Skip to main content
Log in

Impact of Grafting Density on the Self-Assembly and Hydrophilicity of Succinylated Collagen

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Modification of protein could give their new functionality but would affect their intrinsic property and activity. In this paper, a series of succinylated collagen (SCol(n/1)) (n≥1) were prepared by modification of collagen with succinic anhydride at different molar ratio to amino groups amount of collagen. The impact of grafting density on the intrinsic self-assembly and additional hydrophilicity of succinylated collagen was explored. The results revealed that excessive grafting density of succinylated collagen would improve their hydrophilicity but weaken their self-assembly property, although the triple helix of collagen could be reserved after succinylation. SCol(1/1) (grafting density of 17%) with self-assembly property and good hydrophilicity was chosen to compare with native collagen. Compared to native collagen, thermostability of SCol(1/1) decreased slightly, however, SCol(1/1) could form softer hydrogel, which was more favorable for the proliferation of NIH/3 T3. The present work would help us to further understand the importance of grafting density for the design of modified collagen with intrinsic self-assembly property and additional new functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Brodsky and J. A. M. Ramshaw, Matrix Biol., 15, 545 (1997).

    Article  CAS  Google Scholar 

  2. M. D. Shoulders and R. T. Raines, Annu. Rev. Biochem., 78, 929 (2009).

    Article  CAS  Google Scholar 

  3. C. Li, H. Tian, L. Duan, Z. Tian, and G. Li, Int. J. Biol. Macromol., 57, 92 (2013).

    Article  CAS  Google Scholar 

  4. M. C. Gómez-Guillén, B. Giménez, M. E. López-Caballero, and M. P. Montero, Food Hydrocoll., 25, 1813 (2011).

    Article  Google Scholar 

  5. I. Kołodziejska, Z. E. Sikorski, and C. Niecikowska, Food Chem., 66, 153 (1999).

    Article  Google Scholar 

  6. R. Sripriya, R. Kumar, S. Balaji, M. S. Kumar, and P. K. Sehgal, React. Funct. Polym., 71, 62 (2011).

    Article  CAS  Google Scholar 

  7. J. Zhang, M. Zou, M. Zhang, B. Wei, C. Xu, D. Xie, and H. Wang, Food Biophys., 11, 380 (2016).

    Article  Google Scholar 

  8. M. Zhang, C. Ding, J. Yang, S. Lin, L. Chen, and L. Huang, Carbohydr. Polym., 137, 410 (2016).

    Article  CAS  Google Scholar 

  9. S.-H. Kim, J.-H. Lee, S.-Y. Yun, J.-S. Yoo, C.-H. Jun, K.-Y. Chung, and H. Suh, Rapid Commun. Mass Sp., 14, 2125 (2000).

    Article  CAS  Google Scholar 

  10. Z. Zhang, W. Liu, D. Li, and G. Li, Biosci. Biotechnol. Biochem., 71, 2057 (2007).

    Article  CAS  Google Scholar 

  11. R. Kumar, R. Sripriya, S. Balaji, M. S. Kumar, and P. K. Sehgal, J. Mol. Struct., 994, 117 (2011).

    Article  CAS  Google Scholar 

  12. D. E. Birk, and R. L. Trelstad, J. Cell Biol., 103, 231 (1996).

    Article  Google Scholar 

  13. P. Fratzl, Curr. Opin. Colloid. Interface Sci., 8, 32 (2003).

    Article  CAS  Google Scholar 

  14. P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch, and S. Bernstorff, J. Struct. Biol., 122, 119 (1998).

    Article  CAS  Google Scholar 

  15. J. E. Scott and A. M. Thomlinson, J. Anat., 192, 391 (1998).

    Article  CAS  Google Scholar 

  16. L. Svensson, A. Aszódi, F. P. Reinholt, R. Fässler, D. Heinegard, and A. Oldberg, J. Biol. Chem., 274, 9636 (1999).

    Article  CAS  Google Scholar 

  17. C. C. Dupont-Gillain, Colloid Surf. B, 124, 87 (2014).

    Article  CAS  Google Scholar 

  18. J. Zhang, B. Wei, L. He, C. Xu, D. Xie, K.-W. Paik, and H. Wang, Macromol. Res., 25, 1105 (2017).

    Article  CAS  Google Scholar 

  19. X. Tu, X. Chen, Y. Peng, J. Nan, B. Wei, L. He, C. Xu, Y. Xu, D. Xie, J. Zhang, and H. Wang, Macromol. Res., 26, 1233 (2018).

    Article  CAS  Google Scholar 

  20. M. Zou, H. Yang, H. Wang, H. Wang, J. Zhang, B. Wei, H. Zhang, and D. Xie, Int. J. Biol. Macromol., 92, 1175 (2016).

    Article  CAS  Google Scholar 

  21. G. K. Reddy and C. S. Enwemeka, Clin. Biochem., 29, 225 (1996).

    Article  CAS  Google Scholar 

  22. G. Tronci, S. J. Russell, and D. J. Wood, J. Mater. Chem. B, 1, 3705 (2013).

    Article  CAS  Google Scholar 

  23. M. H. Klapper and I. M. Klotz, Met. Enzymol., 25, 531 (1972).

    Article  CAS  Google Scholar 

  24. J. Zhang, X. Tu, W. Wang, J. Nan, B. Wei, C. Xu, L. He, Y. Xu, S. Li, and H. Wang, Int. J. Biol. Macromol., 128, 885 (2019).

    Article  CAS  Google Scholar 

  25. P. Noitup, M. T. Morrissey, and W. Garnjanagoonchorn, J. Food Biochem., 30, 547 (2006).

    Article  CAS  Google Scholar 

  26. M. Yan, B. Li, X. Zhao, and S. Qin, Food Hydrocoll., 29, 199 (2012).

    Article  CAS  Google Scholar 

  27. Y.-L. Yang and L. J. Kaufman, Biophys. J., 96, 1566 (2009).

    Article  CAS  Google Scholar 

  28. R. Ravichandran, M. M. Islam, E. I. Alarcon, A. Samanta, S. Wang, P. Lundström, J. Hilborn, M. Griffith, and J. Phopase, J. Mater. Chem. B, 4, 318 (2016).

    Article  CAS  Google Scholar 

  29. Y. Feng, G. Melacini, J. P. Taulane, and M. Goodman, J. Am. Chem. Soc., 118, 10351 (1996).

    Article  CAS  Google Scholar 

  30. H. Tian, Y. Chen, C. Ding, and G. Li, Carbohydr. Polym., 89, 542 (2012).

    Article  CAS  Google Scholar 

  31. H. Dawes, S. Boyes, J. Keene, and D. Heatherbell, Am. J. Enol. Viticult., 45, 319 (1994).

    CAS  Google Scholar 

  32. D. Pelegrine and C. Gasparetto, LWT-Food Sci. Technol., 38, 77 (2005).

    Article  CAS  Google Scholar 

  33. G. I. Makhatadze and P. L. Privalov, Adv. Protein Chem., 47, 307 (1995).

    Article  CAS  Google Scholar 

  34. A. Finch and D. A. Ledward, BBA-Protein Struct., 278, 433 (1972).

    Article  CAS  Google Scholar 

  35. J. Zhang, Y. Sun, Y. Zhao, B. Wei, C. Xu, L. He, C. L. P. Oliveria, and H. Wang, Soft Matter, 13, 9220 (2017).

    Article  CAS  Google Scholar 

  36. J. M. Cassel, Biopolymers, 4, 989 (1966).

    Article  CAS  Google Scholar 

  37. A. Cooper, Biochem. J., 118, 355 (1970).

    Article  CAS  Google Scholar 

  38. S. Leikin, D. C. Rau, and V. A. Parsegian, Nat. Struct. Biol., 2, 205 (1995).

    Article  CAS  Google Scholar 

  39. Z. Yu, Q. Xu, C. Dong, S. S. Lee, L. Gao, Y. Li, M. D’Ortenzio, and J. Wu, Curr. Pharm. Des., 21, 4342 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juntao Zhang or Haibo Wang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This study was financially supported by the National Natural Science Foundation of China (No. 21706201, No. 21676208, No. 21376183), Wuhan Application Basic Frontier Project (No. 2019020701011478), Wuhan Morning Light Plan of Youth Science and Technology (No. 2017050304010326), Hubei Provincial Natural Science Foundation of China (No. 2018CFA030, 2019CFB252), and Innovation Team Program of Hubei province, China (No. T201208).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Shu, F., Pan, L. et al. Impact of Grafting Density on the Self-Assembly and Hydrophilicity of Succinylated Collagen. Macromol. Res. 28, 636–643 (2020). https://doi.org/10.1007/s13233-020-8077-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8077-1

Keywords

Navigation