Skip to main content
Log in

Development and characterization of Morinda tinctoria incorporated electrospun PHBV fiber mat for wound healing application

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

As synthetic medications have various limitations and side effects in wound treatment, alternatively active wound dressing material could be designed by incorporating natural extracts. Electrospun fibers infused with plant extract can act as an active wound dressing material to speed up the process of wound healing. In this connection, the wound-healing efficacy of an Indian traditional drug Morinda tinctoria was reported earlier, but not yet explored as a natural active ingredient in electrospun fibers. The present work focused on preparing the extracts of M. tinctoria leaf and analyzing their yield, total phenolic concentration (TPC) and GC–MS phytochemical profile. The safety of methanol extract was studied in PBMC cells through MTT and live/dead assays and also TNF-α & IL-6 levels were quantified. Electrospinning of M. tinctoria-infused PHBV fiber mat was developed and characterized through SEM, FT-IR and TG–DTA. Results indicated that the methanol extract has a greater yield (2.47%) and TPC (4260.72 mg/L) when compared to other solvent extracts due to the presence of high polar molecules in M. tinctoria. GC–MS study revealed the phytochemicals such as coumarin and methylanthraquinone in the methanolic extract. MTT assay and live/dead staining revealed that the M. tinctoria extract was safe with 99% cell viability with intact cell wall. M. tinctoria induced the levels of TNF-α (328.75 pg/mL) and IL-6 (1357.14 pg/mL), which could improve the migration and proliferation of fibroblasts during wound healing. Development of M. tinctoria-infused fiber mat was optimized with 12% polymer concentration, 18 kV voltage, 0.01 mL/min flow rate and 14 cm tip to collector distance. SEM analysis of M. tinctoria-infused fiber mat revealed bead-less smooth fibers of 1.19 ± 0.15 µm diameter and 0.024 ± 0.003 µm pore size. FT-IR spectra revealed functional groups such as phenols, amines and alkanes in extract-incorporated fibers. A drop in temperature (457 °C) was noticed in M. tinctoria-infused fiber mat when compared to the control (595 °C), which indicates the degradation of organic matters in the fiber mat. M. tinctoria-infused fiber mat could be applied as wound dressing material after conducting suitable animal experiments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barbieri J.S., Wanat K., Seykora J, Skin: Basic structure and function. In: Pathobiology of human disease. Academic Press. ISBN 9780123864574. 2014

  2. P. Bainbridge, Wound healing and the role of fibroblasts. J. Wound Care 22(8), 407–412 (2013). https://doi.org/10.12968/jowc.2013.22.8.407

    Article  CAS  PubMed  Google Scholar 

  3. P. Kujath, A. Michelsen, Wounds—from physiology to wound dressing. Dtsch. Arztebl. Int. 105(13), 239–248 (2008). https://doi.org/10.3238/arztebl.2008.0239

    Article  PubMed  PubMed Central  Google Scholar 

  4. R.S. Kirsner, W.H. Eaglstein, The wound healing process. Dermatol. Clin. 11(4), 629–640 (1993). https://doi.org/10.1016/S0733-8635(18)30216-X

    Article  CAS  PubMed  Google Scholar 

  5. A. Sharma, S. Khanna, G. Kaur, Medicinal plants and their components for wound healing applications. Fut J Pharm Sci 7, 53 (2021). https://doi.org/10.1186/s43094-021-00202-w

    Article  Google Scholar 

  6. I. Onyekwelu, R. Yakkanti, L. Protzer, C.M. Pinkston, C. Tucker, D. Seligson, Surgical wound classification and surgical site infections in the orthopaedic patient. JAAOS Global Res Rev 1(3), 22 (2017). https://doi.org/10.5435/JAAOSGlobal-D-17-00022

    Article  Google Scholar 

  7. S. Guo, L.A. DiPietro, Factors affecting wound healing. J. Dent. Res. 89(3), 219–229 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P.A. Than, C.R. Davis, C. Geoffrey Gurtner, Gurtner Chapter 4 Clinical management of wound healing and hypertrophic scarring (Skin Tissue Engineering and Regenerative Medicine. Academic Press., Cambridge USA, 2016), pp.61–81

    Google Scholar 

  9. G.C. Gurtner, S. Werner, Y. Barrandon, M.T. Longaker, Wound repair and regeneration. Nature 453(7193), 314–321 (2008). https://doi.org/10.1038/nature07039

    Article  CAS  PubMed  Google Scholar 

  10. S. Enoch, D.J. Leaper, Basic science of wound healing. Surg. Infect. (Larchmt.) 26(2), 31–37 (2008). https://doi.org/10.1016/j.mpsur.2007.11.005

    Article  Google Scholar 

  11. M. Yokota, N. Häffner, M. Kassier, Staphylococcus aureus impairs dermal fibroblast functions with deleterious effects on wound healing. FASEB J. 35(7), 21695 (2021). https://doi.org/10.1096/fj.201902836R

    Article  Google Scholar 

  12. A. Hecker, M. Schellnegger, E. Hofmann, The impact of resveratrol on skin wound healing, scarring, and aging. Int. Wound J. 19(1), 9–28 (2022). https://doi.org/10.1111/iwj.13601

    Article  PubMed  Google Scholar 

  13. R.C. Canada, Á. Bernabé-García, S. Liarte, M. Rodríguez-Valiente, F.J. Nicolás, Chronic wound healing by amniotic membrane: TGF-β and EGF signaling modulation in re-epithelialization. Front Bioeng Biotechnol. 9, 689328 (2021)

    Article  Google Scholar 

  14. K. Muniandy, S. Gothai, W.S. Tan, In vitro wound healing potential of stem extract of Alternanthera sessilis. Evid Based Complement Altern Med. 2018, 3142073 (2018). https://doi.org/10.1155/2018/3142073

    Article  Google Scholar 

  15. H. Nakao, M. Yamazaki, R. Tsuboi, H. Ogawa, Mixture of sugar and povidone-iodine stimulates wound healing by activating keratinocytes and fibroblast functions. Archie Dermatol Res 298(4), 175–182 (2006). https://doi.org/10.1007/s00403-006-0683-z

    Article  CAS  Google Scholar 

  16. M.S. Gurel, S. Naycı, A.V. Turgut, E.R. Bozkurt, Comparison of the effects of topical fusidic acid and rifamycin on wound healing in rats. Int. Wound J. 12(1), 106–110 (2015). https://doi.org/10.1111/iwj.12060

    Article  PubMed  Google Scholar 

  17. M.G. Cordes, Povidone xPharm: the comprehensive pharmacology reference (Elsevier, Amsterdam Netherlands, 2007), pp.1–3

    Google Scholar 

  18. H. Schofer, L. Simonsen, Fusidic acid in dermatology: an updated review. Eur. J. Dermatol. 20(1), 6–15 (2010). https://doi.org/10.1684/ejd.2010.0833

    Article  CAS  PubMed  Google Scholar 

  19. A. Shedoeva, D. Leavesley, Z. Upton, C. Fan, Wound healing and the use of medicinal plants. Evid Based Complement Altern Med. 2019, 1–30 (2019). https://doi.org/10.1155/2019/2684108

    Article  Google Scholar 

  20. S. Razia, H. Park, E. Shin, Synergistic effect of Aloe vera flower and Aloe gel on cutaneous wound healing targeting MFAP4 and its associated signaling pathway: In vitro study. J Ethnopharmacol. 290, 115096 (2022). https://doi.org/10.1016/j.jep.2022.115096

    Article  CAS  PubMed  Google Scholar 

  21. X. Dai, J. Liu, H. Zheng, J. Wichmann, U. Hopfner, S. Sudhop, C. Prein, Y. Shen, H.G. Machens, A. Schilling, Nano-formulated curcumin accelerates acute wound healing through Dkk-1-mediated fibroblast mobilization and MCP-1-mediated anti-inflammation. NPG Asia Mater 9, 368 (2017). https://doi.org/10.1038/am.2017.31

    Article  CAS  Google Scholar 

  22. U.I. Ivens, B. Steinkjer, J. Serup, V. Tetens, Ointment is evenly spread on the skin, in contrast to creams and solutions. Br. J. Dermatol. 145(2), 264–267 (2001). https://doi.org/10.1046/j.1365-2133.2001.04344.x

    Article  CAS  PubMed  Google Scholar 

  23. R. Augustine, N. Kalarikkal, S. Thomas, Advancement of wound care from grafts to bioengineered smart skin substitutes. Prog. Biomater. 3(2–4), 103–113 (2014). https://doi.org/10.1007/s40204-014-0030-y

    Article  PubMed  PubMed Central  Google Scholar 

  24. R.M. Marziyeh, R. Shahram, S.H. Bahrami, M.T. Joghataei, F. Moayer, Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth / poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng-C Mater Biolog Appl 69, 1183–1191 (2016). https://doi.org/10.1016/j.msec.2016.08.032

    Article  CAS  Google Scholar 

  25. H.S. Bae, A. Haider, K. Selim, D.Y. Kang, E.J. Kim, I.K. Kang, Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J. Polym. Res. 20, 158 (2013). https://doi.org/10.1007/s10965-013-0158-9

    Article  CAS  Google Scholar 

  26. P.A. Gunatillake, R. Adhikari, Biodegradable synthetic polymers for tissue engineering. Eur. Cell. Mater. 5, 1–16 (2003). https://doi.org/10.22203/ecm.v005a01

    Article  CAS  PubMed  Google Scholar 

  27. A.L. Rivera-Briso, Á. Serrano-Aroca, Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): enhancement strategies for advanced applications. Polymers (Basel) 10(7), 732 (2018). https://doi.org/10.3390/polym10070732

    Article  CAS  PubMed  Google Scholar 

  28. M. Koller, A. Salerno, M. Dias, A. Reiterer, G. Braunegg, Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol 48, 255–269 (2010)

    CAS  Google Scholar 

  29. H. Adeli, M.T. Khorasani, M. Parvazinia, Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Intern J Biol Macromole 122, 238–254 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.115

    Article  CAS  Google Scholar 

  30. S.K. Karuppannan, J. Bushion, R. Ramalingam, S. Swaminathan, K.D. Arunachalam, A.A. Kadam, R. Rajagopal, R. Sathya, S. Chinnappan, Fabrication, characterization and in vitro evaluation of Melia dubia extract infused nanofibers for wound dressing. J King Saud Univ Sci. 34(4), 101931 (2022). https://doi.org/10.1016/j.jksus.2022.101931

    Article  Google Scholar 

  31. Kirtikar K.R.B.B., Basu B.D., Indian medicinal plants. Indian Medicinal Plants. 2, 2nd edn. (K.A. Longman, Dehradun, 1935) 1294–1295.

  32. K. Deepti, P. Umadevi, G. Vijayalakshmi, Antimicrobial activity and phytochemical analysis of Morinda tinctoria Roxb leaf extracts. Asian Pac. J. Trop. Biomed. 2(3), 1440–1442 (2012)

    Article  Google Scholar 

  33. M. Subramanian, S. Balakrishnan, S.K. Chinnaiyan, V.K. Sekar, A.N. Chandu, Hepatoprotective effect of leaves of Morinda tinctoria Roxb. Against paracetamol induced liver damage in rats. Drug Invent Today. 5(3), 223–228 (2013)

    Article  Google Scholar 

  34. J.R.S. Rex, G. Gnanavel, M. Muthukumar Nadar, R. Sankaranarayanan, Wound healing activity of Morinda tinctoria Roxb aqueous leaf extract. Biotech 8(8), 343 (2018)

    Google Scholar 

  35. N. Mathivanan, G. Surendiran, K. Srinivasan, K. Malarvizhi, Morinda pubescens JE Smith (Morinda tinctoria Roxb) fruit extract accelerates wound healing in rats. J. Med. Food 9(4), 591–593 (2006)

    Article  PubMed  Google Scholar 

  36. K. Nivedha, S. Sivasakthi, A. Prakash, N. Devipriya, V. Vadivel, In vitro studies on antioxidant and cyto-protective activities of polyphenol-rich fraction isolated from Mangifera indica leaf. S. Afr. J. Bot. 130, 396–406 (2020)

    Article  CAS  Google Scholar 

  37. A. Abirami, S. Sinsinwar, P. Rajalakshmi, P. Brindha, Y.B.R.D. Rajesh, V. Vadivel, Antioxidant and cytoprotective properties of loganic acid isolated from seeds of Strychnos potatorum L. against heavy metal induced toxicity in PBMC model. Drug Chem Toxicol. 45(1), 239–249 (2022). https://doi.org/10.1080/01480545.2019.1681445

    Article  CAS  PubMed  Google Scholar 

  38. S. Surendhiran, M.M. Arjun, B. Steven, P. Rajalakshmi, V. Vadivel, Protective effect of eugenol from Mesua ferrea on the oxidative damages caused by 5-fluorouracil in PBMC cells. Indian J. Nat. Prod. Resour. 13(1), 78–85 (2022)

    CAS  Google Scholar 

  39. S. Sinsinwar, V. Vadivel, Development and characterization of catechin-in-cyclodextrin-in-phospholipid liposome to eradicate MRSA-mediated surgical site infection: investigation of their anti-infective efficacy through in vitro and in vivo studies. Int. J. Pharm. 609, 121130 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. D. Sundaramurthi, K.S. Vasanthan, P. Kuppan, U.M. Krishnan, S. Sethuraman, Electrospun nanostructured chitosan-poly(vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute. Biomed. Mater. 7(4), 045005 (2012)

    Article  PubMed  Google Scholar 

  41. S. Shanmugavel, T. Ram, B. Lakshmi, V. Giridev, Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings. J. Appl. Polym. Sci. 121, 2893–2899 (2011)

    Article  Google Scholar 

  42. S. Shewale, V.K. Rathod, Extraction of total phenolic content from Azadirachta indica or (neem) leaves: Kinetics study. Prep. Biochem. Biotechnol. 48(4), 312–320 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. T. Sivakumar, B.S. Sivamaruthi, K.L. Priya, P. Kesika, C. Chaiyasut, Evaluation of bioactivities of Morinda tinctoria leaves extract for pharmacological applications. Asian J Pharmaceut Clin Res. 11(2), 100–105 (2018)

    Article  Google Scholar 

  44. D. Kolli, K.R. Amperayani, U. Parimi, Total phenolic content and antioxidant activity of Morinda tinctoria Leaves. Indian J. Pharm. Sci. 77(2), 226–230 (2015). https://doi.org/10.4103/0250-474x.156616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. I. Pathak, M. Niraula, Assessment of total phenolic, flavonoid content and antioxidant activity of Ocimum sanctum Linn. J. Nepal Chem. Soc. 40, 30–35 (2019)

    Article  Google Scholar 

  46. M.J. Matos, S. Vazquez-Rodriguez, L. Santana, E. Uriarte, C. Fuentes-Edfuf, Y. Santos, Synthesis and structure-activity relationships of novel amino/nitro substituted 3-arylcoumarins as antibacterial agents. Molecules 18(2), 1394–1404 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Y. Bansal, P. Sethi, G. Bansal, Coumarin: a potential nucleus for anti-inflammatory molecules. Med. Chem. Res. 22(7), 3049–3060 (2013)

    Article  CAS  Google Scholar 

  48. G.B. Bubols, D. Vianna, A. Medina-Remon, G. Poser, R.M. Lamuela-Raventos, V.L. Eifler-Lima, S.C. Garcia, The antioxidant activity of coumarins and flavonoids. Mini. Rev. Med. Chem. 13(3), 318–334 (2013)

    CAS  PubMed  Google Scholar 

  49. H. Maryam, M. Afshar, M. Hassanzadeh-Taheri, M. Zardast, Efficacy of topical application of coumarin on incisional wound healing in BALB/c mice. Iran J Dermatol 23(2), 56–63 (2020)

    Google Scholar 

  50. R. Sarah, B. Tabassum, N. Idrees, M.K. Hussain, Bio-active compounds isolated from neem tree and their applications. Nat Bio-active Compd (2019). https://doi.org/10.1007/978-981-13-7154-7_17

    Article  Google Scholar 

  51. S. Irshad, A. Muazzam, Z. Shahid, D.M. Baxter, Curcuma longa (Turmeric): an auspicious spice for antibacterial, phytochemical and antioxidant activities. Pak. J. Pharm. Sci. 31, 2689–2696 (2018)

    CAS  PubMed  Google Scholar 

  52. Z.M. Song, J.L. Zhang, K. Zhou, L.M. Yue, Y. Zhang, C.Y. Wang, K.L. Wang, Y. Xu, Anthraquinones as potential antibiofilm agents against methicillin-resistant Staphylococcus aureus. Front Microbiol. 12, 709826 (2021). https://doi.org/10.3389/fmicb.2021.709826

    Article  PubMed  PubMed Central  Google Scholar 

  53. J.M. Badr, Antioxidant and antimicrobial constituents of Crucianella maritima L. Nat. Prod. Sci. 14(4), 227–232 (2008)

    CAS  Google Scholar 

  54. M. Nyeem, M.D. Mannan, Rubia cordifolia - phytochemical and pharmacological evaluation of indigenous medicinal plants: a review. Intern J Physiol Nut Phys Edu 3(1), 766–771 (2018)

    Google Scholar 

  55. F. Attari, M. Zahmatkesh, H. Aligholi, S.E. Mehr, M. Sharifzadeh, A. Gorji, T. Mokhtari, M. Khaksarian, G. Hassanzadeh, Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. Daru J Faculty Pharm Tehran Univ Med Sci. 23(1), 33 (2015)

    Article  Google Scholar 

  56. B.A. Mast, G.S. Schultz, Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Rep Regen 4(4), 411–420 (1996)

    Article  CAS  Google Scholar 

  57. B.Z. Johnson, A.W. Stevenson, C.M. Prêle, M.W. Fear, F.M. Wood, The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 8(5), 101 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. D. Dwivedi, M. Dwivedi, S. Malviya, V. Singh, Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats. J. Tradit. Complement. Med. 7(1), 79–85 (2017). https://doi.org/10.1016/j.jtcme.2015.12.002

    Article  PubMed  Google Scholar 

  59. T. Sun, D. Norton, A.J. Ryan, S. MacNeil, J.W. Haycock, Investigation of fibroblast and keratinocyte cell-scaffold interactions using a novel 3D cell culture system. J. Mater. Sci. Mater. Med. 18, 321–328 (2007)

    Article  CAS  PubMed  Google Scholar 

  60. V.S. Reddy, Y. Tian, C. Zhang, Z. Ye, K. Roy, A. Chinnappan, S. Ramakrishna, W. Liu, R. Ghosh, A review on electrospun nanofibers based advanced applications: from health care to energy devices. Polymers 13(21), 3746 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. R. Rajalakshmi, M. Andiappan, M. Muthalagu, Preparation and characterization of Terminalia bellerica loaded PCL nanofibrous mats for biomedical applications. Materials Today Proc 45, 7247–7252 (2021). https://doi.org/10.1016/j.matpr.2021.03.021

    Article  CAS  Google Scholar 

  62. O. Suwantong, U. Ruktanonchai, P. Supaphol, Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside. Polymer 49(19), 4239–4247 (2008). https://doi.org/10.1016/j.polymer.2008.07.020

    Article  CAS  Google Scholar 

  63. S. Sekaran, S. Vimalraj, G. Lakshmanan, A. Jindal, D. Sundaramurthi, J. Bhattacharya, Chitosan-based biocomposite scaffolds and hydrogels for bone tissue regeneration. Spring Ser Biomater Sci Eng. (2019). https://doi.org/10.1007/978-981-13-8855-2_18

    Article  Google Scholar 

  64. G. Jin, M.P. Prabhakaran, D. Kai, S.K. Annamalai, K.D. Arunachalam, S. Ramakrishna, Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials 34(3), 724–734 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. R. Naphade, J. Jog, Electrospinning of PHBV/ZnO membranes: structure and properties. Fib Poly 13(6), 692–697 (2012)

    Article  CAS  Google Scholar 

  66. K. Salima, N. Le Moigne, M. Kaci, Morphological characterization and thermal properties of compatibilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene succinate) (PBS)/halloysite ternary nanocomposites. Eur. Polymer J. 75, 142–162 (2016). https://doi.org/10.1016/j.eurpolymj.2015.12.009

    Article  CAS  Google Scholar 

  67. R.A. ShroogShdied, M.A. Malik, S.A. Al-thabaiti, Facile biofabrication of silver nanoparticles using Salvia officinalis leaf extract and its catalytic activity towards Congo red dye degradation. J. Market. Res. 9(5), 10031–10044 (2020). https://doi.org/10.1016/j.jmrt.2020.06.074

    Article  CAS  Google Scholar 

  68. M.K.A. Araruna, K.K.A. Santos, J.G.M. Costa, H.D.M. Coutinho, A.A. Boligon, S.T. Stefanello, M.L. Athayde, R.A. Saraiva, J.B.T. Rocha, M.R. Kerntopf, I.R.A. Menezes, Phenolic composition and in vitro activity of the Brazilian fruit tree Caryocar coriaceum Wittm. Europ J Integrat Med 5(2), 178–183 (2013). https://doi.org/10.1016/j.eujim.2012.11.007

    Article  Google Scholar 

  69. R. Mazzei, M. Leonti, S. Spadafora, A. Patitucci, G. Tagarelli, A review of the antimicrobial potential of herbal drugs used in popular Italian medicine (1850s–1950s) to treat bacterial skin diseases. J Ethnopharmacol. 250, 112443 (2020). https://doi.org/10.1016/j.jep.2019.112443

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Management of SASTRA Deemed University, Thanjavur, Tamilnadu for their encouragement and support.

Funding

This research work was not supported by any Governmental / Non-Governmental / Public/Private funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

JSN, SV, RS and MPS: performed the experiments, collected data, interpreted the results & wrote the draft of the article; DS and VV: developed the concept, designed the work, supervised & made a critical revision of the article.

Corresponding author

Correspondence to Vellingiri Vadivel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests and all authors agreed and approved the content of the manuscript.

Ethical approval

The authors obtained permission from the Institutional Bio-safety Committee (IBSC Ref. No. SASTRA/IBSC/8/2021 Dated: 15/12/2021) for working with a human pathogen (MRSA). There are no animal / human studies reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nissi, J.S., Vyaishnavi, S., Sivaranjanee, R. et al. Development and characterization of Morinda tinctoria incorporated electrospun PHBV fiber mat for wound healing application. Macromol. Res. 31, 393–405 (2023). https://doi.org/10.1007/s13233-023-00149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00149-2

Keywords

Navigation