Skip to main content
Log in

Efficient and controllable co-delivery of paclitaxel and curcumin from fucoidan-pluronic F127 nanogel for synergistic breast cancer treatment

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The co-delivery of paclitaxel (PTX) and curcumin (Cur) has proven to be an effective method for breast cancer treatment. However, the poor solubility of both PTX and Cur limits their bioavailability, resulting in insufficient anticancer effects. Herein, we developed a novel nanogel based on fucoidan to facilitate the co-encapsulation of PTX and Cur and improve their therapeutic effectiveness. The thermosensitive copolymer, fucoidan-pluronic F127 (Fud-F127), was synthesized and characterized by various techniques, including proton nuclear magnetic resonance (1H-NMR), transmission electron microscopy (TEM), dynamic light scattering (DLS), and critical micelle concentration (CMC). Cur and PTX were easily loaded into the Fud-F127 nanogel (Fud-F127@Cur@PTX), with high drug loading capacity of 84.4% for Cur and 86.83% for PTX. The PTX and Cur were sustainedly released followed a Fickian diffusion mechanism and triggered at acidic pH 5.5. In vitro assessments demonstrated that Fud-F127@Cur@PTX exhibited lower cytotoxicity towards breast cancer cells (MCF-7) than Fud-F127@PTX and free PTX at the same dose, highlighting the potential of Cur in mitigating the acute toxicity of PTX. These results suggest the potential of Fud-F127 as an effective nanocarrier for the co-delivery of PTX and Cur, which aims to minimize the adverse effects associated with breast cancer treatment.

Graphical abstract

Fud-F127 nanogel system encapsulating Cur and PTX for enhanced delivery

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. A. Ahmad, Breast cancer statistics: recent trends. Breast Cancer Metastasis Drug Resist. 1–7 (2019)

  2. T.A. Moo, R. Sanford, C. Dang, M. Morrow, Overview of breast cancer therapy. PET Clin. 13(3), 339–354 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  3. N.L. Wankhede et al., Current updates in breast cancer drugs. 273–294 (2023)

  4. W. Carbajal-Ochoa et al., Benefit of adjuvant chemotherapy in lymph node-negative, T1b and T1c triple-negative breast cancer. 1–13 (2023)

  5. O. Obidiro, G. Battogtokh, E.O.J.P. Akala, Triple negative breast cancer treatment options and limitations: future outlook. 15(7), 1796 (2023)

  6. T.T. Dongsar et al., Emerging application of magnetic nanoparticles for breast cancer therapy. 111898 (2023)

  7. M. Hegde et al., Nanoparticles in the diagnosis and treatment of cancer metastases: current and future perspectives. Cancer Lett. 556, 216066 (2023)

    Article  CAS  PubMed  Google Scholar 

  8. L. Zhu, L. Chen, Cellular & molecular biology letters. Prog. Res. Paclitaxel Tumor Immunotherapy 24, 40 (2019)

    CAS  Google Scholar 

  9. R.C. Alves, R.P. Fernandes, J.O. Eloy, H.R.N. Salgado, M. Chorilli, Characteristics, properties and analytical methods of paclitaxel: a review. Crit. Rev. Anal. Chem. 48(2), 110–118 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. P.L. Chou, Y.P. Huang, M.H. Cheng, K.M. Rau, Y.P. Fang, Improvement of paclitaxel-associated adverse reactions (ADRs) via the use of nano-based drug delivery systems: a systematic review and network meta-analysis. Int. J. Nanomed. 15, 1731–1743 (2020)

    Article  CAS  Google Scholar 

  11. N.I. Marupudi, J.E. Han, K.W. Li, V.M. Renard, B.M. Tyler, H. Brem, Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin. Drug Saf. 6(5), 609–621 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. P. Giannakakou, D.L. Sackett, Y.K. Kang, Z. Zhan, J.T. Buters, T. Fojo, M.S. Poruchynsky, Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J. Biol. Chem. 272, 17118–17125 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. R.Z. Yusuf, Z. Duan, D.E. Lamendola, R.T. Penson, M.V. Seiden, Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr. Cancer Drug Targets 3(1), 1–19 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. X. Gao, B. Wang, Q. Wu, X. Wei, F. Zheng, K. Men et al., Combined delivery and anti-cancer activity of paclitaxel and curcumin using polymeric micelles. J. Biomed. Nanotechnol. 11(4), 578–589 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Zhan, Y. Chen, R. Liu, H. Zhang, Y. Zhang, Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling. Arch. Pharm. Res. 37(8), 1086–1095 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. C.Y. Zhao, R. Cheng, Z. Yang, Z.M. Tian, Nanotechnology for cancer therapy based on chemotherapy. Molecules 23(4), 826 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  17. P. Anand, A.B. Kunnumakkara, R.A. Newman, B.B. Aggarwal, Bioavailability of curcumin: problems and promises. Mol. Pharm. 4(6), 807–818 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. A.B. Kunnumakkara, C. Harsha, K. Banik, R. Vikkurthi, B.L. Sailo, D. Bordoloi et al., Is curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opin. Drug Metab. Toxicol. 15(9), 705–733 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. H.B. Ruttala, Y.T. Ko, Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle for enhanced synergistic antitumor efficacy. Colloids Surf. B Biointerfaces 128, 419–426 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. J. Lin, Q. Cai, Y. Tang, Y. Xu, Q. Wang, T. Li et al., PEGylated lipid bilayer coated mesoporous silica nanoparticles for co-delivery of paclitaxel and curcumin: design, characterization and its cytotoxic effect. Int. J. Pharm. 536(1), 272–282 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. K. Xiong, Y. Zhang, Q. Wen, J. Luo, Y. Lu, Z. Wu et al., Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int. J. Pharm. 589, 119875 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. J.H. Fitton, D.N. Stringer, S.S. Karpiniec, Therapies from fucoidan: an update. Mar. Drugs 13(9), 5920–5946 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J.Y. Kwak, Fucoidan as a marine anticancer agent in preclinical development. Mar. Drugs 12(2), 851–870 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Wang, M. Xing, Q. Cao, A. Ji, H. Liang, S. Song, Biological activities of fucoidan and the factors mediating its therapeutic effects: a review of recent studies. Mar. Drugs 17(3), 183 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S.H. Lee, C.I. Ko, G. Ahn, S. You, J.S. Kim, M.S. Heu et al., Molecular characteristics and anti-inflammatory activity of the fucoidan extracted from Ecklonia cava. Carbohydr. Polym. 89(2), 599–606 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. M.L. Amin, D. Mawad, S. Dokos, P. Koshy, P.J. Martens, C.C. Sorrell, Immunomodulatory properties of photopolymerizable fucoidan and carrageenans. Carbohydr. Polym. 230, 115691 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. A. Cumashi, N.A. Ushakova, M.E. Preobrazhenskaya, A. D’Incecco, A. Piccoli, L. Totani et al., A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17(5), 541–552 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. D.E. Tylawsky et al., P-selectin-targeted nanocarriers induce active crossing of the blood–brain barrier via caveolin-1-dependent transcytosis. Nat. Mater. 22(3), 391–399 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. H. Wang et al., Radiotherapy potentiates the P-selectin targeted cancer drug delivery based on a cisplatin and mitoxantrone coassembled fucoidan nanogel. 5, 2843–2851 (2023)

  30. B. Pradhan et al., Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: a journey under the sea in pursuit of potent therapeutic agents. Int. J. Biol. Macromol. 164, 4263–4278 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. A. George, P.S.J.D.D. Shrivastav, T. Research, Fucoidan, a brown seaweed polysaccharide in nanodrug delivery. 1–20 (2023)

  32. J.H. Fitton, D.N. Stringer, A.Y. Park, S.S. Karpiniec, Therapies from fucoidan: new developments. Mar. Drugs 17(10), 571 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S.J. Huang, S.L. Sun, T.H. Feng, K.H. Sung, W.L. Lui, L.F. Wang, Folate-mediated chondroitin sulfate-Pluronic® 127 nanogels as a drug carrier. Eur. J. Pharm. Sci. 38(1), 64–73 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. J.G. Wenzel, K.S. Balaji, K. Koushik, C. Navarre, S.H. Duran, C.H. Rahe, U.B. Kompella, Pluronic® F127 gel formulations of Deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J. Control. Release 85(1–3), 51–59 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. M. Wulff-Pérez, J. de Vicente, A. Martín-Rodríguez, M.J. Gálvez-Ruiz, Controlling lipolysis through steric surfactants: new insights on the controlled degradation of submicron emulsions after oral and intravenous administration. Int. J. Pharm. 423(2), 161–166 (2012)

    Article  PubMed  Google Scholar 

  36. T. Anirudhan, S. Varghese, V.J. Manjusha, Hyaluronic acid coated pluronic F127/pluronic P123 mixed micelle for targeted delivery of Paclitaxel and curcumin. Int. J. Biol. Macromol. 192, 950–957 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. W. Zhang, Y. Shi, Y. Chen, J. Ye, X. Sha, X. Fang, Multifunctional pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials 32(11), 2894–2906 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. The, N.N.J.V.J.o.C., Synthesis of a novel nano‐carrier system based on fucoidan conjugated to pluronic for cell‐targeted delivery of anti‐cancer drugs. 60, 80–85 (2022)

  39. J. Cacaccio et al., Pluronic F-127: an efficient delivery vehicle for 3-(1′-hexyloxy) ethyl-3-devinylpyropheophorbide-a (HPPH or Photochlor). Photochem. Photobiol. 96(3), 625–635 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. A.R. Fares, A.N. ElMeshad, M.A. Kassem, Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 25(1), 132–142 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. A. Pawar, S. Singh, S. Rajalakshmi, K. Shaikh, C. Bothiraja, Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting. Artif. Cells Nanomed. Biotechnol. 46(1), 347–361 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. M.A. Roni, G. Kibria, R.U. Jalil, In vitro studies of controlled release alfuzosin matrix tablets prepared with ethylcellulose and hydroxypropyl methylcellulose. 2009

  43. M.-N.T. Nguyen, T.-D. Ho-Huynh, Selective cytotoxicity of a Vietnamese traditional formula, Nam Dia long, against MCF-7 cells by synergistic effects. BMC Complement. Altern. Med. 16(1), 1–10 (2016)

    Article  Google Scholar 

  44. P.S. Saravana et al., Green and efficient extraction of polysaccharides from brown seaweed by adding deep eutectic solvent in subcritical water hydrolysis. J. Clean. Prod. 198, 1474–1484 (2018)

    Article  CAS  Google Scholar 

  45. R.M. Rodriguez-Jasso et al., Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 86(3), 1137–1144 (2011)

    Article  CAS  Google Scholar 

  46. W. Cho, K. Char, S. Kwon, Thermally induced mesophase development in ethanesilica filmsvia macromolecular templating approach. Macromol. Res. 17(9), 697–702 (2009)

    Article  CAS  Google Scholar 

  47. T.D. Nguyen et al., Nanoencapsulation enhances anticoagulant activity of adenosine and dipeptide IleTrp. Nanomaterials 9(9), 1191 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S.D. Singh-Joy, V.C. McLain, Safety assessment of poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, poloxamer 105 benzoate, and poloxamer 182 dibenzoate as used in cosmetics. Int. J. Toxicol. 27, 93–128 (2008)

    Article  PubMed  Google Scholar 

  49. H. Lee et al., Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Process. Technol. 92(12), 2420–2428 (2011)

    Article  CAS  Google Scholar 

  50. L. Wang et al., Silica nanoflowers-stabilized Pickering emulsion as a robust biocatalysis platform for enzymatic production of biodiesel. Catalysts 9(12), 1026 (2019)

    Article  CAS  Google Scholar 

  51. A. Gad et al., Targeting cancer using polymeric nanoparticle mediated combination chemotherapy. Int. J. Nanomed. Nanosurg. 2(3) (2016)

  52. C. Saha et al., Anthracycline drugs on modified surface of quercetin-loaded polymer nanoparticles: a dual drug delivery model for cancer treatment. PLoS ONE 11(5), e0155710 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  53. L. Pham et al., A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application. Biomed. Pharmacother. 117, 109183 (2019)

    Article  CAS  PubMed  Google Scholar 

  54. H. Ding et al., Non-invasive tumor detection in small animals using novel functional pluronic nanomicelles conjugated with anti-mesothelin antibody. Nanoscale 3(4), 1813–1822 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. Q. Yao et al., Efficient codelivery of paclitaxel and curcumin by novel bottlebrush copolymer-based micelles. 14(7), 2378–2389 (2017)

  56. N.T. Nguyen et al., Curcumin and paclitaxel co-loaded heparin and poloxamer p403 hybrid nanocarrier for improved synergistic efficacy in breast cancer. Curr. Drug Deliv. 19(9), 966–979 (2022)

    Article  CAS  PubMed  Google Scholar 

  57. K. Xiong et al., Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. 589, 119875 (2020)

Download references

Acknowledgements

This study was fully supported by Tra Vinh University under Grant contract number 419/2022/HĐ.HĐKH&ĐT-ĐHTV.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinh Trung Nguyen or Phuong Le Thi.

Ethics declarations

Conflict of interest

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7494 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.T., Nguyen, V.T., Vu, T.T. et al. Efficient and controllable co-delivery of paclitaxel and curcumin from fucoidan-pluronic F127 nanogel for synergistic breast cancer treatment. Macromol. Res. 32, 427–442 (2024). https://doi.org/10.1007/s13233-023-00240-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00240-8

Keywords

Navigation