Skip to main content
Log in

High-Efficiency Flexible and Foldable Paper-Based Supercapacitors Using Water-Dispersible Polyaniline-Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and Poly(vinyl alcohol) as Conducting Agent and Polymer Matrix

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

For the first time, common printing paper is converted to electrode for high-performance flexible and foldable electrochemical supercapacitor using water-dispersible conductive polymer, polyaniline-poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PANI-PAAMPSA) and poly(vinyl alcohol) (PVA) as conducting agent and polymer matrix, respectively. PANI-PAAMPSA is used to convert insulating paper to conductive substrate while PVA provides ion channels for electrolyte as well as mechanical durability for paper substrate. The paper-based supercapacitors exhibit excellent electrochemical energy storage capability. The maximum mass and area specific capacitances of the paper-based supercapacitors reached up to 41 F g-1 and 45 mF cm-2 at 20 mV s-1, respectively. In addition, the PANI-PAAMPSA/PVA/paper-based supercapacitors demonstrate high mechanical durability and flexibility during the bending tests. The specific capacitance of the paper-based supercapacitors are changed up to 16 % compared to the initial value as they are bent progressively from 0° to 100°. The excellent electrochemical stability of the paper-based supercapacitors is attributed to high water dispersibility and conductivity of PANI-PAAMPSA. The high mechanical durability is attributed to employment of PVA as robust polymer matrix allowing for ion channels of electrolyte. Our work can open up opportunities of next-generation paper-based electronics and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Hu and Y. Cui, Energy Environ. Sci., 5, 6423 (2012).

    Article  Google Scholar 

  2. Y. J. Kang, H. Chung, C. H. Han, and W. Kim, Nanotechnology, 23, 065401 (2012).

    Article  Google Scholar 

  3. P. Andersson, D. Nilsson, P.O. Svensson, M. Chen, A. Malmström, T. Remonen, T. Kugler, and M. Berggren, Adv. Mater., 14, 1460 (2002).

    Article  CAS  Google Scholar 

  4. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Angew. Chem. Int. Ed., 46, 1318 (2007).

    Article  CAS  Google Scholar 

  5. F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm, Appl. Phys. Lett., 84, 2673 (2004).

    Article  CAS  Google Scholar 

  6. P. Andersson, D. Nilsson, P.-O. Svensson, M. Chen, A. Malmström, T. Remonen, T. Kugler, and M. Berggren, Adv. Mater., 14, 1460 (2002).

    Article  CAS  Google Scholar 

  7. Y.-H. Kim, D.-G. Moon, and J.-I. Han, IEEE Electron Device Lett., 25, 702 (2004).

    Article  CAS  Google Scholar 

  8. L. Wang, W. Chen, D. Xu, B. S. Shim, Y. Zhu, F. Sun, L. Liu, C. Peng, Z. Jin, and C. Xu, Nano Lett., 9, 4147 (2009).

    Article  CAS  Google Scholar 

  9. L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. U.S.A., 106, 21490 (2009).

    Article  CAS  Google Scholar 

  10. L. Y. Yuan, X. Xiao, T. P. Ding, J. W. Zhong, X. H. Zhang, Y. Shen, B. Hu, Y. H. Huang, J. Zhou, and Z. L. Wang, Angew. Chem. Int. Ed., 51, 4934 (2012).

    Article  CAS  Google Scholar 

  11. J. E. Yoo, J. L. Cross, T. L. Bucholz, K. S. Lee, M. P. Espe, and Y.-L. Loo, J. Mater. Chem., 17, 1268 (2007).

    Article  CAS  Google Scholar 

  12. G. Q. Zhang and X. G. Zhang, Solid State Ionics, 160, 155 (2003).

    Article  CAS  Google Scholar 

  13. H. Gao and K. Lian, J. Power Sources, 196, 8855 (2011).

    Article  CAS  Google Scholar 

  14. J. Y. Kim, C. S. Lee, J. H. Han, J. W. Cho, and J. Bae, Electrochem. Solid-State Lett., 14, A56 (2011).

    CAS  Google Scholar 

  15. D. S. Patil, J. S. Shaikh, D. S. Dalavi, S. S. Kalagi, and P. S. Patil, Mater. Chem. Phys., 128, 449 (2011).

    Article  CAS  Google Scholar 

  16. J. E. Yoo, Understanding the Processing-Structure-Property Relationships of Water-Dispersible, Conductive Polyaniline, in Chemical Engineering, the University of Texas at Austin, the University of Texas at Austin, Ph. D. Dissertation, 2009, p 250.

    Google Scholar 

  17. J. Tarver, J. E. Yoo, T. J. Dennes, J. Schwartz, and Y.-L. Loo, Chem. Mater., 21, 280 (2008).

    Article  Google Scholar 

  18. M. Kaempgen, J. Ma, G. Gruner, G. Wee, and S. G. Mhaisalkar, Appl. Phys. Lett., 90, 264104 (2007).

    Article  Google Scholar 

  19. Y. Yoon, K. Lee, C. Baik, H. Yoo, M. Min, Y. Park, S. M. Lee, and H. Lee, Adv. Mater., 25, 4437 (2013).

    Article  CAS  Google Scholar 

  20. K. S. Ryu, Y. Lee, K.-S. Han, Y. J. Park, M. G. Kang, N.-G. Park, and S. H. Chang, Solid State Ionics, 175, 765 (2004).

    Article  CAS  Google Scholar 

  21. K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park, and S. H. Chang, J. Power Sources, 103, 305 (2002).

    Article  CAS  Google Scholar 

  22. W.-C. Chen, T.-C. Wen, and H. Teng, Electrochim. Acta, 48, 641 (2003).

    Article  CAS  Google Scholar 

  23. L. Zhang and G. Shi, J. Phys. Chem., 115, 17206 (2011).

    CAS  Google Scholar 

  24. C. M. Chen, Q. Zhang, C. H. Huang, X. C. Zhao, B. S. Zhang, Q. Q. Kong, M. Z. Wang, Y. G. Yang, R. Cai, and D. Sheng Su, Chem. Commun. (Camb), 48, 7149 (2012).

    Article  CAS  Google Scholar 

  25. X. Yang, J. Zhu, L. Qiu, and D. Li, Adv. Mater., 23, 2833 (2011).

    Article  CAS  Google Scholar 

  26. Y. Luo, J. Jiang, W. Zhou, H. Yang, J. Luo, X. Qi, H. Zhang, Y. Denis, C. M. Li, and T. Yu, J. Mater. Chem., 22, 8634 (2012).

    Article  CAS  Google Scholar 

  27. X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, and J. Su, J. Power Sources, 216, 290 (2012).

    Article  CAS  Google Scholar 

  28. S. Peng, L. Li, H. Tan, R. Cai, W. Shi, C. Li, S.G. Mhaisalkar, M. Srinivasan, S. Ramakrishna, and Q. Yan, Adv. Funct. Mater., 24, 2155 (2014).

    Article  CAS  Google Scholar 

  29. M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett., 9, 1872 (2009).

    Article  CAS  Google Scholar 

  30. B. Dong, B.-L. He, C.-L. Xu, and H.-L. Li, Mater. Sci. Eng. B: Adv., 143, 7 (2007).

    Article  CAS  Google Scholar 

  31. E. Frackowiak, K. Metenier, V. Bertagna, and F. Beguin, Appl. Phys. Lett., 77, 2421 (2000).

    Article  CAS  Google Scholar 

  32. H. Niu, D. Zhou, X. Yang, X. Li, Q. Wang, and F. Qu, J. Mater. Chem. A, 3, 18413 (2015).

    Article  CAS  Google Scholar 

  33. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, Phys. Chem. Chem. Phys., 13, 17615 (2011).

    Article  CAS  Google Scholar 

  34. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008).

    Article  CAS  Google Scholar 

  35. Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y. Ma, Carbon, 49, 573 (2011).

    Article  CAS  Google Scholar 

  36. A. Claye, J. E. Fischer, and A. Métrot, Chem. Phys. Lett., 330, 61 (2000).

    Article  CAS  Google Scholar 

  37. S. Ng, J. Wang, Z. Guo, J. Chen, G. Wang, and H. K. Liu, Electrochim. Acta, 51, 23 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonho Bae.

Additional information

Acknowledgments: This work was supported by the Technology Innovation Program (10052774, Development of hybrid supercapacitor by nano structure carbon for ISG Applications) funded by the Ministry of Trade, Industry & Energy (MI, Korea). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1D1A1B03032466).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S.W., Bae, J. High-Efficiency Flexible and Foldable Paper-Based Supercapacitors Using Water-Dispersible Polyaniline-Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and Poly(vinyl alcohol) as Conducting Agent and Polymer Matrix. Macromol. Res. 26, 226–232 (2018). https://doi.org/10.1007/s13233-018-6062-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6062-8

Keywords

Navigation