Skip to main content
Log in

Carbazole-Based Polyimide as a Hole-Transporting Material for Optoelectronic Applications

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This paper reports the preparation of a novel polyimide (PI)-based hole-transporting material comprising carbazole and arylamine moieties as the backbone of the polymer. A diamine monomer named 4,4′-(9H,9′H-[3,3′-bicarbazole]-9,9′-diyl)dianiline is an electron-rich molecule which is suitable for achieving electrochromic materials. It is used to prepare an electrochromic carbazole-based PI via chemical imidization. The carbazole-based PI shows excellent thermal stability with a high decomposition temperature up to 500 °C, refractive index of 1.74, and reasonable transparency of 85%. In addition, the PI exhibits characteristics similar to those of electrochromic materials such as violet-green emissions in the visible range when in solution form, highest occupied molecular orbital (HOMO) energy levels of ∼5.4 eV, and a hole mobility of 7.44 × 10−4 cm2 V−1s−1. The excellent performance of the PI makes it a potential candidate for hole-transporting material in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Urieta-Mora, I. García-Benito, A. Molina-Ontoria, and N. Martín, Chem. Soc. Rev., 47, 8541 (2018).

    Article  CAS  Google Scholar 

  2. S. S. Shahnawaz, M. R. Swayamprabha, R. A. Nagar, S. D. K. Yadav, Gull, and J.-H. Dubey, J. Mater. Chem. C, 7, 7144 (2019).

    Article  CAS  Google Scholar 

  3. R. Azmi, S. Y. Nam, S. Sinaga, Z. A. Akbar, C-L. Lee, S. C. Yoon, I. H. Jung, and S.-Y. Jang, Nano Energy, 44, 191 (2018).

    Article  CAS  Google Scholar 

  4. M. Más-Montoya, P. Gómez, D. Curiel, I. da Silva, J. Wang, and R. A. Janssen, Chem. Eur. J., 26, 10276 (2020).

    Article  Google Scholar 

  5. V. M. Arivunithi, H.-Y. Park, S. S. Reddy, Y. Do, H. Park, E.-S. Shin, Y.-Y. Noh, M. Song, and S.-H. O. Jin, Macromol. Res., 29, 149 (2021).

    Article  CAS  Google Scholar 

  6. C. W. Koh, J. H. Heo, M. A. Uddin, Y-W. Kwon, D. H. Choi, S. H. Im, and H. Y. Woo, ACS Appl. Mater. Interfaces, 50, 43846 (2017).

    Article  Google Scholar 

  7. M. Petrović, T. Maksudov, A. Panagiotopoulos, E. Serpetzoglou, I. Konidakis, M. M. Stylianakis, E. Stratakis, and E. Kymakis, Nanoscale Adv., 1, 3107 (2019).

    Article  Google Scholar 

  8. J. Werner, J. Geissbühler, A. Dabirian, S. Nicolay, M. Morales-Masis, S. D. Wolf, B. Niesen, and C. Ballif, ACS Appl. Mater. Interfaces, 8, 17260 (2016).

    Article  CAS  Google Scholar 

  9. Q. Zhang, C.-Y. Tsai, L.-J. Li, and D.-J. Liaw, Nat. Commun., 10, 1 (2019).

    Article  Google Scholar 

  10. S.-H. Hsiao and Y.-Z. Chen, Dyes Pigm., 144, 173 (2017).

    Article  CAS  Google Scholar 

  11. X. He, P. K. Tapaswi, C.-S. Ha, and W. Huang, Macromol. Res., 29, 365 (2021).

    Article  CAS  Google Scholar 

  12. H. Liu, L. Zhai, L. Bai, M. He, C. Wang, S. Mo, and L. Fan, Polym. J., 163, 106 (2019).

    Article  CAS  Google Scholar 

  13. X.-D. Zhu, X.-J. Ma, Y.-K. Wang, Y. Li, C.-H. Gao, Z.-K. Wang, Z.-Q. Jiang, and L.-S. Liao, Adv. Funct. Mater., 29, 1807094 (2019).

    Google Scholar 

  14. M. Li, Z. Wang, M. Liang, L. Liu, X. Wang, Z. Sun, and S. Xue, J. Phys. Chem. C, 122, 24014 (2018).

    Article  CAS  Google Scholar 

  15. S. Jhulki and J. N. Moorthy, J. Mater. Chem. C, 6, 8280 (2018).

    Article  CAS  Google Scholar 

  16. N. Wazzan and Z. Safi, Arab. J. Chem., 12, 1 (2019).

    Article  CAS  Google Scholar 

  17. M. S. Kang, S. D. Sung, I. T. Choi, H. Kim, M. Hong, J. Kim, W. I. Lee, and H. K. Kim, ACS Appl. Mater. Interfaces, 7, 22213 (2015).

    Article  CAS  Google Scholar 

  18. C. Lu, I. T. Choi, J. Kim, and H. K. Kim, J. Mater. Chem. A, 5, 20263 (2017).

    Article  CAS  Google Scholar 

  19. X. Liu and X. Liu, RSC Adv., 9, 24733 (2019).

    Article  CAS  Google Scholar 

  20. X. Liu, F. Kong, T. Cheng, W. Chen, Z. A. Tan, T. Yu, F. Guo, J. Chen, J. Yao, and S. Dai, ChemSusChem., 10, 968 (2017).

    Article  CAS  Google Scholar 

  21. S. W. Lee, M. Jeong, D. R. Whang, J. H. Kim, and D. W. Chang, Macromol. Res., 28, 1297 (2020).

    Article  CAS  Google Scholar 

  22. X. Liu, F. Kong, R. Ghadari, S. Jin, T. Yu, W. Chen, G. Liu, Z. A. Tan, J. Chen, and S. Dai, Chem. Commun., 53, 9558 (2017).

    Article  CAS  Google Scholar 

  23. X. Liu, F. Kong, S. Jin, W. Chen, T. Yu, T. Hayat, A. Alsaedi, H. Wang, Z. A. Tan, J. Chen, and S. Dai, ACS Appl. Mater. Interfaces, 9, 27657 (2017).

    Article  CAS  Google Scholar 

  24. A. Abate, M. Planells, D. J. Hollman, V. Barthi, S. Chand, H. J. Snaith, and N. Robertson, Phys. Chem. Chem. Phys., 17, 2335 (2015).

    Article  CAS  Google Scholar 

  25. M. L. Petrus, T. Bein, T. J. Dingemans, and P. Docampo, J. Mater. Chem. A, 3, 12159 (2015).

    Article  CAS  Google Scholar 

  26. H. Choi, H. Jo, S. Paek, K. Koh, H. M. Ko, J. K. Lee, and J. Ko, Chem. Asian J., 11, 548 (2016).

    Article  CAS  Google Scholar 

  27. Y. Feng, Q. Hu, E. Rezaee, M. Li, Z.-X. Xu, A. Lorenzoni, F. Mercuri, and M. Muccini, Adv. Energy Mater., 9, 1901019 (2019).

    Article  Google Scholar 

  28. A. Magomedov, S. Paek, P. Gratia, E. Kasparavicius, M. Daskeviciene, E. Kamarauskas, A. Gruodis, V. Jankauskas, K. Kantminiene, K. T. Cho, K. Rakstys, T. Malinauskas, V. Getautis, and M. K. Nazeeruddin, Adv. Funct. Mater., 28, 1704351 (2018).

    Article  Google Scholar 

  29. S. Mallick, S. Maddala, K. Kollimalayan, and P. Venkatakrishnan, J. Org. Chem., 84, 73 (2019).

    Article  CAS  Google Scholar 

  30. F. Xiao, Y. Liao, M. Wu, and G. J. Deng, Green Chem., 14, 3277 (2012).

    Article  CAS  Google Scholar 

  31. R. Braveenth, H. W. Bae, I. J. Ko, W. Qiong, Q. P. Nguyen, P. G. Jayashantha, J. H. Kwon, and K. Y. Chai, Org. Electron., 51, 463 (2017).

    Article  CAS  Google Scholar 

  32. Z. Li, T. Ye, S. Tang, C. Wang, D. Ma, and Z. Li, J. Mater. Chem. C, 3, 2016 (2015).

    Article  CAS  Google Scholar 

  33. N. Khalid, O. O. Park, T. Akhter, and H. M. Siddiqi, J. Appl. Polym. Sci., 134, 44526 (2017).

    Google Scholar 

  34. S. K. Putri, M. S. Lee, D. W. Chang, and J. H. Kim, Synth. Met., 220, 455 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon Taek Lim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education (NRF-2018R1D1A3B07041437).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, T.K.T., Salma, S.A., Jeong, M. et al. Carbazole-Based Polyimide as a Hole-Transporting Material for Optoelectronic Applications. Macromol. Res. 29, 735–742 (2021). https://doi.org/10.1007/s13233-021-9082-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9082-8

Keywords

Navigation