Skip to main content
Log in

Enhanced Silk Fibroin-Based Film Scaffold Using Curcumin for Corneal Endothelial Cell Regeneration

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The high demand for transplantable corneas is unlikely to subside anytime soon as there is a persistent shortage of cadaveric cornea. The goal of this study was to fabricate film scaffolds with desirable properties of a corneal endothelial cells (CECs) carrier. We used biocompatible materials (curcumin (CC) and silk fibroin (SF)) to construct transparent film scaffolds for CEC regeneration. The film scaffolds were subjected to surface analysis, transparency, stiffness, thermal characterization, and hydrophilicity evaluation. Biological activity of CECs on CC/SF film was analyzed by MTT assay, morphological analysis, mRNA expression, and histological study. Our results showed that the CC/SF film scaffolds had enhanced roughness and transparency compared to the pristine SF film scaffold. The hydrophilicity of the CC/SF film scaffolds showed a topographical environment that encouraged cellular interaction and tissue integration. All the films showed stable thermal characters and an improved capacity for cell growth when a proper amount of CC was incorporated into the SF film scaffolds. The results indicate that a robust scaffold is suitable for CEC transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. C. Joyce, Prog. Retin. Eye Res., 22, 359 (2003).

    Article  CAS  Google Scholar 

  2. D. K. Kim, B. R. Sim, and G. Khang, ACS Appl. Mater. Interfaces, 8, 15160 (2016).

    Article  CAS  Google Scholar 

  3. Y. Ishino, Y. Sano, T. Nakamura, C. J. Connon, H. Rigby, N. J. Fullwood, and S. Kinoshita, Invest. Ophthalmol. Vis. Sci., 45, 800 (2004).

    Article  Google Scholar 

  4. G. Niu, J.-S. Choi, Z. Wang, A. Skardal, M. Giegengack, and S. Soker, Biomaterials, 35, 4005 (2014).

    Article  CAS  Google Scholar 

  5. N. Koizumi, N. Okumura, and S. Kinoshita, Exp. Eye Res., 95, 60 (2012).

    Article  CAS  Google Scholar 

  6. E. Y. Kim, N. Tripathy, S. A. Cho, C.-K. Joo, D. Lee, and G. Khang, Colloids Surf. B: Biointerfaces, 136, 394 (2015).

    Article  CAS  Google Scholar 

  7. D. T. H. Tan, J. K. G. Dart, E. J. Holland, and S. Kinoshita, Lancet, 379, 1749 (2012).

    Article  Google Scholar 

  8. G. R. J. Melles, F. Lander, and F. J. R. Rietveld, Cornea, 21, 415 (2002).

    Article  Google Scholar 

  9. M. O. Price, M. Gorovoy, B. A. Benetz, F. W. Price, H. J. Menegay, S. M. Debanne, and J. H. Lass, Ophthalmology, 117, 438 (2010).

    Article  Google Scholar 

  10. B. S. Lee, W. J. Stark, and A. S. Jun, Clin. Exp. Ophthalmol., 39, 195 (2011).

    Article  Google Scholar 

  11. S. Yamagami, S. Yokoo, T. Mimura, T. Takato, M. Araie, and S. Amano, Ophthalmology, 114, 433 (2007).

    Article  Google Scholar 

  12. S. Yamagami, T. Mimura, S. Yokoo, T. Takato, and S. Amano, Cornea, 25, S90 (2006).

    Article  Google Scholar 

  13. T. Mimura, S. Yamagami, S. Yokoo, M. Araie, and S. Amano, Invest. Ophthalmol. Vis. Sci., 46, 3645 (2005).

    Article  Google Scholar 

  14. T. Mimura, S. Yokoo, M. Araie, S. Amano, and S. Yamagami, Invest. Ophthalmol. Vis. Sci., 46, 3637 (2005).

    Article  Google Scholar 

  15. G. S. L. Peh, R. W. Beuerman, A. Colman, D. T. Tan, and J. S. Mehta, Transplantation, 91, 811 (2011).

    Article  Google Scholar 

  16. G.-H. Hsiue, J.-Y. Lai, K.-H. Chen, and W.-M. Hsu, Transplantation, 81, 473 (2006).

    Article  CAS  Google Scholar 

  17. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug Deliv. Rev., 65, 457 (2013).

    Article  CAS  Google Scholar 

  18. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007).

    Article  CAS  Google Scholar 

  19. Y. Wang, E. Bella, C. S. D. Lee, C. Migliaresi, L. Pelcastre, Z. Schwartz, B. D. Boyan, and A. Motta, Biomaterials, 31, 4672 (2010).

    Article  CAS  Google Scholar 

  20. F. G. Omenetto and D. L. Kaplan, Science, 329, 528 (2010).

    Article  CAS  Google Scholar 

  21. C. Li, T. Luo, Z. Zheng, A. R. Murphy, X. Wang, and D. L. Kaplan, Acta Biomater., 11, 222 (2015).

    Article  CAS  Google Scholar 

  22. S. Shishodia, T. Singh, and M. M. Chaturvedi, Adv. Exp. Medicine Biol., 595, 127 (2007).

    Article  Google Scholar 

  23. B. Chandran and A. Goel., Phytother. Res., 26, 1719 (2012).

    Article  CAS  Google Scholar 

  24. Y. Henrotin, F. Priem, and A. Mobasheri, Springerplus, 2, 56 (2013).

    Article  Google Scholar 

  25. B. T. Kurien and R. H. Scofield, J. Ethnopharmacol., 110, 368 (2007).

    Article  CAS  Google Scholar 

  26. B. T. Kurien, A. Singh, H. Matsumoto, and R. H. Scofield, Assay Drug Dev. Technol., 5, 567 (2007).

    Article  CAS  Google Scholar 

  27. T. Masuda, K. Hidaka, A. Shinohara, T. Maekawa, Y. Takeda, and H. Yamaguchi, J. Agric. Food Chem., 47, 71 (1999).

    Article  CAS  Google Scholar 

  28. J. S. Choi, J. K. Williams, M. Greven, K. A. Walter, P. W. Laber, G. Khang, and S. Soker, Biomaterials, 31, 6738 (2010).

    Article  CAS  Google Scholar 

  29. E. Biazar, M. Heidari, A. Asefnejad, and N. Montazeri, Int. J. Nanomedicine, 6, 631 (2011).

    Article  CAS  Google Scholar 

  30. T. W. Huang, P. W. Cheng, Y. H. Chan, T. H. Yeh, Y. H. Young, T. H. Young, Biomaterials, 31, 6701 (2010).

    Article  CAS  Google Scholar 

  31. A. Asefnejad, A. Behnamghader, M. T. Khorasani, and B. Farsadzadeh, Int. J. Nanomedicine, 6, 93 (2011).

    Article  CAS  Google Scholar 

  32. P. Inpanya, A. Faikrua, A. Ounaroon, A. Sittichokechaiwut, and J. Viyoch, Biomed. Mater., 7, 35008 (2012).

    Article  Google Scholar 

  33. V. Gonzalez, C. Guerrero, and U. Ortiz, J. Appl. Polym Sci., 78, 850 (2000).

    Article  CAS  Google Scholar 

  34. S. Ponce Marquez, V. S. Martanez, W. McIntosh Ambrose, J. Wang, N. G. Gantxegui, O. Schein, and J. Elisseeff, Acta Biomater., 5, 1839 (2009).

    Article  Google Scholar 

  35. A. S. Verkman, J. Anat, 200, 617 (2002).

    Article  CAS  Google Scholar 

  36. D. H. Geroski, M. Matsuda, R. W. Yee, and H. F. Edelhauser, Ophthalmology, 92, 759 (1985).

    Article  CAS  Google Scholar 

  37. J. Li, C. Sun, and J. A. Bonanno, Am. J. Physiol. Cell Physiol., 288, C739 (2005).

    Article  CAS  Google Scholar 

  38. A. P. Adamis, V. Filatov, B. J. Tripathi, and R. A. M. C. Tripathi, Surv. Ophthalmol., 38, 149 (1993).

    Article  CAS  Google Scholar 

  39. Q. Wang, Y. He, Y. Shen, Q. Zhang, D. Chen, C. Zuo, J. Qin, H. Wang, J. Wang, and Y. Yu, J. Biol. Chem., 289, 11681 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author contributions: D. K. Kim and S. Lee conceived and designed the study. J. H. Choi, B. S. Jung, K. S. Kim, and J. E. Song contributed to the mechanical characterization. R. L. Reis interpreted the results. D. K. Kim and S. Lee wrote the manuscript with input from all authors. G. Khang supervised the overall study and provided the reagents and materials.

Corresponding author

Correspondence to Gilson Khang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A1A0107365711). This research was also supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1A2C2103089).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.K., Lee, S., Choi, J.H. et al. Enhanced Silk Fibroin-Based Film Scaffold Using Curcumin for Corneal Endothelial Cell Regeneration. Macromol. Res. 29, 713–719 (2021). https://doi.org/10.1007/s13233-021-9081-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9081-9

Keywords

Navigation