and their relationships in the process of double-level selection. Those
results will allow for a comparison of the classical Dusing–Fisher–Shaw–Mohler fitness
measure with an analogous static fitness function prepared according to the new approach.
The next step is an investigation of the role of the MSE in the adjustment of the sex ratios in
carriers’ subpopulations, which will reveal intriguing properties of the MSE manifold.

The following subsections will recall the formal details of the models presented in [3,4]
and briefly summarize the results obtained there. Starting in Sect. 2, new results will be
presented.

1.1 Details of the Model

Assume that strategies are expressed by female carriers as in basic game theoretic approaches
and in Dusing’s model [11]. There are u arbitrarily chosen individual strategies encoding the
sex ratio among newborns of the female, described by Pi ∈ [0, 1]. There are xi female and
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yi male carriers of the strategy Pi in the population. Therefore, the population consists of
x = ∑

i xi females and y = ∑
i yi males. Thus, f = [ f1, . . . , fu] is the vector of frequencies

of strategies of the female subpopulation, and m = [m1, . . . , mu] is an analogous vector
for the male subpopulation (where fi = xi/x and mi = yi/y). P = y/(y + x) is the
fraction of males in the population (a secondary sex ratio), and

∑
j f j Pj is the mean female

subpopulation strategy (the primary sex ratio). Assume that each female produces k offspring
according to haploid inheritance (with probability 0.5 for gene transfer from the focal parent).
However, males are also gene carriers and transfer those genes to their offspring of both sexes.
The influence of males can be described by the fitness exchange effect (i.e., daughters of male
carriers affect the payoff of female carriers and sons of females affect the payoff of males).
This allows for derivation (which is outlined in “Appendix 1”) of the following sex-specific
payoff functions, describing explicitly the effects of sexual reproduction:

Wm(Pi , P, f, m) = k
1 − P

2P

(∑

j
f j Pj + fi

mi
Pi

)

− payoff function of males (2)

W f (Pi , P, f, m) = k

2

(

(1 − Pi ) + mi

fi

(
1 −

∑

j
f j Pj

))

− payoff function of females

(3)

Note that the structure of the above functions, describing growth rates proportional to the
average per capita number of produced newborns of the same sex and strategy, explicitly
describes the impact of sexual reproduction. Therefore, the obtained replicator dynamics
(asexual in general) will also describe sexual reproduction. Nowwe have all elements needed
to formulate the multipopulation replicator dynamics [2]. In the first paper [3], this took the
following form:

ḟi = fi
(
W f (Pi , P, f, m) − W̄ f (P, f, m)

)
for i = (1, ..., u − 1),

ṁi = mi
(
Wm(Pi , P, f, m) − W̄m (P, f, m)

)
for i = (1, ..., u − 1),

Ṗ = P
(
W̄m(P, f, m) − W̄ (P, f, m)

)
,

where W̄m(P, f, m)=∑
jm jWm(Pi , P, f, m), W̄ f (P, f, m)=∑

j f jW f (Pi , P, f, m),

W̄ (P, f, m) = PW̄m(P, f, m) + (1 − P)W̄ f (P, f, m) are the respective average pay-
off functions of the male, the female and the whole populations (see [3] Appendix D for
derivation). This leads to the following system of equations (see [3] Appendix E for the
derivation):

ḟi = k

(
fi
2

(1 − Pi ) +
(mi

2
− fi

) (
1 −

∑

j
f j Pj

))

for i = (1, ..., u − 1), (4)

ṁi = k

2

(
1 − P

P

) (
fi Pi − mi

∑

j
f j Pj

)
for i = (1, ..., u − 1), (5)

Ṗ = k(1 − P)
(∑

j
f j Pj − P

)
. (6)

It was shown that, for biological reasons, we can limit the analysis of the model to values
of the primary and the secondary sex ratios over the interval (0, 1). The above formulation
is similar to population genetic models and is focused on the composition of the whole
population. Subsystems (5) and (6) have a simple linear form and are rapidly attracted to
close neighbourhoodof their nullclines,which aremale subpopulation equilibrium (discussed
in the next section) and the equality of the primary and the secondary sex ratios. After that,
during the second phase, the subsystem (4) slowly converges to its equilibrium. The state of
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the male subpopulation and the secondary sex ratio trace their nullclines, remaining in their
close neighbourhood. During the transition between the fast and slow phase, quantitative
changes in behaviour of the dynamics of (4) can occur [3]. The system converges to the state
with an average female strategy (primary sex ratio) of 0.5 when it is possible (when 0.5 can be
a linear combination of the strategy values) or to the monomorphic population of individuals
carrying the strategy closest to 0.5. In [4], the model was modified by a change in coordinates
whereG = [

G1, . . . , Gu−1
]
is the vector of gene frequencies in thewhole population (where

Gi = (xi + yi )/(x + y)) and M = [M1, . . . , Mu] (where Mi = yi/(xi + yi )) is the vector
of the sex ratios in the subpopulations of carriers of the same strategy genes. This allows
taking the perspective of a gene as a strategic agent. The fitness function of a gene encoding
strategy Pi (interpreted as the average payoff of the adult carrier of the i th gene) described
in the above coordinates and discussed in detail in Section 2 of [4] and Appendix B in [4] is
therefore:

Wg(Pi , G, M) = MiWm(Pi ,G, M) + (1 − Mi )W f (Pi ,G, M)

= k

2

(
1 − P

P
Mi + (1 − Mi )

)

. (7)

Note that the fitness function Wg is independent of the value encoded by the individual
strategy Pi . The fitness of a gene is determined by the sex ratio in a subpopulation of its
carriers, Mi. This leads to an alternative form of replicator equations [4]:

Ġi = Gi
(
Wg(Pi ,G, M) − W̄ (G, M)

)
-dynamics of gene frequencies,

Ṁi = Mi
(
Wm(Pi , G, M) − Wg(Pi , P, f, m)

)
-dynamics of sex ratios in carrier subpopulations,

which take the form

Ġi = Gik

(
1

2
− P

) (
Mi

P
− 1

)

for i = (1, . . . , u − 1), (8)

Ṁi = k

2

(

Mi

(
1 − P

P

)
(
P̄pr − Mi

) + (1 − Mi ) (Pi − Mi )

)

for i = (1, . . . , u),

(9)

where P̄pr = ∑
j f j Pj . An analysis of the replicator equations based on the fitness function

Wg (see [4] sections 3.1 and 4.2) shows that changes in a gene pool can be described by the
following inequalities.

Gi increases when P <
1

2
and P < Mi or P >

1

2
and P > Mi ,

Gi decreases when Mi < P <
1

2
or Mi > P >

1

2
,

Gi is constant when Gi = 0 or Mi = P or P = 1

2
. (10)

This process can be described as the Fisherian mechanism (see sections 3.1 and 4.2 in
[4] for details). Thus, gene pool dynamics (8) depends on the current value of the secondary
sex ratio P and the sex ratio in the subpopulation of carriers of a gene Mi . The signs of the
right-hand sides of Eq. (9) are determined by two bracketed terms. The first term

(
P̄pr − Mi

)

is weighted by the fraction of male carriers Mi multiplied by average per capita number of
their partners (1 − P) /P . The second term (Pi − Mi ) is weighted by the fraction of female
carriers (1 − Mi ). Thus, the dynamics of parameter Mi (9) is determined by the action of
female carriers of strategy Pi as well as partners of male carriers of this strategy in a tug of
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war mechanism, which means that the activity of female carriers (the second term) attracts
Mi to the value encoded by the gene Pi and the action of partners of male carriers (the first
term) attracts Mi to the value of the females’ average strategy P̄pr. In [4], it was shown that
for Pi ∈ (0, 1] a unique attracting nullcline exists within the interval

(
P̄pr, Pi

)
. For Pi = 0,

the state Mi = 0 can be stable in some specific cases (not important for this study).

1.2 The Male Subpopulation Equilibrium Phenomenon

The role of the male subpopulation composition was shown by population genetic models
of sex ratio evolution [12,13,20,29]. In the MSE state (see sections 2.2 and 5.2 in [3] for
details), lying on the nullclines of Eq. (5), the condition

fi Pi = mi P̄pr (11)

is satisfied for all strategies, and the subpopulation of males is in the state mMSE =[
f1P1/P̄pr, . . . , fu Pu/P̄pr

]
. The dynamics of the female subpopulation are then described

by the rules (according to Lemma 1 in [3]):

fi increases when P̄pr < 1
2 and P̄pr < Pi or P̄pr > 1

2 and P̄pr > Pi ,

fi decreases when Pi < P̄pr < 1
2 or Pi > P̄pr > 1

2 ,

fi is stable when: fi = 0 or fi = 1 or Pi = P̄pr. (12)

Note that this mechanism is similar to the Fisherian mechanism of evolution of gene
frequencies (10). This suggests that the role of the MSE is important in the process of sex
ratio self-regulation. The influence of male carriers is more important for the behaviour of the
system than the value of the secondary sex ratio P . The MSE is described by the nonintuitive
condition fi Pi = mi P̄pr. This paper will attempt to elucidate the nature of the MSE and
specify how it affects the Fisherian and tug of war mechanisms.

1.3 The Goals of the Paper

In this paper, we will analyse three problems related to the framework presented above:

(a) We will calculate the equilibria of the tug of war dynamics (9) and analyse its relation-
ships with the MSE equilibrium (11).

(b) Using the results from point a) and the gene fitness function (7), we will construct the
unbiased static fitness measure and compare it with the simplified approximation based
on the assumption of the MSE equilibrium and the classical fitness measure (1).

(c) We will analyse the quantitative properties of the MSE phenomenon and explain the
underlying feedback mechanism.

Thus, the next section starts the presentation of the new results.

2 MSE as a Dynamic Equilibrium of the Demographic Process

Let us focus on the interpretation of the MSE phenomenon. Some insight into its nature
will be revealed below. At the equilibrium of the selection process, the composition of the
population (fractions of different strategies and sexes) will reflect the fractions of different
types of individuals amongnewborns being introduced into the population. Thus, for example,
the fraction of the male carriers of gene Pi (which is yi/N ) should be equal to the respective
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proportion of Pi male newborns produced (equal to fi Pi ). Note that the summation of the
above relationships over all strategies

∑
yi/N = ∑

fi Pi leads to the condition P = P̄pr.
Due to this condition, for each strategy, we can rescale the relationship yi/N = fi Pi to
the fractions among male newborns and adults by yi/

∑
y j = fi Pi/

∑
f j Pj . In effect, we

obtain the MSE condition (11) denoted in the form mi = fi Pi/
∑

f j Pj . This means that
in the MSE state, the fraction of adult Pi males among all males is equal to the fraction of
Pi male newborns among all male juveniles produced by female carriers of the genes. Thus,
equality of the primary and secondary sex ratios is closely related to the MSE phenomenon.
In the next sections, we will use those conditions together many times to prove interesting
relationships.

2.1 The Relationship Between the MSE and the Tug of War Mechanism

As shown in the previous article [4], the sex ratio of the subpopulation of carriers of a given
gene is self-regulated by the so-called tug of war mechanism mentioned here at the end of
Sect. 1.1; this mechanism is described for each strategy by Eq. (9). Lemma 1 in [4] states
that the above dynamics have a single stable restpoint. We can calculate this restpoint, define
the symbol � = (1 − P)/P as in [4]. Restpoints of (9) will satisfy the equation:

Mi
(
P̄pr − Mi

)
� + (1 − Mi ) (Pi − Mi ) = 0,

which can be presented in the form

(1 − �) M2
i + (

P̄pr� − Pi − 1
)
Mi + Pi = 0,

which collapses to a linear equationwith solution M̃i = Pi/
(
1 + Pi − P̄pr

)
for� = 1. Thus,

the unique equilibrium from the interior of the interval (Pi , P̄pr) ([4], Lemma 1a) should be
one of the roots of the above quadratic equation. Numerical solutions show that this will be

M̃i = Pi − P̄pr� + 1 −
√(

P̄pr� − Pi − 1
)2 − 4Pi (1 − �)

2 (1 − �)
. (13)

Note that (13) is a monotonically increasing function of Pi for � < 1 and � > 1, which is
determined by the factor 4Pi (1 − �) in the numerator and factor (1 − �) in the denominator.
A question arises concerning the relationships between the MSE phenomenon and equilibria
and the dynamics of the tug of war process. The answer to this problem is described below
by the following lemmas. Consider first the form of the MSE from the point of view of the
sex ratio in the carrier subpopulation Mi .

Lemma 1 The MSE condition (11) for strategy Pi , according to the current value of P̄pr , is
equivalent to the following sex ratio among Pi gene carriers:

Mi = Pi
� P̄pr + Pi

(

Mi = Pi
1 + Pi − P̄pr

when P̄pr = P

)

. (14)

For proof, see “Appendix 2”.
Therefore, the MSE state is equivalent to the unique sex ratio in the carrier subpopulation

Mi . Let us focus on the role of Mi in the tug of war process, which is revealed below.

Lemma 2 (a) For Mi and the current value of P̄pr , the dynamics (9) is attracted by the point

M̂i = 2Pi P̄pr
Pi + P̄pr

. (15)
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(b) ¯̄Mi = M̂i for all i can be satisfied only when P̄pr = P = 0.5.

For a proof, see “Appendix 3”.

Point a) shows that in generalMi is not an equilibrium of the tug of warmechanism (which

is M̂i when carriers’ sex ratio equals Mi ). Point b) shows the properties of a steady state

when the equilibria of the tug of war mechanism are on the MSE manifold. The value of Mi

determined by the MSE of the individual strategy Pi (14) is very important. This parameter
is an argument of the fitness function of a gene Wg (7). Let us focus on the relationships

between M̃i , Mi and M̂i .
Let us illustrate this problem by numerical examples. Figure 1 shows the trajectories

of the gene frequency dynamics (8) and the respective trajectories of the carrier sex ratio
dynamics (9). The dynamics of gene frequencies is determined by the underlying dynamics
of the carriers’ sex ratios and the secondary sex ratio, according to the rules (10). The growth
or decrease in a particular gene frequency is determined by the excess of its carriers’ sex
ratio Mi from the secondary sex ratio P and the deviation of P from 0.5. The trajectories
of the dynamics of the carriers’ sex ratios mainly show the following pattern, depicted in
Fig. 2. The trajectory is attracted by the equilibrium of the tug of war mechanism M̃i and
follows its changes. The equilibrium M̃i converges to M̂i , which is attracted by the MSE

manifold represented by Mi . Thus, M̂i can be regarded as the approximation of M̃i in
the neighbourhood of the MSE manifold. Therefore, different strategies are attracted by
different values of M̃i (which converge to the respective M̂i ), and through these values they
can be distinguished by natural selection operating on a second, higher level. We can use this
prediction for the construction of the unbiased static fitnessmeasures, free fromdisadvantages
of the classical DFSM fitness measure. This will be the subject of the next section.

3 Construction of the Static Fitness Measures

This section examines the results of the classical theory according to the new approach. We
can construct static fitness measures using the attractors of the carriers’ sex ratio obtained
in the previous section. These fitness measures will assign fitness to the individual strategy
under the assumption of equilibrium of the tug of war process. When we substitute M̃i from
(13) into the gene fitness function (7), we obtain the following static fitness function based
on the assumption that the tug of war process has reached its equilibrium:

W̃ (Pi , P̄pr, P) = k

2

⎛

⎝
P̄pr� − Pi − 1 +

√(
P̄pr� − Pi − 1

)2 − 4Pi (1 − �)

2
+ 1

⎞

⎠ . (16)

This function is quite complicated. However, in a sufficiently close neighbourhood of the
MSE manifold, M̃i (13) can be approximated by M̂i (15), which can be substituted into (7).
This leads to the approximation of (16) by the much simpler function

Ŵ (Pi , P̄pr, P) = k

2

(
2Pi P̄pr
Pi + P̄pr

(� − 1) + 1

)

. (17)

The classical static fitness measure (1) (described as the DFSM function in [3]) relies
on the number of grand offspring of a female that express her individual strategy. It can be
presented as
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Fig. 1 Trajectories of the gene frequency dynamics (8) and respective trajectories of the carrier sex ratio
dynamics (9) for strategies P1 = 0.1, P2 = 1, P3 = 0.7. The initial conditions are G1 = 0.8, G2 = 0.13,
G3 = 0.07 and M1 = 0.9, M2 = 0.1, M3 = 0.1. The growth or decrease in the particular gene frequency is
determined by the excess of the ratio Mi /P from 1 and the deviation of P from 0.5 (see Eq. (8))

W (Pi , P) = k2

4
((1 − Pi ) + Pi�) = k2

4
((� − 1) Pi + 1) . (1)

Note that the secondary sex ratio P in the above function describes the state of the pop-
ulation when the offspring of the focal female become mature. An additional assumption of
nonoverlapping generations implying P = P̄pr allows for the description of (1) as a function
of the strategic composition of the population. However, we have shown that the condition
P = P̄pr in continuous models can be satisfied at an equilibrium of (6) only. This suggests
that the condition P = P̄pr assumes that offspringwill interact only with their peers, and indi-
viduals of other generations are disregarded. Thus, in the general case, we can only assume
P ≈ P̄pr as a simplified approximation. However, numerical simulations show that it can be
quite good, and the bias is not serious in many cases.

We can now compare fitness function (16) with its approximations (17) and (1) to estimate
the bias. Let us assume for simplicity that themean brood size of a female is k = 2, whichwill
remove this parameter from both formulae. In addition, assume for simplicity that P ≈ P̄pr
(then � = (1 − P̄pr)/P̄pr) to reduce the dimensionality of the system. Then, the fitness
functions (16), (17) and (1) expressed in parameters Pi and P̄pr will have form

W̃ (Pi , P̄pr) =

√
(
P̄pr + Pi

)2 − 4Pi(2 P̄pr−1)
P̄pr

− (
P̄pr + Pi

)

2
+ 1, (18)

Ŵ (Pi , P̄pr) = 2Pi P̄pr
Pi + P̄pr

(
1 − P̄pr
P̄pr

− 1

)

+ 1 = 2Pi
(
1 − 2 P̄pr

)

Pi + P̄pr
+ 1, (19)
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Fig. 2 Trajectories of the carriers’ sex ratios. The trajectories converge to the tug of war equilibria M̃i (13),

which are attracted to the MSE manifold Mi (14). With convergence to the MSE, the values M̃i approach the
neighbourhoods of their approximations M̂i (15)

W (Pi , P̄pr) = 1 − 2 P̄pr
P̄pr

Pi + 1. (20)

All three functions are constant and equal to 1 for P̄pr = 0.5; in addition, functions W̃
and W are equal to 1 − Pi for P̄pr = 1, while function Ŵ is equal to 1 − 2Pi

Pi+1 .
The classical fitness measure W is a linear function of the parameter Pi , whereas the

new fitness measure W̃ and its approximation Ŵ are nonlinear. Figure 3 shows the plots
of all three functions. The classical fitness function mainly overestimates the new fitness
function W̃ , while the approximation Ŵ always underestimates it. Figure 4 illustrates this
bias by plots of overestimation in the case of the classical fitness function W (in cases when
W underestimates W̃ , the plot shows negative values) and underestimation in the case of
the approximation Ŵ to show the excess of both functions from W̃ . It shows that Ŵ is a
good approximation in the neighbourhood of P̄pr = 0.5. The classical DFSM function W
is always significantly biased, except for the cases P̄pr = 0.5 and P̄pr = 1 when it is equal
to W̃ . Thus, the classical fitness function W is a biased approximation, which may have
serious implications when modelling detailed population dynamics. The interpretation of
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Fig. 3 Plots of the static fitness function W̃ (Pi , P̄pr), its approximation Ŵ (Pi , P̄pr) and the classical DFSM

fitness function W (Pi , P̄pr). The function Ŵ (Pi , P̄pr) is bounded, while the function W (Pi , P̄pr) increases
significantly faster than W̃ (Pi , P̄pr)

the classical DFSM fitness measure as a Malthusian growth rate is problematic from the
perspective of the new model. In the relatively wide neighbourhood of the equilibrium value
P̄pr = 0.5, the function Ŵ (Pi , P̄pr) is a much better approximation.

3.1 Relationships Between Fitness Functions

The DFSM function (1) has an interesting relationship with the gene payoff function (7) and
the female payoff function (3).

In the neighbourhood of the MSE manifold (which can be presented in the form
mi/ fi ≈ Pi/P̄pr), after substitution of the MSE condition and P ≈ P̄pr into the sex-specific
female payoff function (3), we obtain W (Pi , P) ≈ W f k/2 (where k/2 is the reproductive
value of a female). Note that both fitness functions describe the payoff of the focal female.
The DFSM function counts offspring of both sexes but disregards the contribution of males
from the parental generation. On the other hand, the female payoff function (3) considers
the contribution of males from the focal female’s generation, but counts only female off-
spring. Thus, when multiplied by k/2 to count grand offspring, this function disregards the
contribution of males from the offspring generation.
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Fig. 4 Functions Ŵ (Pi , P̄pr) andW (Pi , P̄pr) are approximations of W̃ (Pi , P̄pr). Ŵ (Pi , P̄pr) always underes-
timates W̃ (Pi , P̄pr), whileW (Pi , P̄pr) mainly overestimates it. The figure shows the plots of underestimation
by the function W̃ (Pi , P̄pr) and overestimation by the functionW (Pi , P̄pr) from two different points of view.

In the relatively wide neighbourhood of the equilibrium value P̄pr = 0.5, the function Ŵ (Pi , P̄pr) is a better
approximation than W (Pi , P̄pr)

The relationship with the gene payoff (7) is the following: when we assume Mi = Pi ,
then we obtain W (Pi , P) = Wg(P, Pi )k/2. This leads to an interesting interpretation.
Suppose that a single mutant female produces all carriers of a mutant gene Pmut in the next
generation according to the expression of her individual strategy. Thus, in the generation of
her descendants, there is equality Mmut = Pmut, and the reproductive success of a mutant
gene in the first generation of descendants is proportional to (�Pmut + (1 − Pmut)). It is clear
that the predictions of this function are exactly the same as in the DFSM model. This also
supports the compatibility of linearization of a limit case of the population genetic model [29]
with the DFSM approach. A problem arises in further generations. For each female carrying
mutant gene Pmut, there is some number of male carriers of the unexpressed gene Pmut acting
as fathers. The DFSM fitness measure, which is related to the number of a female’s grand
offspring, disregards the role of male parents on gene proliferation. Thus, the classical fitness
measure can be seriously biased in cases where an entire subpopulation carries a mutant
gene, not just a single female. This bias may be strong for strategies close to 1 that produce
mostly males.

4 Impact on the Fisherian Selection Mechanism

The gene payoff function (7) leads to the dynamics (8), which leads to the selection rules
(10). Now let us look at the simplified models of selection mechanisms, based on the rules
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(10), implied by the fitness functions (18), (19) and (20). According to (10), the threshold
between increase and decrease in a gene frequency Gi is the equality of the actual carriers’
sex ratio Mi and the secondary sex ratio P = GiMi . Straightforward substitution of (13)
or (15) or the MSE condition (14) to the condition Mi = P , followed by substitution of
P ≈ P̄pr in each case, leads to the same threshold Pi = P̄pr, which is the solution of the
obtained equations. (For (13) and (14), there is a second solution P̄pr = 1 that is biologically
meaningless.) Thus, in the rules (10), Pi will replace Mi and P̄pr will replace P leading to

Gi increases when P̄pr <
1

2
and P̄pr < Pi or P̄pr >

1

2
and P̄pr > Pi ,

Gi decreases when Pi < P̄pr <
1

2
or Pi > P̄pr >

1

2
,

Gi is stable when Gi = 0 or Pi = P̄pr or P̄pr = 1

2
. (21)

Thus, in the above cases, selection of the genes acts according to the values of indi-
vidual strategies. However, the selection process at the gene level should be synchronized
with the adjustment of the primary sex ratio P̄pr determined by the state of the female
subpopulation. The relationship between the gene pool and the female subpopulation is
fi = Gi (1 − Mi ) / (1 − P), which combined with expressions (13) or (15) will be highly
complicated. In the case of the MSE state, this relationship is very simple.

Lemma 3 If the MSE condition (11) is satisfied, P ≈ P̄pr and the population is in a poly-
morphic state, then

Gi ≈ fi (Pi + 1 − P̄pr). (22)

For a proof, see “Appendix 4”.
This result shows that on theMSEmanifold, changes in gene frequencies are synchronized

with changes in the mean female subpopulation strategy (the primary sex ratio P̄pr). This
explains the similarity between rules (21) and rules (12). Substitution of the MSE condition
into (4) leads to the simplified approximation of the dynamics of the female population [3]

ḟi = k fi

(
1

2
− P̄pr

) (
Pi
P̄pr

− 1

)

for i = (1, . . . , u − 1), (23)

which resembles the gene pool dynamics (8), where fi , Pi and P̄pr replace Gi , Mi and
P . Note that according to the similarity of the DFSM fitness function W (Pi , P̄pr) and the
female payoff function (3) under the MSE condition (as shown in Sect. 3.1), system (23)
can be regarded as the replicator dynamics of the DFSM fitness function. Thus, the selection
mechanisms induced by functions W̃ (Pi , P̄pr) and Ŵ (Pi , P̄pr) are similar to the mechanism
induced by the classical DFSM fitness measure but are not necessarily well synchronized
with the adjustment of the primary sex ratio. This synchronization will increase with the
convergence to the MSE manifold. Thus, it is time to look more closely at the properties of
the MSE manifold, the attractor of those emerging mechanisms.
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5 The Effect of the MSE on the Sex-Specific Payoff Functions (2) and (3)
and the “Fitness Exchange” Effect

Now let us examine the population structure on the MSE manifold. Since fi = xi/x and
mi = yi/y, the MSE condition (11) is equivalent to

x

y

∑

j
f j Pj = xi

yi
Pi

(
� P̄pr = �i Pi

)
. (24)

This means that the product of the number of females per single male x /y and the pri-
mary sex ratio in the entire population

∑
j f j Pj is equal to the analogous coefficients for

monomorphic subpopulations of carriers of any gene Pi . This property can be generalized.
Consider the subpopulation (described by index �) consisting of all carriers of arbitrarily

chosen strategies. The strategic composition of subpopulation � can be described by the
vector of strategy indices d� = [d�

1 , . . . , d�
u� ] (for example, d� = [1, 3, 4] means that

all carriers of strategies P1, P3, P4 are included in the subpopulation �). Assume that ��

is the number of females per single male individual in the subpopulation �. Analogously,
assume that P̄�

pr is themean strategy of females from subpopulation� (i.e., the subpopulation
primary sex ratio). This leads to the interesting property described by the following lemma.

Lemma 4 When the MSE condition is satisfied, then for every arbitrarily chosen subpopu-
lation �, the following condition is satisfied:

� P̄pr = �� P̄�
pr . (25)

In particular, � P̄pr = �i Pi for a monomorphic subpopulation of carriers of strategy Pi
for which �i = xi/yi .

For a proof, see “Appendix 5”.
Note that the transformed MSE condition (24), which is a cornerstone of the above result,

contains the term xi/yi which describes the number of female carriers per single male carrier.
Recall that male and female payoff functions (2) and (3) describe numbers of newborns

of the same sex and carrying the same strategy as the focal individual. This term is present in
the male sex-specific payoff function (2) and describes the contribution of female carriers to
the payoff of a focal male individual. This phenomenon was termed the “fitness exchange”
in [3].

Let us examine the form of the payoff functions when a population is in the MSE state.
Lemma 5 describes the quantitative properties of the “fitness exchange” mechanism in the
MSE state and its impact on sex-specific payoffs.

Lemma 5 When the MSE condition is satisfied and P ≈ P̄pr , then

(i) The female contribution is xi
yi
W f m = k

2� P̄pr and a male’s payoff (2) has the form

Wm = k� P̄pr.

(ii) The male contribution is yi
xi
Wm f = k

2�Pi , and a female’s payoff (3) has the form

W f = k

2
((1 − Pi ) + Pi�) .

(iii) The MSE condition (11) is equivalent to

xi Pi k = yi� P̄prk,
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which means that all female carriers of gene Pi produce the same number of sons as
the partners of all male carriers of that gene.

For a proof, see “Appendix 6”.
In addition, we can generalize point (iii) from Lemma 5 to the following property:

Lemma 6 In the MSE state, the reproductive value of the contribution of the opposite sex
gene carriers to the payoff of the focal individual equals the reproductive value of the newborn
male carriers produced by that individual.

For a proof, see “Appendix 7”.
It was mentioned in Sect. 3.1 that on the MSE manifold, the female payoff (3) resembles

the DFSM payoff function. Here, this is completed by the respective form of the male payoff
(2), showing that on the MSE manifold, all males have the same payoff equal to the number
of sons of their partners despite the carried gene k� P̄pr. Thus, the male payoff is the same for
all strategies, while the female payoff depends only on the focal female’s individual strategy.
This suggests the existence of a feedbackmechanism allowing females to control their payoff
by affecting the male subpopulation. The differences in the payoffs between males carrying
different genes correspond to the effects of differences in their ”sisters”’ activities (female
carriers of the same gene), which is determined by the factor xi/yi (the number of female
carriers per single male carrier). If this factor has a high value, then male carriers of this
gene will experience a greater growth rate. However, when the number of male carriers yi
increases, then the factor xi/yi will decrease (see Fig. 5).

This will cause a decrease in the influence of female carriers on the payoff of the average
male carrier. This process will lead to an equilibrium state in which the influence of female
carriers for all male carriers is the same.

Howdoes thismechanismaffect the female subpopulation?For different strategies,wewill
have different values of the factor xi/yi . The contribution of male carriers to female fitness
is determined by the coefficient yi/xi for every strategy (a ratio-dependent mechanism,
[1]). Female carriers of different strategies exert continual pressure on the equilibrium state
of a male subpopulation by introducing different numbers of new male carriers. In effect,
female individuals indirectly control the feedback impact of male carriers on their own
fitness.

6 Discussion

Summarizing, in this paper we have shown that the causal chain underlying sex ratio self-
regulation towards the value of 0.5 is more complex than was previously thought. The males
as the passive carriers play an important role in this process; thus, the analysis cannot be
reduced to the females. This phenomenon is the by-product of the convergence of the stable
sex ratios in the monomorphic subpopulations of the carriers of the genes encoding the same
strategies to theMSEmanifold. This means that the trajectories are attracted by the equilibria
of the tug of war process (the adjustment of the carriers’ sex ratios by the activity of female
strategy carriers and random female partners of male strategy carriers), and those attracting
manifolds converge to the MSE manifold. Thus, the results obtained correct the intuitions
from [3]. The rapid phase of the dynamics is responsible for the convergence to the equilibria
of the tug of war mechanism. Indeed, the dynamics converge to the neighbourhood of the
MSEmanifold and the equality of the primary and secondary sex ratios, but it will reach them
at the global equilibrium of the system. In addition, we have shown that in the neighbourhood
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(a)

(b)

Fig. 5 Mechanistic explanation of the male subpopulation equilibrium. Partners of every male produce the
same number of offspring carrying his gene ( k

2� P̄pr), so the differences in payoff are the effects of differences
in the activity of female carriers of the same gene. The influence of female carriers is determined by the factor
xi /yi (the number of female carriers per single male carrier). If this factor has a high value (more females per
single male), then male carriers of this gene will have a larger growth rate (this situation is presented in panel
a). However, when the number of male carriers yi increases, then factor xi /yi will decrease, which will cause
a decrease in the influence of female carriers of the gene on the payoff of the average male carrier of the same
gene (panel b). This process will lead to an equilibrium state in which the influence of female carriers on all
male carriers is the same

of the MSE manifold, the tug of war equilibrium can be approximated by a much simpler
formula.Numerical simulations confirm that this approximation can be acceptable. The above
result can be used for the derivation of the unbiased static fitness function and its simplified
approximation. When the deviation of the sex ratio is not far from the equilibrium value,
then the new approximation is better that the classical Dusing–Fisher–Shaw–Mohler fitness
function, which is more seriously biased.

On the MSE manifold, selection of the genes is driven by the excess of the encoded
individual strategy (phenotypic trait) from the primary sex ratio, and the two variables are
equal. The first is the reproductive value of the contribution of the opposite sex gene carriers
to the payoff of the focal individual, and the second is the reproductive value of the new-
born male carriers produced by that individual. In addition, for all subpopulations containing
all carriers of some subset of strategies, there is equality of the products of the number
of females per single male and the average strategies of those females. All of those phe-
nomena are revealed by the focus on the passive gene carriers. In problems other than sex
ratio evolution, explicit analysis of the impact of the passive carriers can reveal interesting
mechanisms.
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6.1 The Dusing–Fisher–Shaw–Mohler Model from the Perspective of the New
Approach

The classical DFSM fitness measure is based on the reproductive value of the offspring of
the focal female, which will be determined by the secondary sex ratio when they become
mature.We can describe this fitness measure as a proper frequency-dependent game theoretic
payoff (not as in the “playing the field” approach where the environment is not explicitly
determined by the population state) by incorporation of the strategic composition. This can
be obtained by the simplifying assumption of the equality of the primary and secondary sex
ratios.However, numerical simulations show that in continuousmodels, this assumption holds
only at equilibrium. Thus, this approach will be unbiased only in the case of nonoverlapping
generations. In other cases, it will disregard the individuals that are not peers of the offspring
of the focal female.

Thus, the DFSM fitness measure is equivalent to the reproductive value of the sex-specific
female payoff on the MSEmanifold. Both of these approaches are biased, simplified approx-
imations of the new approach related to the gene perspective. However, they are compatible
with the new approach at the level of the strategic analyses and produce the same game
theoretic predictions regarding the female subpopulation. A disadvantage of the classical
sex ratio game is the fact that it disregards passive male gene carriers as fathers mating with
other females. They are considered only as the sons of “mom’s” [8]. The strategic agent is the
female individual. However, invasions of males or mutations in male individuals are possible.
This study shows that the DFSM model can be considered as an approximation under the
assumption that the male subpopulation is very close to equilibrium and cannot be perturbed.
This produces several problems. The first is that the evolutionarily stable equilibrium (the
sex ratio of 0.5) is described as a state of the female subpopulation. The male subpopulation
is not explicitly considered. However, the new model also shows that the state of the male
subpopulation is important, and the sex ratio of 0.5 can be unstable for perturbations of
that state [3]. This is an important problem, because the sex ratio game is a basic example
of a nonlinear payoff function in every textbook on evolutionary game theory. Thus, the
composition of the subpopulation of passive gene carriers should also be considered in the
concepts of evolutionary stability. Classical population genetics results support these predic-
tions [12,13,20,29]. In the new approach, the strategic agent is the gene encoding the sex
ratio strategy. This perspective is free of the above disadvantages and leads to new interesting
predictions, such as the tug of war mechanism and double-level selection. It is also consistent
with classical population genetics results. A second problem is a bias in the estimation of
reproductive success, which is problematic on the grounds of population dynamics. This is
an example of the disadvantage of purely strategic models mentioned by Oster and Rocklin
[27]; more on this topic can be found in [6,35]. In effect, the basic interpretation of the payoff
as the Malthusian growth rate is problematic in the case of the classical sex ratio game. (A
dynamic model based on Dusing’s approach was discussed in Sect. 4 and can also be found
in [24].)

This paper establishes an alternative methodology for derivation of the static fitness func-
tions. It is based on the substitution of the equilibrium of the carriers sex ratio, determined by
the encoded strategies and modelled inheritance system, in the gene payoff function describ-
ing theFisherianmechanism. It was shown in this paper that we can derive an unbiased fitness
function in this way. It was also shown that it can be approximated by a simpler function that
produces a better approximation for relatively small perturbations than the classical DFSM
fitness function.



Dyn Games Appl (2018) 8:671–695 689

6.2 The Mechanistic Nature of the Convergence to the MSE Manifold

The results presented above attempt to interpret the MSE phenomenon. They suggest that
the MSE constitutes a compensatory equilibrium between the production of female carriers
of a gene by passive male carriers and the production of male carriers by female individuals.
As was mentioned in the introduction, the MSE is an example of a more general class of
problems. The MSE is related to population phenomena, such as stable demographic struc-
ture or Hardy–Weinberg equilibrium. In the new model, there is no demographic structure.
However, existingmodels that include demographic structure [31] report different behaviours
before and after demographic equilibrium is reached. The MSE properties presented in this
paper represent effects of haploid inheritance and the assumption that an individual strategy
is encoded by a single gene. However, other forms of self-regulation structures are possible
for different inheritance systems (diploid or haplodiploid) and different genetic structures
(multilocus or polygenic). We can imagine a version of the model where the offspring sex
ratio is controlled bymales and the females are passive carriers since they cannot apply selec-
tive abortions. Here, strategic analysis of phenotypic adaptation meets population genetics.
Strictly genetic mechanisms may play important roles in the process of phenotypic selection
by determining the values of crucial parameters (e.g., the sex ratio in a carrier subpopulation)
that are responsible for the selection of individual strategies. Future extensions of the present
model containing more realistic genetics (for example, polygenic and haplodiploid) describ-
ing the system observed in some living organism can be tested experimentally, similar to the
classical experiments [5,21]. This situation can also be tested by individual-based models.
Similar dynamic equilibria should be observed in every model where there are passive carri-
ers of unexpressed strategy genes. We can imagine many problems, such as the Hawk–Dove
game, related to mating conflicts where only the males are active competitors. This prob-
lem is not just related to biological models. In economics and social sciences, there are also
possible situations where only a part of the population is engaged in the game interaction,
and the strategies can be transferred verbally among the passive members of the population.
Game theory is focused on individuals who play the games; however, those who do not play
the games can also be important.
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Appendix 1

Sex of the newborn is determined by strategy of the mother. Following the assumptions and
the derivation from [3], we will derive fitness functions as average values from a binomial
distribution, where a trial is the production of a newborn (xk/y trials for a single male), and
a success is the production of an individual of the same sex as the focal parent (drawn with
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probability
∑

j f j Pj for a male and
∑

j f j
(
1 − Pj

)
for a female newborn) carrying the

strategy gene from the focal parent (with probability 0.5). Single female will have k trials
and the sex for every newborn will be determined by her strategy. Then,W fm = 0.5(1− Pi )k
is the number of female offspring, and W f f = 0.5Pik is the number of male offspring, of

the female individual (k trials for a single female). Analogously,Wmm = 0.5
(∑

j f j Pj

)
xk
y

is the number of male offspring, and Wmf = 0.5
(∑

j f j
(
1 − Pj

)) xk
y is the number of

female offspring of the male individual carrying the same gene. Due to sexual reproduction,
we should take into account newborns produced by carriers of the opposite sex than the
focal individuals. They should be equally distributed among focal individuals to add the
contribution of the opposite sex carriers to their growth rates. Therefore, we have the payoff
functions describing average growth rates for males and females, respectively, as

Wm(Pi , P, f, m) = Wmm + xi
yi
W f m = k

1 − P

2P

(∑

j
f j Pj + fi

mi
Pi

)

− payoff function for males, (2)

W f (Pi , P, f, m) = W f f + yi
xi
Wm f = k

2

(

(1 − Pi ) + mi

fi

(
1 −

∑

j
f j Pj

))

− payoff function for females, (3)

describing per capita number of newborns of the same sex and carried strategy as the focal
individual.

Appendix 2

Proof of Lemma 1 Assume that themale subpopulation equilibrium conditionmi P̄pr = fi Pi
is satisfied. Recall from [4] that

Mi = Pmi

Gi

(

mi = MiGi

P

)

and 1 − Mi = (1 − P) fi
Gi

(

fi = (1 − Mi )Gi

1 − P

)

. (26)

Then, the MSE condition can be written in the form

MiGi

P
P̄pr = (1 − Mi )Gi

1 − P
Pi ,

then

Mi = P(1 − Mi )

1 − P

Pi
P̄pr

= (1 − Mi )

�

Pi
P̄pr

= Pi
� P̄pr

− Mi
Pi

� P̄pr
,

and thus

Mi

(

1 + Pi
� P̄pr

)

= Pi
� P̄pr

,

which gives

Mi

(
� P̄pr + Pi

� P̄pr

)

= Pi
� P̄pr

.
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Themale subpopulation equilibrium condition is therefore equivalent to the following sex
ratio value in the carrier subpopulation:

Mi = Pi
� P̄pr + Pi

(

Mi = Pi
1 − P̄pr + Pi

when P̄pr = P

)

.

which ends the proof. ��

Appendix 3

Proof of Lemma 2 Because fi = xi/x and mi = yi/y, according to the MSE condition
(11), we have

�

�i
= Pi

P̄pr
, (27)

where �i = 1−Mi
Mi

= xi
yi

and � = 1−P
P = x

y . The equation for the sex ratio in the carrier
subpopulation (9) has the form

Ṁi = k

2

(
Mi

(
P̄pr − Mi

)
� + (1 − Mi ) (Pi − Mi )

)
.

For every value of Mi from the interior of the unit interval, the right-hand side of this
equation can be presented in the form

k

2
(1 − Mi )

(
Mi

(1 − Mi )

(
P̄pr − Mi

)
� + (Pi − Mi )

)

= k

2
(1 − Mi )

(
�

�i

(
P̄pr − Mi

) + (Pi − Mi )

)

. (28)

Thus, by substitution of (27), we can transform (28) to

k

2
(1 − Mi )

(
Pi
P̄pr

(
P̄pr − Mi

) + (Pi − Mi )

)

.

Let us find the zero point from the interior of the unit interval of the right side of the
equation transformed to the above formula:

Pi
P̄pr

(
P̄pr − Mi

) + Pi − Mi = 0.

Then,

Pi − Pi
P̄pr

Mi + Pi − Mi = 0;

thus,

2Pi − Mi

(
Pi
P̄pr

+ 1

)

= 0,

and thus,

2Pi = Mi

(
Pi + P̄pr

P̄pr

)

.
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In effect, we obtain the zero point

M̂i = 2Pi P̄pr
Pi + P̄pr

.

Thus, point a) is proved. Let us check when equality Mi = M̂i is satisfied. This leads to

Pi
�Ppr + Pi

= 2Pi P̄pr
Pi + P̄pr

⇒

PPi
(1 − P)Ppr + PPi

= 2Pi P̄pr
Pi + P̄pr

.

Substitution of P = P̄pr implies

Pi + P̄pr
2

= (1 − P̄pr)P̄pr + P̄prPi ⇒
(0.5 − P̄pr)P̄pr − (0.5 − P̄pr)Pi = 0 ⇒
(0.5 − P̄pr)(P̄pr − Pi ) = 0.

Thus, equality Mi = M̂i can be satisfied for all i only when P = P̄pr = 0.5.
This constitutes the end of the proof. ��

Appendix 4

Proof of Lemma 3 G i can be presented in the form (see [4] section 2)

Gi = Pmi + (1 − P) fi .

By substituting mi ≈ fi
Pi
P̄pr

(according to MSE condition (11)) and P ≈ P̄pr, we obtain

Gi ≈ P fi
Pi
P̄pr

+ (1 − P) fi = fi

(
P

P̄pr
Pi + (1 − P)

)

= fi
(
Pi + 1 − P̄pr

)
,

which completes the proof.

Appendix 5

Proof of Lemma 4 Recall that the subpopulation � is described by the vector of indices

d� = [d�
1 , . . . , d�

u� ]. Thus, xd�
i

(
yd�

i

)
is the number of females (males) with strategy

Pd�
i
, and fd�

i
=

x
d�
i
x

(

md�
i

=
y
d�
i
y

)

is the respective frequency in the female (male)

subpopulation. The average female strategy in the subpopulation � is P̄�
pr = ∑

i

x
d�
i

x� Pd�
i
,

where x� = ∑
i xd�

i
denotes the number of females in subpopulation �, and y� = ∑

i yd�
i

represents the number of males. When we sum up the MSE conditions (11) of all strategies
in subpopulation �, we obtain

∑

i
md�

i

∑

j
f j Pj =

∑

i
fd�

i
Pd�

i
.
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In terms of exact numbers instead of related frequencies, this formula takes the form
∑

i yd�
i

y

∑

j
f j Pj =

∑
i xd�

i
Pd�

i

x
.

Then,

y�

y

∑

j
f j Pj =

x�
∑

i

x
d�
i

x� Pd�
i

x
.

When we multiply this condition by x
y� , we obtain

x

y
P̄pr = x�

y�
P̄�
pr ,

that is

� P̄pr = �� P̄�
pr ,

completing the proof. ��

Appendix 6

Proof of Lemma 5 Because fi = xi/x and mi = yi/y, from the MSE condition (1), we
have

yi
y

∑

j
f j Pj = xi

x
Pi .

Thus, xi
yi

= �
P̄pr
Pi

(then yi
xi

= Pi
� P̄pr

).

When we substitute this coefficient into the payoff functions of males, which takes the
form (in terms of auxiliary symbols � and P̄pr)

Wm = Wmm + xi
yi
W f m = 0.5� P̄prk + xi

yi
0.5Pik,

then coefficient xi
yi
0.5Pik, which describes the per capita normalized number of new male

individuals produced by female carriers of strategy Pi , will be equal to 0.5� P̄prk. In effect,
Wm = � P̄prk, which is the proof of point (i).

The analogous operation for the female payoff function takes the form

W f = W f f + yi
xi
Wm f = 0.5(1 − Pi )k + yi

xi
0.5

(
1 − P̄pr

)
�k.

By substituting the transformed MSE condition yi
xi

= Pi
� P̄pr

in this function, we obtain

yi
xi
Wm f = 0.5Pi

1−P̄pr
P̄pr

k. After the substitution of the condition P̄pr = P , we obtain yi
xi
Wm f =

0.5Pi 1−P
P k = 0.5�Pik. In effect, the female payoff function will have the form

W f = k

2
((1 − Pi ) + Pi�) ,

which is the proof of point (ii).
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Since fi = xi/x , mi = yi/y and � = x/y, the MSE condition fi Pi = mi
∑

j Pj can

be described as xi Pi k = yi� P̄prk. The left side of this formula describes the number of
male individuals produced by all female carriers of gene Pi , and the right side describes the
number of male individuals produced by female partners of male carriers of the gene, which
is the proof of point (iii).

This completes the proof. ��

Appendix 7

Proof of Lemma 6 The reproductive values of the female and male carries are k/2 and k�/2.
Point (i) from Lemma 5 shows that the female carriers of a gene produce k� P̄pr/2 new male
carriers per single adult male carrier of this gene (the same as his own partners (mates)). In
effect, the payoff of every male in the population, irrespective of the carried strategy, is equal
to k� P̄pr. Thus, the reproductive value of the “genetic sons” (carrying the same strategy as
a focal parent) of the focal male equals the reproductive value of the contribution of female
carriers to his payoff.

Similarly, point (ii) from Lemma 5 shows that male carriers of a gene produce k�Pi/2
new female carriers per single adult female carrier of this gene. Note that the reproductive
value of “genetic nieces” of the focal female produced by male carriers is k2�Pi/4 and
equals the reproductive value of the “genetic sons” of that female (since she produces k

2 Pi
male carriers). This completes the proof. ��
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