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Abstract Recently a new evolutionary game dynamics, the Infection–Immunization Dynam-
ics,has been introduced for discrete time. In this paper a continuous time version of thismodel
is derived and the existence and structure of solutions is analysed. This is a very challenging
task, since standard technique existence theorems for Differential Inclusions do not hold in
general. An extended solution concept, the notion of Krasovsky solutions, can be applied
though. Some stability results are stated and discussed.
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1 Introduction

Historically speaking, the main goal of evolutionary game theory has been predicting the
behaviour of animals by the means of non-cooperative game theory. But over the last years
this focus has shifted, and evolutionary game theory has applications especially in economics,
but also in optimization, imaging and computer vision, machine learning, network design
and security (see, for example, [15–17,19]). In these applications often equilibria of games
with thousands or millions of pure strategies have to be found. Standard approaches for
equilibrium selection like the Replicator Dynamics (RD) are not suited and efficient for such
problems.

A recently published paper [18] aimed to overcome these restrictions and introduced a
new dynamics in discrete time, the Infection–Immunization Dynamics (IID). This dynamics
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presents a computationally fast way to find a Nash Equilibrium Strategy (NES) starting from
an arbitrary point on the simplex.

The basic ideas behind the IID is the following: whenever a population state is not a
NES, there exists a strategy which is “infective” for the population. When a small share of
“mutants” (who play an infective strategy) is injected into the population, they will spread
until the population becomes “immune” against them. At this point, another infective strategy
is selected and this process is started repeatedly. It can be shown that in discrete time less and
less infective strategies remain—the population gets “vaccinated”—and in the end a state
which is immune against all mutants—a Nash equilibrium—is reached.

The IID resembles to a certain extent the Best Reponse Dynamics (BRD) (or Fictitious
Play in discrete time), a dynamics where only “best” (mixed) strategies are selected. On
the contrary, the IID takes only pure strategies into account, while it also selects “best”
strategies—then the dynamics moves into its direction. But also “worst” strategies are con-
sidered, then the dynamics moves away from them, this becomes possible via the concept of
a co-strategy.

In this paper we introduce and analyse a continuous time version of the IID; it is structured
as follows.

Section 2.1 recapitulates, and investigates further, the discrete time Infection–Immuniza-
tion Dynamics (abbreviated dIID). For the readers’ convenience, these ideas are summarized
here. Section 2.2 extends themodel bymaking responsesmulti-valued, introducing the notion
of a strategy selection correspondence.

These subsections are complemented by new observations relating maximum infection
level to invasion barriers (Proposition 4), as well as bounding the population share of losing
strategies in any incumbent state (Proposition 12). While these results are of interest on their
own, they will not be needed in later sections.

Section 2.3 develops a continuous time Infection–Immunization Dynamics (abbreviated
cIID) out of the discrete time version culminating in Definition 14.

Section 3 deals with questions regarding the existence of solutions for the cIID. In partic-
ular, it is shown here that standard techniques to prove existence of solutions do not apply
to cIID. Although solutions can be constructed piecewise similarly as for the BRD [13], we
were unable to prove existence of a solution.

Section 3.2 shows possible solutions to this dilemma, one can construct solutions “by
hand”, as well known for the BRD. Although this approach works heuristically, we were not
able to prove it, so this remains an open problem. The second approach is to utilize a more
general solution concept for differential inclusions, the notion of Krasovsky solutions. Every
differential inclusion possesses a Krasovsky solution, so also for the continuous time version
of the model.

Section 4 finally states stability results and properties we were able to derive for the cIID.
Furthermore, we give an example for an interesting behaviour of the dynamics on the faces
of the simplex.

1.1 Evolutionary Game Theory

An evolutionary game theory set-up (see e.g. [23]) with pairwise contests and finitely many
pure strategies N = {1, 2, . . . , n} is fully described by means of a payoff matrix A =
[ai j ](i, j)∈N×N where ai j is payoff to pure strategy i when playing against pure strategy j . A
population state is then a point x ∈ �n where
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�n =
{

x ∈ R
n :

n∑
i=1

xi = 1, xi ≥ 0 for all i ∈ N

}

is the standard simplex, spanned by the vertices ei , i ∈ N , with [e1, . . . , en] the n×n identity
matrix. The payoff function describes the mean payoff for the pure strategies in state x ∈ �n

and is denoted by F(x) = Ax, with components

u(ei |x) = Fi (x) = (Ax)i .

The expected payoff of a population state y against the population state x is denoted by

u(y|x) =
∑
i∈N

yi Fi (x) = yT F(x) = yT Ax ,

and the average population payoff within the population in state x by u(x) = u(x|x).
Then we denote by

σ(x) = {i ∈ N : xi > 0} the support of x ,

τ−(x) = {i ∈ N : u(x − ei |x) > 0} the losing pure strategies at x,

τ+(x) = {i ∈ N : u(x − ei |x) < 0} the winning pure strategies at x and
τ0(x) = {i ∈ N : u(x − ei |x) = 0} the balancing pure strategies at x.

The terms “losing” and “winning” above always refer to a performance below or above the
average performance (average population payoff), not in an absolute sense. The support σ(x)

defines the set of pure strategies used with positive probability in state x. The set τ0(x) is also
called the extended support of x, since at a Nash equilibrium (see below) we always have
σ(x) ⊆ τ0(x). The set of best replies or best responses β(x) against a strategy x is given by

β(x) = arg max
y∈�n

u(y|x).

So (x, x) ∈ �2n is a symmetric Nash equilibrium (NE) if x ∈ β(x). A population state x
which constitutes an NE (x, x) will be called the Nash equilibrium strategy (NES), and x is
a NES if

u(y − x|x) ≤ 0 for all y ∈ �n .

A NES is called strict, if β(x) = {x}, i.e. if β(x) is a singleton. Hence, a strict NES can be
defined as an x satisfying

u(y − x|x) < 0 for all y ∈ �n\ {x}.
Now let y be an alternative state and 0 < ε < 1, and consider the postentry mix population
state εy + (1 − ε)x. Following [7], we consider the score function of y versus x

hx : �n × (0, 1) → R

(y, ε) �→ u (y − x|εy + (1 − ε)x),

and define the invasion barrier of x against y, denoted εx(y), as the largest value of ε,
so that for all smaller values of ε, x earns a higher payoff than y against the postentry mix.
Formally

εx(y) = inf {{ε ∈ (0, 1) : hx(y, ε) ≥ 0} ∪ {1}}.



Dyn Games Appl (2017) 7:492–506 495

So εx(y) = 0 if y fares better than x against all the postentry populations, and εx(y) = 1 if
x always fares better than y. A strategy x ∈ �n is called an evolutionarily stable strategy
(ESS), if

εx(y) > 0 for all y ∈ �n\ {x} .
A slight modification of the ESS was called the neutral stability [8]. The neutral stability
replaces the invasion barrier by the neutral invasion barrier of x against y, denoted εN

x (y),
is the largest value of ε, so that for all smaller values of ε, x earns a payoff higher or equal
than y against the postentry mix, i.e.

εN
x (y) = inf {ε ∈ (0, 1) : hx(y, ε) > 0} ∪ {1} .

A strategy x ∈ �n is called a neutrally stable strategy (NSS) if

εN
x (y) > 0 for all y ∈ �n .

The conditions for being a NSS are clearly weaker than the one for an ESS, but stronger
than for a NES. This also reflects in the dynamic behaviour—a NSS is Lyapunov stable fixed
point under the RD, see [6].

2 The Infection–Immunization Dynamics

2.1 The Idea of Infection and Immunization

The ideas in this subsection—the concepts of infection and immunization—have been devel-
oped in [18], for the readers convenience we want to summarize it briefly.

Definition 1 (Immunity) A strategy x ∈ �n is said to be immune against y ∈ �n if x has a
neutral invasion barrier against y, i.e. εN

x (y) > 0.

Note that immunity concerns neutral stability / neutral invasion barriers. An implication
of this is that a strategy x ∈ �n is neutrally stable if and only if it is immune against all
y ∈ �n .

Definition 2 (Infectivity) A strategy y is said to be infective for x if u(y − x|x) > 0.

If we associate the concept of infectivity with the concept of NE, one can say that x is a
NES if and only if there exists no y which is infective for x. Note that in general there can be
strategies y, which are neither infective for x nor is x immune against them. We can define
the set of infective strategies for x as

ϒ(x) = {
y ∈ �n : u(y|x) > u(x)

}
.

Consider now a y ∈ ϒ(x). Then x gets invaded by y as long as the payoff of y against the
postentry population is higher than the one of x, and that leads to the following definition.

Definition 3 (Maximum Infection Level) We will call the maximum infection level for an
infective strategy y against x, denoted δy(x), the smallest population share ε such that for all
smaller shares y fares better against the postentry population than x does; that is,

δy(x) = inf {ε ∈ (0, 1) : hx(y, ε) ≤ 0} ∪ {1} . (1)



496 Dyn Games Appl (2017) 7:492–506

Note that this notation was introduced in [18] and that, contrary to the definition of the
invasion barrier and the score function, the incumbent strategy x serves as the function
argument and the invading strategy y is expressed by the subscript.

According to this definition, δy(x) > 0 if y is infective for x and δy(x) = 0 as long as x
is immune against y.

A natural question to ask is at which infection level the postentry population becomes
immune against y. It can be shown that for any y ∈ ϒ(x), this happens at ε = δy(x), i.e. that
z = (

1 − δy(x)
)

x + δy(x)y is immune against y [18]. The definition for the maximum infec-
tion level is formulated above for a very general set-up (arbitrary sets of pure strategies, more
general interaction than pairwise contest, i.e. playing the field). In our case of a linear payoff
functions F(x) = Ax, the maximum infection level can be written down more explicitly:

δy(x) =

⎧⎪⎪⎨
⎪⎪⎩
0 if u(y − x|x) ≤ 0

min
{

u(x−y|x)
u(y−x)

, 1
}

if u(y − x|x) > 0 and u(y − x) < 0

1 if u(y − x|x) > 0 and u(y − x) ≥ 0

.

An interesting association between the maximum infection level and the invasion barrier is
given by the following proposition. Note that the invading strategy for the invasion barrier is
the incumbent strategy for the maximum infection level and vice versa.

Proposition 4 It holds that

εy(x) ≤ 1 − δy(x) .

Proof First consider the case of infective y, i.e. u(y − x|x) > 0. By using the identity

hy(x, ε) = −hx(y, 1 − ε)

and putting η = 1 − ε, one can rewrite

εy(x) = 1 − sup {η ∈ (0, 1) : hx(y, η) ≤ 0} ∪ {1} .

Now using 1 − sup A ≤ 1 − inf A it follows that

εy(x) ≤ 1 − δy(x) .

Now consider not infective y, i.e. u(y − x|x) ≤ 0, then by definition δy(x) = 0. Then the
claim reduces to εy(x) ≤ 1, which obviously holds. 	


The principal idea behind the discrete time Infection–Immunization Dynamics is the
following. Take an arbitrary state xt ∈ �n and take an infective strategy y ∈ ϒ(xt ). In
essence a signpost is wanted which leads to a NES / fixed points of the dynamics. So it is
useful to infect xt with y, and it will be infected until the postentry population, which is
now called xt+1, is immune against y, i.e. the maximum infection level δy(xt ) is reached. If
δy(xt ) = 1 then population state y is directly reached. Now the same process starts again,
this time with xt+1 as starting point and another infective strategy out of ϒ(xt+1). If this
process is reiterated and the game behaves as expected, usually fewer and fewer possibilities
for infection remain, and the dynamics arrives at a fixed point at some time.

Definition 5 (Strategy Selection Function) A function S : �n → �n is called a strategy
selection function if

S(x) =
{

y for some y ∈ ϒ(x) if ϒ(x) �= ∅
x otherwise

.
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Now we can define the resulting dynamics.

Definition 6 (Discrete Time Infection–Immunization Dynamics) The discrete time Infection–
Immunization Dynamics, abbreviated as dIID in the following, is defined as

xt+1 = δS(xt )(x
t )

[
S(xt ) − xt ] + xt . (2)

It was shown in [18] that for a given x ∈ �n , the following statements are equivalent:

1. ϒ(x) = ∅
2. x is a NES
3. x is a fixed point under dynamics (2).

The way the strategy selection function has been defined until now is not very practical in
application, because any infective strategy can be selected by the strategy selection function.
It can be made more convenient by constraining the strategy selection function in an apt way.

Definition 7 (Co-Strategy) Let ε = max {ε ∈ R : x + ε(x − y) ∈ �n} ≥ 0. The co-strategy
of y with respect to x is then given by

yx = x + ε(x − y).

Consider �n ⊂ R
n ; then, ε for a co-strategy of a pure strategy ei with respect to x is given

by ε = xi
1−xi

for all x �= ei .
The main idea is now to search for an infective strategy not on the whole simplex, but

only within the pure strategies or their co-strategies. Take the strategy which has the highest
absolute value of the payoff difference compared to x, i.e. maximize |u(ei − x|x)| over all
i ∈ N . For the maximizing i , take the pure strategy ei if u(ei − x|x) > 0 and take the
co-strategy ei

x if u(ei − x|x) < 0.

Definition 8 (Pure Strategy Selection Function) For any x ∈ �n , denote by

V+(x) = {
u(ei − x|x) : i ∈ τ+(x)

}
and

V−(x) = {
u(x − ei |x) : i ∈ τ−(x) ∩ σ(x)

}
.

If τ+(x) = τ−(x) ∩ σ(x) = ∅, put Sp(x) = x. Else, let

M(x) = min

[
argmax

i
(V+(x) ∪ V−(x))

]
and define

Sp(x) =
{

ei if i = M(x) ∈ τ+(x)

ei
x if i = M(x) ∈ τ−(x) ∩ σ(x).

Since there exists an infective strategy for x if and only if Sp(x) is infective for x (i.e.
Sp(x) �= x) [18, Proposition 2], this pure strategy selection function Sp(x) is indeed well
defined.

Definition 9 (Pure dIID) The dIID which uses a pure strategy selection function as in Defi-
nition 8 is called pure dIID.

The pure dIID reduces the amount of possible values for the selection function from a
possibly uncountable number, namely parts of the whole simplex, to a finite number, namely
2n + 1 strategies. These are the n pure strategies plus their n co-strategies and x itself. So
also from a computational point of view the pure dIID is very interesting, for example see
[19], where the pure dIID is used very successfully in various graph-based computer vision
problems.
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2.2 Infective Strategy Selection Correspondences

Using the dIID always one infective strategy gets selected, but the definition of S(x) does
not specify which one. However, the definition of Sp(x) specifies it as the pure strategy or
co-strategy with the smallest index. So the most general case is to admit all the strategies,
which are infective for x, as return values of the strategy selection, this leads to a strategy
selection correspondence.

Definition 10 (Full Strategy Selection Correspondence) The correspondence S : �n →
P(�n), where P(·) denotes the power set, is called full strategy selection correspondence
if the following holds

S(x) =
{

ϒ(x) if ϒ(x) �= ∅
{x} otherwise.

(3)

So all the infective strategies for x are returned by the correspondence, if there are infective
ones, otherwise x. We also can introduce a pure strategy selection correspondence, again
similar to the pure strategy selection function.

Definition 11 (Pure Strategy Selection Correspondence) With V± as in Definition 8, let

M(x) = argmax
i

(V+(x) ∪ V−(x)) .

The correspondence Sp : �n → P(�n) with

Sp(x) =
{{

ei : i ∈ M(x) ∩ τ+(x)
} ∪

{
ei

x : i ∈ M(x) ∩ τ−(x) ∩ σ(x)
}

if M(x) �= ∅
{x} otherwise

is called pure strategy selection correspondence. Note thatM(x) returns a set of indices (or
is empty) while Sp(x) returns the corresponding pure strategies and co-strategies (or x itself).

So Sp(x) returns the set of all pure strategies or co-strategies with the highest relative
payoff difference (otherwise x), and it selects a set of infective strategies if and only if the
full strategy selection correspondence selects a set of infective strategies. This can be proved
analogously to [18, Proposition 2].

The following properties limit the population share of losing strategies.

Proposition 12 Consider the pure strategy selection correspondence.

(a) At a point x where (infective) pure strategies and co-strategies are returned, we have

ε ≤ 1 for any returned co-strategy, or equivalently, x j ≤ 1
2 for co-strategy e j

x .

(b) At a point x where only (infective) co-strategies are returned, we have ε < 1 for any

returned co-strategy, or equivalently, x j < 1
2 for co-strategy e j

x .

Proof (a) Consider any (returned) co-strategy e j
x . Then e j

x lies on the face of the simplex
which is given by

conv
{

e1, . . . , e j−1, e j+1, . . . , en
}
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and u(e j
x − x|x) = εu(x − e j |x) by definition of a co-strategy. By the linearity of the

payoff function it follows that

εu(x − e j |x) =
∑

i∈N\{ j}
λi u(ei − x|x)

where λ ∈ �n−1. Hence,

εu(x − e j |x) =
∑

i∈N\{ j}
λi u(ei − x|x) ≤ max

i∈N\{ j} u(ei − x|x) .

But by the assumption that that at least one pure strategy is returned by Sp(x) and that e j
x

is also returned, it follows that u(x − e j |x) = maxi∈N\{ j} u(ei − x|x) �= 0 by definition
of the pure selection correspondence. From that one can see that ε ≤ 1. That x j ≤ 1

2 can
be seen by using ε = x j

1−x j
from the definition of the co-strategy.

(b) In this case

εu(x − e j |x) ≤ max
i∈N\{ j} u(ei − x|x) < u(x − e j |x) ,

because no pure strategy is returned by the pure strategy selection correspondence. The
inequality above implies that ε < 1.

	

2.3 The Continuous Time Infection–Immunization Dynamics

We now derive a continuous time Infection–Immunization Dynamics from the dIID, first in
the most general sense possible. If we apply the full strategy selection correspondence to the
dIID, we get a difference inclusion of the form

xt+1 ∈ δS(xt )(x
t )

[S(xt ) − xt ] + xt .

We can derive a differential inclusion from the approximation ẋ ≈ xt+1 −xt , putting xt = x,
which yields

ẋ ∈ δS(x)(x) (S(x) − x) .

The offset term δS(x)(x) can be omitted for the following reasons: if δS(x)(x) > 0, then it
is just a factor which rescales time and it does not influence the qualitative behaviour of the
differential inclusion. But δS(x)(x) ∈ [0, 1] by definition, so the critical case is δS(x)(x) = 0,
which must not influence the differential inclusion, i.e. S(x) − x = {o} must hold in that
case.

Lemma 13 δS(x)(x) = 0 if and only if S(x) = {x}.
Proof By definition of the maximum infection level for linear payoff functions δS(x)(x) = 0
implies that u(y−x|x) ≤ 0, ∀y ∈ S(x).S(x) returnsϒ(x) if there exists at least one infective
strategy for x, otherwise {x}. Let us assume that the strategy selection correspondence returns
ϒ(x) and we select an arbitrary y ∈ ϒ(x). Then y is infective, i.e. u(y − x|x) > 0, resulting
in a contradiction to the assumption. So S(x) must return {x} then, which was to be shown.
On the other hand, if S(x) = {x} then δS(x)(x) becomes δx(x) which is per definition zero.
A strategy can never be infective for itself. 	


So we can drop δS(x)(x) and define:
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Definition 14 (Continuous Time IID, Pure Continuous Time IID) The following differential
inclusion is called the continuous time Infection–Immunization Dynamics, abbreviated cIID:

ẋ ∈ S(x) − x (4)

with S(x) defined as in (3). When the pure strategy selection correspondence Sp(x) is used,
the model is called pure cIID.

Analogous to the dIID we can show the following.

Theorem 15 A given x ∈ �n is a NES if and only if x is a fixed point under dynamics (4),
i.e. S(x) = {x}.
Proof We know that x is a NES if and only if ϒ(x) = ∅ [18, Theorem 1]. The rest is
analogous to the proof of Lemma 13. 	


One may wonder about the relevance of cIID. While dIID was constructed mostly for its
computational power, a continuous time version does not have this advantage. Still, we are
driven to analyse the properties of the continuous time version mainly for theoretic insight.
And the outcome ismore than interesting—a reasonable and uncomplicated dynamics, which
exhibits very non-trivial and non-standard behaviour in many senses. This will be explained
in the next section.

It is interesting to relate the pure cIID to the Best Response Dynamics (abbreviated as
BRD), which is defined as

ẋ(t) ∈ β(x(t)) − x(t).

They behave similar to a certain extent, the pure cIID differs from the BRD in two points,
though, see Sect. 1. A property of the cIIDwhich is shared by the BRD is the fact that its faces
are not forward invariant, i.e. strategies, which are currently not played by the population
can emerge over time. This property is not shared by many other popular dynamics, among
them also the well-studied Replicator Dynamics.

3 When Do Solutions for the cIID Exist?

3.1 Existence Theorems for Differential Inclusions: A Short Review

Since the cIID is constructed similar to the BRD, we want to analyse this dynamics first. One
approach to prove the existence of solutions for the BRD is to invoke existence theorems for
differential inclusions. Standard conditions for solution existence can be found e.g. in [4]
or in [21]. Usually, the solutions are not unique, however. For the readers’ convenience, we
shortly repeat some of the existence theorems here; to this end, we first have to recall some
technical notions for a correspondenceF : X → P(Y ).F is said to be upper hemicontinuous
or u.h.c. at x0 if for any neighbourhood V of F(x0) there exists a neighbourhood U of x0
such that F(x) is a subset of V for all x in U and it is said to be lower hemicontinuous or
l.h.c. at x0 if for any open set V intersecting F(x0) there exists a neighbourhood U of x0
such that F(x) intersects V for all x in U . Finally, F is said to be Lipschitz continuous if
there exists a k > 0 such that F(x1) ⊂ F(x2) + k‖x1 − x2‖2B for all x1, x2 ∈ X where
B = {y ∈ R

n : ‖y‖2 ≤ 1}. Now, a differential inclusionwith correspondenceF : X → P(Y )

has (non-unique) solutions guaranteed, if either
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• F is u.h.c. or F is l.h.c.
and

• F has non-empty, compact and convex values or
• (F is u.h.c. and l.h.c.) or (F is Lipschitz continuous) or (F is l.h.c. including some further

restrictions) or (F is u.h.c including some further restrictions)
and

• F has non-empty and compact values, but it need not necessarily have convex values.

Summarizing this, one can see that the condition of convex values can be dropped if
stronger restrictions on F are imposed. But the requirement of compact values remains and
this will be crucial for the cIID as we will see below. The BRD has non-empty, convex and
compact values and is u.h.c.; hence, existence theorems can be applied. If we try the same
for the cIID, it turns out that no standard technique existence theorem holds:

Proposition 16 The correspondence F(x) = S(x) − x from the differential inclusion (4) is
non-empty and has convex and bounded values, but they need not be closed (and therefore
not compact). The correspondence F is neither necessarily u.h.c. nor Lipschitz continuous,
not even for symmetric payoff matrices.

Proof It is obvious that F(x) has non-empty, convex and bounded values by definition of
S(x). For the other properties consider the payoff matrix

A =
⎛
⎝1 1 0
1 1 0
0 0 −1

⎞
⎠ .

The payoffs of this game take the form u(y|x) = (y1+ y2)(x1+x2)−x3y3, which shows that
only states with no positive weight on e3 are NES, i.e. the face of the simplex connecting e1

and e2. Now set y = e3, then S(y) = �3\ {y}, and consider a sequence in F(y) = S(y) − y
which converges towards o. Because o /∈ F(y), the set F(y) is not closed.

Next we show that F(x) is not u.h.c. at the point x0 = 1
2e1 + 1

2e2, which is a NES, so
S(x0) = {x0}. Take a sufficiently small neighbourhood V of F(x0) = {o}.

For an arbitrarily given neighbourhoodU of x0, choose x = (1−ε)x0+εe3 with ε ∈ (0, 1]
small enough that x ∈ U (x0). Pure strategy e1 is infective for x because u(x|x) = 1 − 2ε <

1 − ε = u(e1|x). Therefore, e1 − x ∈ F(x), but for any ε ∈ (0, 1] we have e1 − x /∈ V , so
F(x) cannot be u.h.c.

Finally, we show that F is not Lipschitz continuous at the point x0. Let k > 0, choose ε

small enough, e.g. set ε := 1
100k , and consider again x = (1−ε)x0+εe3. ThenF(x0)+k‖x−

x0‖2B = o+ 1
100

√
3
2B, which definitely does not include e1−x. So e1−x ∈ F(x) �⊂ 1

100

√
3
2B,

which was to be shown. 	

The reasonwhy none of the existence theorems for differential inclusions hold for the cIID

lies in the non-compactness of its values. But even if F(x) = S(x) − x would have compact
values, the correspondence still would not be u.h.c. or Lipschitz continuous. It remains yet
unclear whether it would necessarily be l.h.c.

Proposition 17 The correspondence F(x) = Sp(x) − x for the pure cIID takes compact
values but it is not necessarily convex valued. The correspondence is neither necessarily
u.h.c. nor l.h.c. nor Lipschitz continuous, not even for symmetric payoff matrices.
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Proof Since F(x) �= ∅ is a finite set it is compact but not convex, if it contains more than
one element. For the other properties consider the game with payoff matrix

B =
⎛
⎝1 1 0
1 1 2
0 2 1

⎞
⎠ and the NES x0 =

⎛
⎝ 1

2
1
2
0

⎞
⎠

(see [18] for details and graphics). The game has infinitely many NES and the one relevant
for this counterexample is given by x0.

Now we can show that F(x) is neither u.h.c. nor l.h.c. at x0. Take a sufficiently small
neighbourhood V of F(x0) = {o}. Let U be an arbitrarily given neighbourhood of x0 , then
x = (1 − ε)x0 + εe3 ∈ U if ε > 0 is small enough. We have u(e1 − x|x) = −ε while

u(e2 − x|x) = ε and u(e3 − x|x) = 0, showing that Sp(x) =
{

e1x, e2
}
. So

F(x) =
{

e1x − x, e2 − x
}

=

⎧⎪⎨
⎪⎩

⎛
⎝−1+ε

2
1+ε
2−ε

⎞
⎠ ,

⎛
⎜⎝

ε−1
2

(1−ε)2

2(1+ε)
ε(1−ε)
1+ε

⎞
⎟⎠

⎫⎪⎬
⎪⎭ ,

and thus F(x) ∩ V = ∅, implying also F(x) � V for small enough ε > 0. Therefore, F is
neither u.h.c. nor l.h.c. at x0.

Finally, the same argument as in the proof of Proposition 16 applied to the payoff matrix
B at the NES x0 with x = (1− ε)x0 + εe3 and e2 −x ∈ F(x) establishes failure of Lipschitz
continuity. 	


One other known method to establish existence of solutions is the use of directionally
continuous selections, see [9] and [10]. This concept uses a weaker condition than u.h.c. or
l.h.c., but is still strong enough to guarantee existence. Unfortunately the correspondence
Sp(x) − x of Proposition 17 does not satisfy this: there exists no selection such that x0 is
directionally continuous.

3.2 Existence and Construction of Solutions

One approach to the existence of solutions is to construct the trajectory piecewise, as done for
the BRD, see [13]. Generically, for “most” times t the pure strategy selection correspondence
will only select one infective strategy b. During an open time interval I where this strategy
does not change, the system can be described as ẋ = b − x. The solution starting, say, at
t0 ∈ I with x(t0) = x0, has the form

x(t) = x0e−(t−t0) +
(
1 − e−(t−t0)

)
b , t ∈ I . (5)

This straight line movement towards b continues until a time point is reached where more
than one strategy is selected, which is the case at any x where |u(ei − x|x)| = |u(e j − x|x)|
for two different i, j ∈ N . Then we can restart the whole process with a “new” b, and in
the end we get a path which is piecewise composed of straight line segments. This leads to
a Carathéodory solution of the system. Clearly, b ∈ Sp (x) must hold in order that b can
be considered a “solution target” for a positive time interval. But b must also be selected
if the system moves slightly into the direction of b, i.e. b ∈ Sp ((1 − ε)x + εb) for small
ε, otherwise the trajectory could not move along this straight line towards b. The important
question is: does such a strategy b, which enables further motion, always exist? Although
heuristics show that this is the case, this problem remains open.
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A different possibility is to use a more general solution concept for differential equa-
tions/inclusions, namely the notion of a Krasovsky solution, for the definition see e.g. [12]
or [5] for a good comparison to other solution concepts.

Definition 18 (Krasovsky set-valued map) The Krasovsky set-valued map FK : R
n →

P(Rn) for a correspondence F : R
n → P(Rn) is defined by

FK (x) = ∩δ>0conv{F(B(x, δ))}, x ∈ R
n

where conv denotes the convex closure and B(x, δ) denotes the open ball around x (con-
strained to the simplex) with radius δ.

Definition 19 (Krasovsky solution) A Krasovsky solution of ẋ(t) ∈ F(x(t)) defined on
[t0, t1] ⊂ [0,∞) is an absolutely continuous function x : [t0, t1] → R

n such that ẋ(t) ∈
FK (x(t)) for almost every t ∈ [t0, t1]. In other words, a Krasovsky solution of F is a
Carathéodory solution of FK .

It is obvious that every cIID has a solution in the Krasovsky sense. For the pure cIID it is
not so obvious, for this recall the Closed Graph Theorem first, see e.g. [3].

Theorem 20 (Closed Graph Theorem) A correspondence F : R
n → P(Rn) with closed

values is u.h.c. if and only if it has a closed graph, i.e. if xn and vn are sequences with
xn → x0 and vn → v0, and vn ∈ F(xn) then v0 ∈ F(x0).

Corollary 21 Consider a pure strategy selection correspondence Sp : �n → P(�n). Then
the Krasovsky map of F(x) = Sp(x) − x, denoted by FK , is u.h.c., bounded and has non-
empty closed convex values. Hence, a solution to any initial value problem exists.

Proof By the properties of the pure strategy selection correspondenceF is bounded and non-
empty; hence,FK is bounded and non-empty. Using the closed convex hull in the Krasovsky
map implies that FK has closed and convex values. Furthermore, it implies that FK has a
closed graph; hence, the closed graph theorem holds and FK is u.h.c. 	


4 Some Stability Results

The concept of adjustment dynamics [20], also called positive correlation [22], is usually
used for evolutionary dynamics ẋ = F(x), we extend it to differential inclusions ẋ ∈ F(x)

– the following two conditions have to hold:

1. y�F(x) ≥ 0 for all y ∈ F(x) and for all x ∈ �n and
2. y�F(x) > 0 for all y ∈ F(x) if o /∈ F(x) .

Proposition 22 The cIID is an adjustment dynamics.

Proof Here F(x) = S(x) − x. Let z ∈ S(x) be infective, hence u(z − x|x) > 0, what was
to be shown. If S(x) = {x}, then F(x) = {o} and u(o|x) = oT Ax = 0; hence, the cIID is an
adjustment dynamics. 	


Now for an adjustment dynamics we know (see e.g. [14]):

• If A is symmetric, then the average population payoff is monotonically increasing, i.e.
t1 < t2 ⇒ u (x(t1)) ≤ u (x(t2)).
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• Strict NES are asymptotically stable for games when n ≤ 3.

Remark: [14] claims that strict NES are always asymptotically stable. But it has been shown
in [2] that this is not the case.

We want to show a further stability result, previously established for BRD [14]. As usual,
we denote by int (�n) = {x ∈ �n : xi > 0 for all i ∈ N } the relative interior of the simplex.
Recall that if a point p ∈ int (�n) is an ESS then there exists no other NES than p in the
game [14]. Further [1,11,14] proved that if p ∈ int (�n) is a NES, then p is an ESS if and
only if

u(y|y) < 0 for all y �= o with
n∑

i=1

yi = 0. (6)

Theorem 23 Let p ∈ int (�n) be an ESS, then p is globally asymptotically stable for the
pure cIID, provided that solutions exist for the game.

Proof Consider the function V (x) = max j |u(ej − x|x)|, then V (x) is a strict Lyapunov
function, because V (x) > 0 whenever x is not a NES and V (x) = 0 if x is a NES. According
to above, this can happen only at the ESS p.

Along a linear path where the system can be described as ẋ = ei−x the Lyapunov function
can be rewritten as V (x) = u(ei − x|x). Taking the derivative with respect to time leads to

V̇ (x) = −u(ẋ|x) + u(ei − x|ẋ)

and by using ẋ = ei − x this can be rewritten as

V̇ (x) = −u(ei − x|x) + u(ei − x|ei − x).

We know that u(ei − x|x) > 0 because of infectivity and furthermore u(ei − x|ei − x) < 0
because of (6); hence, V̇ (x) < 0.

Along a linear path where the system can be described as ẋ = ei
x − x the Lyapunov

function can be rewritten as V (x) = 1−xi
xi

u(ei
x − x|x). Taking the derivative with respect to

time leads to

V̇ (x) = 1

x2i
u(ei

x − x|x)ẋi + 1 − xi

xi

(
u(ei

x − x|ẋ) − u(ẋ|x)
)

and by using ẋ = ei
x − x as well as ẋi = −xi this can be rewritten as

V̇ (x) = −2 − xi

xi
u(ei

x − x|x) + 1 − xi

xi
u(ei

x − x).

By the same argument as before this expression is always negative. Note that xi = 0 and
xi = 1 cannot occur because of the definition of the pure strategy selection correspondence.
Therefore, V (x) is a strict Lyapunov function (for all the possible Carathéodory solutions)
and p is globally asymptotically stable. 	


Although the pure cIID behaves as expected for a game dynamics in the interior of the
simplex, the behaviour is problematic at the faces of the simplex. The system can converge
towards a point on a face, which is not a fixed point. Consider the following example.

Example 24 Consider the game with payoff matrix A =
⎛
⎝−2 −9 8

−9 4 0
8 0 −4

⎞
⎠ and an initial value

x0(0) = ( 9
20 ,

1
20 ,

1
2 )

�. For x0 the only selected strategy is e2x0 = ( 9
19 , 0,

10
19

�
) and it remains



Dyn Games Appl (2017) 7:492–506 505

the same when the system moves according to ẋ = S(x) − x = e2x0 − x. Solving this

differential equation leads to x(t) =
⎛
⎝ 9

19 − 9
380e−t

1
20e−t

10
19 − 1

38e−t

⎞
⎠ and limt→∞ x(t) = e2x0 . But e2x0 is

not a fixed point, S(e2x0) = e1.

This behaviour is explainable by the construction of the strategy selection func-
tion/correspondence, it also appears in the discrete version. But since the pure dIID “jumps”,
this behaviour does not matter. It only becomes critical in the continuous version.

5 Conclusion

Using the recently proposed Infection–Immunization Dynamics, which was introduced for
discrete time (dIID and pure dIID), we adapt this evolutionary dynamics for continuous time
(cIID and pure cIID). It turns out that standard techniques for differential inclusions do not
work for the cIID and the pure cIID, lacking compactness in the case of the cIID and lacking
hemicontinuity in the case of the pure cIID.

However, we can show that an extended solution concept works, namely the one by
Krasovsky: every cIID and every pure cIID has a (non-unique) solution in the Krasovsky
sense. Similar to the Best Response Dynamics it can be shown what solutions look like.

Furthermore, we show that the cIID is an adjustment dynamics and show stability result
for the pure cIID regarding interior ESS. Unfortunately the pure cIID exhibits a problematic
behaviour at the faces of the simplex—solutions can converge towards points which are not
fixed points—again by discontinuity of the right-hand side of the dynamics’ equation.
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