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The role of humoral immune delay on the dynamics of HCV infection incorporating both the

modes of infection transmission, namely, viral and cellular transmissions with a non-cytolytic

cure of infected hepatocytes is studied. The local and global asymptotic stability of the boundary

equilibria, namely, infection-free and immune-free equilibrium are analyzed theoretically as well

as numerically under the conditions on the basic reproduction number and the humoral immune

reproduction number. The existence of Hopf bifurcation and consequent occurrence of bifurcat-

ing periodic orbits around the humoral immune activated equilibrium are illustrated. The findings

show that Hopf bifurcation and stability switches occur under certain conditions as the bifurca-

tion parameter crosses the critical values. Furthermore, the dynamical effect of the development

rate of B cells is investigated numerically. The results obtained show that the system becomes

unstable from stable and regains stability from instability depending on the development rate of

B cells for a fixed delay value. Further, the results suggest that a high antigenic stimulation in

humoral immunity is beneficial for uninfected hepatocytes with a significant reduction in virions

density.
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1. INTRODUCTION

An estimated 71 million individuals are affected worldwide by chronic hepatitis C virus (HCV) in-

fection (a blood-borne hepatological condition) resulting in about 399 thousand cases of fatalities

happening in 2016, due to liver cirrhosis and hepatocellular carcinoma [1]. Among HCV infected in-

dividuals 60-80% of the cases become chronic, out of which about 15-30% face the risk of developing
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liver cirrhosis in the long run [1]. The transmission of HCV primarily happens through unscreened

blood transfusions, injecting drug use and inadequately sterilized medical equipment [2]. HCV, which

is a positive single-stranded viral RNA genome from the family of Flaviviridae [3], replicates very

rapidly resulting in difficulty in developing a vaccine for HCV [4]. The pioneering in-vivo model for

HCV dynamics [5] based on similar models for human immunodeficiency virus (HIV) and hepatitis

B virus (HBV) dynamics, incorporated the interferon-α (IFN-α) antiviral therapy for HCV infection

with three model populations, namely, uninfected and infected hepatocytes, and virions. The analysis

in [5] demonstrated that the antiviral therapy is more effective in the reduction of HCV RNA load

with the efficacy increasing with an increase in the dosage of IFN-α, accompanied by a minor effect

in blocking of production of infected hepatocytes. Dixit et al. [6] included ribavirin along with IFN

in the antiviral therapy protocol and described the effect of this combination therapy in HCV infec-

tion. Due to the action of ribavirin, a fraction of the virions become non-infectious and hence are not

involved in the production of infected hepatocytes. The analysis [6] demonstrated that the ribavirin in

combination with IFN significantly improves the process of HCV RNA decline, but as a monotherapy,

it produces only short-term early response in terms of decrease of viral load. The extended models

[7, 8] of the models in [5, 6] included the argument of homeostatic mechanism by which liver can

regenerate itself, thereby which the hepatocytes can proliferate up to a certain maximum level. A

comparison of the extended models [7, 8] with the models in [5, 6] showed that the analysis of these

models [5, 6] exhibits a biphasic decline in viral load (a rapid viral decline followed by a constant

level of viral load), while the models in [7, 8] can better predict the kinetics of HCV RNA load in

chronic stage and also explain the biphasic as well as triphasic viral decay. A fast viral decline in the

third phase was observed in cases where the majority of hepatocytes were already infected before the

initiation of antiviral therapy [8]. The effectiveness of pegylated IFN and ribavirin as antiviral therapy

for HCV infection was analyzed by estimating the clearance rate of HCV RNA and the infected cells

as well [9].

The role of cytotoxic T lymphocyte (CTL) and humoral immune response in HCV infection was

investigated through the mathematical modeling in [10, 11]. The role of CTL is to reduce the HCV

infection with the antibody playing a role of neutralizing HCV RNA. The analysis found the corre-

lation between the CTL and antibody when both are activated during chronic HCV infection. It was

observed that the infection would be asymptotic if the CTL activates strongly, but persistent leading

to pathology in case of weak CTL response, even in presence of antibody. A complex mechanism of

the immune system for HCV patients was considered in the model formulation of [12] which includes

the role of dendritic cell (DC) with CTL response in such a way that CTL is produced through the
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cross-presentation of activated DC and decays by a direct presentation of infected cells. It was also

observed that the activation of immune response is dependent on initial DC and CTL levels. The con-

sideration of cure of infected cells through the non-cytolytic process in which a part of the infected

cells get converted to uninfected cells, was introduced in [13, 14].

Timpe et al. [15] observed that the mode of HCV transmission can not only be virus-to-cell

but also cell-to-cell. A HCV model considering cell-to-cell transmission was studied for the optimal

antiviral treatment policy in [16]. Further, from the epidemiological point of view, the consideration of

intracellular delay (the time needed for the hepatocytes to be infected or for replication of the virions)

and immune delay (the time needed for antigenic stimulation for the development of B cells in case of

antibody response or for the development of T cells in case of CTL response) are more realistic when

analyzing HCV viral dynamics. The intracellular delay was incorporated in a HCV model in [17]

which included the activation of CTL and antibody response. The role of the humoral immune delay

in a HBV model with two stages of infected cells, namely, latently infected and actively infected

was illustrated in [18]. A general viral dynamics model with the effect of the humoral immune

delay was analyzed in [19], where the existence of Hopf bifurcation was observed. The effect of

the various intracellular delays on the dynamics of other viral infections (like HBV, HIV infection),

incorporating both virus-to-cell and cell-to-cell transmissions, was studied in [20-22]. A general viral

infection model considering the viral as well as cellular transmission of infection with cell-mediated

immune response was proposed and analyzed with the effect of the intracellular delay as well as cell-

mediated immune delay [23]. The results showed that the delays could lead to stability switches and

occurrence of bifurcating periodic solution, depending upon the intrinsic rate of logistic growth and

infection transmission rate as well.

The limited number of models in the literature which illustrated the effect of humoral immune

response in viral dynamics did not include either cell-to-cell transmission or cure of infected cells.

On the other hand, the models which considered cell-to-cell transmission did not take into account

the humoral immune delay as well as cure of infected cells. However, in this work, we include all

these factors in the proposed model.

2. MATHEMATICAL MODEL

The dynamics of HCV infection with both viral and cellular transmissions and cure rate in the pres-

ence of humoral immune response was analyzed in [24]. This model assumed that subsequent to the

entry of the virions, the humoral immune response is stimulated to instantaneously generate B cells.

However, from a realistic epidemiological point of view, there is a time delay between the initial vi-
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ral entry into the liver and subsequent process of antigenic stimulation to generate B cells [19, 25].

However, it is considered that the antibody neutralizing the virions is immediate [19]. Accordingly,

we incorporate the humoral immune delay to propose the delay model as follows:

dT (t)
dt

= λ− β1T (t)V (t)− β2T (t)I(t)− d1T (t) + αI(t),

dI(t)
dt

= β1T (t)V (t) + β2T (t)I(t)− d2I(t)− αI(t),

dV (t)
dt

= kI(t)− d3V (t)− pV (t)Z(t), (2.1)

dZ(t)
dt

= cV (t− τ)Z(t− τ)− d4Z(t).

Here T (t), I(t), V (t) and Z(t) represent the densities of the uninfected hepatocytes, actively

infected hepatocytes, virions and humoral immunity (B cell or antibody) at time t, respectively. It

is assumed that the uninfected hepatocytes are being sourced at a constant rate λ (within the liver)

and are cleared at a natural death rate of d1. It is also considered that the virions and the infected

hepatocytes infect the healthy hepatocytes at a rate of β1 and β2 respectively. The infected hepato-

cytes have a natural death rate of d2. Due to the non-cytolytic process, the infected hepatocytes are

converted to uninfected ones at a rate α. The infected hepatocytes abet the production of free virions

at a rate k, which in turn decay at a rate of d3. Subsequent to entry of the virions into the body, the

humoral immune response stimulates itself to generate B cell at a rate c, which results in the B cells

being neutralized at a rate p. B cells are cleared at a natural death rate of d4. Finally, τ represents

the time needed for antigenic stimulation for developing humoral immunity, i.e., the humoral immune

response at time t depends on the populations of B cells at time (t− τ). From biological considera-

tions, we consider all the model parameters to be positive. Accordingly, the system (2.1) is subject to

the initial condition taken in the form

T (θ) = ψ1(θ), I(θ) = ψ2(θ), V (θ) = ψ3(θ), Z(θ) = ψ4(θ),

ψi(θ) ≥ 0, θ ∈ [−τ, 0], ψi(0) > 0, i = 1, 2, 3, 4, (2.2)

where (ψ1(θ), ψ2(θ), ψ3(θ), ψ4(θ)) ∈ C
(
[−τ, 0], R4

+0

)
, the Banach space of continuous functions

mapping the interval [−τ, 0] into R+0 with norm ||ψ|| = sup
−τ≤θ≤0

{|ψi(θ)|, i = 1, 2, 3, 4}, where

R4
+0 = {(x1, x2, x3, x4)

∣∣ xi ≥ 0, i = 1, 2, 3, 4}.

The uniqueness and positivity of the solution to the system (2.1) with the initial condition (2.2)

can be proved using the theory of functional differential equations [26], and by Theorem A.4 in [27]

and Lemma 2 in [28], respectively. Further, the boundedness of the solution can be proved on the

lines of [24].
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The model system (2.1) has three equilibria, namely [24],

1. The infection-free equilibrium, E0 = (T0, I0, V0, Z0) =
(

λ

d1
, 0, 0, 0

)
.

2. The immune-free equilibrium, E1 = (T1, I1, V1, Z1), where T1 =
d3(d2 + α)
β1k + β2d3

,

I1 =
d1T1

d2

[
λ(β1k + β2d3)
d1d3(d2 + α)

− 1
]

, V1 =
k

d3
I1, Z1 = 0.

3. The humoral immune activated equilibrium, E∗ = (T ∗, I∗, V ∗, Z∗), where

T ∗ =
(d2 + α)I∗

β2V ∗ + β2I∗
, I∗ =

−m2 +
√

m2
2 + 4m1m3

2m1
, V ∗ =

d4

c
, Z∗ =

d3

p

(
ck

d3d4
I∗ − 1

)

with m1 = β2cd2, m2 = β1d2d4 + cd1(d2 + α)− λβ2c, m3 = λβ1d4.

Further, the system (2.1) has two reproduction numbers, namely [24], the basic reproduction num-

ber, R0 =
λ(β1k + β2d3)
d1d3(d2 + α)

, and the humoral immune reproduction number,

RH =
ckλ(β1k + β2d3)

ckd1d3(d2 + α) + d2d3d4(β1k + β2d3)
. Clearly, RH < R0. Further ck

d3d4
I∗ > 1 if RH > 1.

It is obvious that the infection-free equilibrium (E0) exists unconditionally, the immune-free equilib-

rium (E1) exists if R0 > 1 and the humoral immune activated equilibrium (E∗) exists if RH > 1.

2.1 Stabilities of Boundary Equilibria

Theorem 1 — The infection-free equilibrium E0 is locally as well as globally asymptotically stable

for any τ > 0 if R0 < 1 and unstable if R0 > 1.

PROOF : The proof for local stability easily follows from the Routh-Hurwitz criteria.

Further, the global stability can be proved using the Lyapunov-LaSalle invariance principle [26]

by choosing the Lyapunov functional,

L1(t) = T0g

(
T

T0

)
+ I(t) +

β1T0

d3
V (t) +

β1pT0

cd3
Z(t) +

α

2(d1 + d2)T0

[T (t)− T0 + I(t)]2 +
β1pT0

d3

∫ t

t−τ
V (ξ)Z(ξ)dξ,

where g(x) = x− 1− ln(x), x > 0. 2

Theorem 2 — The immune-free equilibrium E1 is locally asymptotically stable if RH < 1 < R0

and globally asymptotically stable if RH ≤ 1 < R0 ≤ 1 + d2
α , for any τ > 0. Further, E1 is unstable

if RH > 1.

PROOF : The characteristic equation obtained by linearizing (2.1) at E1 is given by

(x + d4 − cV1e
−xτ )(x3 + B1x

2 + B2x + B3) = 0,
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where

B1 = d1 + d3 + β1V1 + β2I1 +
β1kT1

d3
,

B2 = d1d3 + (d2 + d3) (β1V1 + β2I1) +
d1β1kT1

d3
,

B3 = d2d3 (β1V1 + β2I1) .

All the three roots of the equation x3 +B1x
2 +B2x+B3 = 0 have negative real parts if R0 > 1,

which has been proved in [24]. We now investigate whether any complex root with positive real part

exists for the following equation:

x + d4 − cV1e
−xτ = 0. (2.3)

Let x = a + ib (i =
√−1, a ≥ 0) be a root of (2.3). Substituting x = a + ib (i =

√−1, a ≥ 0)

in (2.3) and separating the real and imaginary parts, we obtain the following:

a + d4 − cV1e
−aτ cos(bτ) = 0, (2.4)

b + cV1e
−aτ sin(bτ) = 0. (2.5)

Equations (2.4) and (2.5) give

b2 = c2V 2
1 e−2aτ − (a + d4)

2 =
[
d4e

−aτ − d4 − a− λcke−aτ (1−RH)
d2d3RH

]

[
d4 + a + cV1e

−aτ
]

< 0 if RH < 1,

which is a contradiction. Therefore every root of (2.3) must have negative real part. Hence, E1 is

locally asymptotically stable for any τ > 0 if RH < 1 < R0.

Further, let F (x) = x + d4 − cV1e
−xτ . Observe that F (0) = d4 − cV1 =

λck

d2d3RH
(1−RH) < 0

if RH > 1 and lim
x→+∞F (x) = +∞. Since F (x) is continuous on (−∞,∞), therefore by the interme-

diate value property, it follows that the equation F (x) = 0 has at least one positive real root. Hence

the characteristic equation at E1 has at least one positive real root. Thus E1 is unstable if RH > 1.

Further, the global stability can be proved using the the Lyapunov-LaSalle invariance principle

[26] by choosing the Lyapunov functional,

L2(t) = T1g

(
T

T1

)
+ I1g

(
I

I1

)
+

β1T1V1
2

kI1
g

(
V

V1

)
+

β1pT1V1

ckI1
Z

+
α

2(d1 + d2)T1
[(T − T1) + (I − I1)]

2 +
β1pT1V1

kI1

∫ t

t−τ
V (ξ)Z(ξ)dξ,
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where g(x) = x− 1− ln(x), x > 0.

2.2 The Interior Equilibrium and Hopf Bifurcation

The characteristic equation obtained by linearizing (2.1) at E∗ is given by

x4 + a1x
3 + a2x

2 + a3x + a4 − cV ∗(x3 + b1x
2 + b2x + b3)e−xτ = 0, (2.6)

where

a1 = d1 + d4 + β1V
∗ + β2I

∗ +
kI∗

V ∗ +
β1T

∗V ∗

I∗
,

a2 = (d1 + β1V
∗ + β2I

∗)
(

d4 +
kI∗

V ∗

)
+ d2(β1V

∗ + β2I
∗) + (d1 + d4)

β1T
∗V ∗

I∗
+

d4kI∗

V ∗ ,

a3 = (d1 + β1V
∗ + β2I

∗)
d4kI∗

V ∗ + d2(β1V
∗ + β2I

∗)
(

d4 +
kI∗

V ∗

)
+ d1d4

(
β1T

∗V ∗

I∗

)
,

a4 = d2d4(β1V
∗ + β2I

∗)
kI∗

V ∗ , (2.7)

b1 = d1 + d3 + β1V
∗ + β2I

∗ +
β1T

∗V ∗

I∗
,

b2 = d1d3 + (d2 + d3)(β1V
∗ + β2I

∗) + (d1 − pZ∗)
β1T

∗V ∗

I∗
,

b3 = d2d3(β1V
∗ + β2I

∗)−
(

β1T
∗V ∗

I∗

)
d1pZ∗.

When τ > 0, (2.6) becomes transcendental and therefore some of the roots may cross the imag-

inary axis to the right. We now investigate the existence of purely imaginary roots of (2.6). Substi-

tuting x = iω (i =
√−1, ω > 0) in (2.6) and separating the real and imaginary parts, we obtain the

following,

ω4 − a2ω
2 + a4 = cV ∗(−b1ω

2 + b3) cos(ωτ) + cV ∗(−ω3 + b2ω) sin(ωτ), (2.8)

−a1ω
3 + a3ω = cV ∗(−ω3 + b2ω) cos(ωτ)− cV ∗(−b1ω

2 + b3) sin(ωτ). (2.9)

Squaring and adding the equations (2.8) and (2.9), we obtain

ω8 + P1ω
6 + P2ω

4 + P3ω
2 + P4 = 0, (2.10)

where

P1 = a2
1 − 2a2 − c2V ∗2,

P2 = a2
2 − 2a1a3 + 2a4 − b2

1c
2V ∗2 + 2b2c

2V ∗2,

P3 = a2
3 − 2a2a4 + 2b1b3c

2V ∗2 − b2
2c

2V ∗2,

P4 = a2
4 − b2

3c
2V ∗2.
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Let γ = ω2. Then (2.10) becomes

G(γ) ≡ γ4 + P1γ
3 + P2γ

2 + P3γ + P4 = 0. (2.11)

Therefore (2.6) has a pair of purely imaginary roots ±iω if and only if (2.11) has a positive real

root ω2. If (2.6) has no positive real root, then (2.11) has no purely imaginary root, in which case

the existence of Hopf bifurcation is ruled out and hence E∗ is locally asymptotically stable for any

τ > 0. Now, we suppose that (2.11) has m (1 ≤ m ≤ 4) positive roots, say, γn, n = 1, 2, . . . , m.

Then (2.10) has m positive roots, say, ωn =
√

γn, n = 1, 2, . . . , m.

Solving (2.8) and (2.9) for cos (ωτ), we obtain

cos(ωτ) =
(ω4 − a2ω

2 + a4)(−b1ω
2 + b3) + (−a1ω

3 + a3ω)(−ω3 + b2ω)
cV ∗[(b1ω2 − b3)2 + (ω3 − b2ω)2]

. (2.12)

When ω = ωn (n = 1, 2, . . . , m), we obtain the following from (2.12),

τ = τ (j)
n =

1
ωn

arccos
[
(ω4

n − a2ω
2
n + a4)(−b1ω

2
n + b3) + (−a1ω

3
n + a3ωn)(−ω3

n + b2ωn)
cV ∗[(b1ω2

n − b3)2 + (ω3
n − b2ωn)2]

]
+

2jπ

ωn
,

(2.13)

where n = 1, 2, . . . , m and j = 0, 1, 2, . . . . Hence (2.6) has a pair of purely imaginary roots ±iωn

with τ = τ
(j)
n . Further, note that

{
τ (j)
n

}
is a monotonically increasing sequence for every n =

1, 2, . . . , m and lim
j→∞

τ (j)
n = ∞. Therefore there exists a n0 ∈ {1, 2, . . . , m} such that

τ (0)
n0

= min{τ (j)
n

∣∣ n = 1, 2, . . . , m; j = 0, 1, 2, . . . }.

Denote

τ0 = τ (0)
n0

, ω0 = ωn0 and γ0 = γn0 . (2.14)

Since E∗ is locally asymptotically stable for τ = 0 if RH > 1 [24]. Therefore, by Butler’s Lemma

[31], E∗ remains locally asymptotically stable for τ < τ0 if RH > 1. Let x(τ) = ξ(τ) + iω(τ) be a

root of (2.6) near τ = τ0 with ξ(τ0) = 0, ω(τ0) = ω0. Therefore to prove the transversality condition

for the existence of Hopf bifurcation [32] at τ = τ0, we establish the following Lemma.

Lemma 1 —
[

dRe(x)
dτ

]
τ=τ0

and G′(ω2
0) have same sign, provided G′(ω2

0) 6= 0.

PROOF : Differentiating (2.6) with respect to τ , we obtain

[
(4x3 + 3a1x

2 + 2a2x + a3)− cV ∗e−xτ (3x2 + 2b1x + b2) + cτV ∗e−xτ

(x3 + b1x
2 + b2x + b3)

] dx

dτ
= −(x3 + b1x

2 + b2x + b3)cV ∗e−xτx.



HOPF BIFURCATION AND STABILITY SWITCHES INDUCED 1681

This implies

[
dx

dτ

]−1

= − 4x3 + 3a1x
2 + 2a2x + a3

cV ∗xe−xτ (x3 + b1x2 + b2x + b3)
+

3x2 + 2b1x + b2

x(x3 + b1x2 + b2x + b3)
− τ

x

= − 4x3 + 3a1x
2 + 2a2x + a3

x(x4 + a1x3 + a2x2 + a3x + a4)
+

3x2 + 2b1x + b2

x(x3 + b1x2 + b2x + b3)
− τ

x
.

Substituting x = iω0, we obtain

[
dx

dτ

]−1

τ=τ0

= − (−3a1ω
2
0 + a3) + i(−4ω3

0 + 2a2ω0)
ω0[a1ω3

0 − a3ω0 + i(ω4
0 − a2ω2

0 + a4)]
+

(−3ω2
0 + b2) + i(2b1ω0)

ω0[ω3
0 − b2ω0 + i(−b1ω2

0 + b3)]
− τ

iω0
.

Therefore

Re

[
dx

dτ

]−1

τ=τ0

= −(a3 − 3a1ω
2
0)(a1ω

2
0 − a3) + (2a2 − 4ω2

0)(ω
4
0 − a2ω

2
0 + a4)

(a1ω3
0 − a3ω0)2 + (ω4

0 − a2ω2
0 + a4)2

+
(b2 − 3ω2

0)(ω
2
0 − b2) + 2b1(b3 − b1ω

2
0)

(ω3
0 − b2ω0)2 + (b3 − b1ω2

0)2
.

Using (2.8) and (2.9), we obtain

Re

[
dx

dτ

]−1

τ=τ0

=
−(a3 − 3a1ω

2
0)(a1ω

2
0 − a3)− (2a2 − 4ω2

0)(ω
4
0 − a2ω

2
0 + a4) + c2V ∗2[(b2 − 3ω2

0)(ω
2
0 − b2) + 2b1(b3 − b1ω

2
0)]

c2V ∗2[(b3 − b1ω2
0)2 + (ω3

0 − b2ω0)2]
.

This upon simplification becomes

Re

[
dx

dτ

]−1

τ=τ0

=
4ω6

0 + 3ω4
0P1 + 2ω2

0P2 + P3

c2V ∗2[(b3 − b1ω2
0)2 + (ω3

0 − b2ω0)2]
.

Hence

Re

[
dx

dτ

]−1

τ=τ0

=
G′(ω2

0)
c2V ∗2[(b3 − b1ω2

0)2 + (ω3
0 − b2ω0)2]

.

Thus

sign

{[
dRe(x)

dτ

]

τ=τ0

}
= sign

{
Re

[
dx

dτ

]−1

τ=τ0

}
= sign

{
G′(ω2

0)
}

.

Thus the result about the existence of Hopf bifurcation is stated in the following theorem: 2
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Theorem 3 — Suppose RH > 1. Then

(i) The interior equilibrium E∗ is locally asymptotically stable for any τ > 0, if (2.11) has no

positive real root.

(ii) The interior equilibrium E∗ is locally asymptotically stable for τ ∈ (0, τ0), if (2.11) has at

least one positive real root.

(iii) The system (2.1) undergoes a Hopf bifurcation from the interior equilibrium E∗ as τ crosses

the critical value τ0, if γ0 is a simple root of (2.11), where

τ0 =
1
ω0

arccos
[
(ω4

0 − a2ω
2
0 + a4)(−b1ω

2
0 + b3) + (−a1ω

3
0 + a3ω0)(−ω3

0 + b2ω0)
cV ∗[(b1ω2

0 − b3)2 + (ω3
0 − b2ω0)2]

]
.

PROOF : (i) This case has already been proved in the preceding discussion.

(ii) By the definition of τ0, (2.11) has no positive real roots for τ ∈ (0, τ0). Hence all the roots of

(2.6) have negative real parts. Thus E∗ is locally asymptotically stable for τ ∈ (0, τ0).

(iii) Suppose γ0 is a simple root of (2.11). Then we have G′(ω2
0) 6= 0. If G′(ω2

0) < 0, then

(2.6) has at least one root with positive real part when τ is slightly less than τ0, which contradicts

conclusion (ii) of Theorem 3. Therefore, we have G′(ω2
0) > 0. Hence there exists a Hopf bifurcation

for the system (2.1) when τ crosses the critical value τ0.

Next, we determine the conditions in terms of the model parameters, for which Hopf bifurcation

occurs around the interior equilibrium E∗. Accordingly, we define,

u1 =
1
2
P2 − 3

16
P 2

1 , u2 =
1
32

P 3
1 −

1
8
P1P2 + P3,

∆ =
(u2

2

)2
+

(u1

3

)3
, ε = −1

2
+
√

3
2

i, i =
√−1,

v1 =
(
−u2

2
+
√

∆
) 1

3 +
(
−u2

2
−
√

∆
) 1

3
,

v2 =
(
−u2

2
+ ε

√
∆

) 1
3 +

(
−u2

2
− ε2

√
∆

) 1
3
,

v3 =
(
−u2

2
+ ε2

√
∆

) 1
3 +

(
−u2

2
− ε

√
∆

) 1
3
,

yj = vj − 3
4
P1, j = 1, 2, 3.

Therefore, using Lemma 2.1 and Lemma 2.2 of [33] and Lemma 3.1 of [34], we can restate

Theorem 3 as follows:
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Theorem 4 — Suppose R1 > 1 with τ0 and ω0 being already defined in (2.14). Then

(i) The humoral immune activated equilibrium E∗ is locally asymptotically stable for any τ > 0,

if P4 ≥ 0 and one of the following conditions is satisfied:

(a) ∆ > 0 and y1 < 0.

(b) ∆ = 0 and y2 < 0.

(c) ∆ < 0 and y3 < 0.

(ii) The humoral immune activated equilibrium E∗ is locally asymptotically stable for τ ∈
(0, τ0), if one of the following conditions is satisfied:

(a) P4 < 0.

(b) P4 ≥ 0, ∆ ≥ 0, y1 > 0 and G(y1) < 0.

(c) P4 ≥ 0, ∆ < 0 and there exists at least one y ∈ {y1, y2, y3} such that y > 0 and G(y) ≤ 0.

(iii) The system (2.1) undergoes a Hopf bifurcation (leading to bifurcating periodic orbits) from

the humoral immune activated equilibrium E∗ when τ crosses the critical value τ0 provided G′(ω2
0) >

0.

3. ESTIMATION OF THE MAXIMUM LENGTH OF DELAY TO PRESERVE STABILITY

In the previous section, the existence of bifurcating periodic orbits was investigated. The occurrence

of the periodic orbits in a small neighborhood of τ0 happens either for τ < τ0 or τ > τ0. In order to

analyze the stability of the periodic orbits, we estimate (following the approach in [35]) the maximum

length of the delay to preserve the stability of the bifurcating limit cycle.

Let P (t) = T (t)− T ∗, Q(t) = I(t)− I∗, R(t) = V (t)− V ∗, S(t) = Z(t)− Z∗. Linearizing

(2.1) about the interior equilibrium point E∗(T ∗, I∗, V ∗, Z∗), we obtain

dP (t)
dt

= (−β1V
∗ − β2I

∗ − d1)P (t) + (α− β2T
∗)Q(t)− β1T

∗R(t),

dQ(t)
dt

= (β1V
∗ + β2I

∗)P (t) + (β2T
∗ − d2 − α)Q(t) + β1T

∗R(t),

dR(t)
dt

= kQ(t)− (d3 + pZ∗)R(t)− pV ∗S(t), (3.1)

dS(t)
dt

= cZ∗R(t− τ) + cV ∗S(t− τ)− d4S(t).
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Taking Laplace transform of (3.1), we obtain

(s + β1V
∗ + β2I

∗ + d1)P̄ (s) = (α− β2T
∗)Q̄(s)− β1T

∗R̄(s) + P (0),

(s + d2 + α− β2T
∗)Q̄(s) = (β1V

∗ + β2I
∗)P̄ (s) + β1T

∗R̄(s) + Q(0),

(s + d3 + pZ∗)R̄(s) = kQ̄(s)− pV ∗S̄(s) + R(0), (3.2)

(s + d4)S̄(s) = cZ∗e−sτ R̄(s)

+ cV ∗e−sτ S̄(s) + S(0) + cZ∗e−sτK1(s) + cV ∗e−sτK2(s),

where

K1(s) =
∫ 0

−τ
e−stR(t)dt, K2(s) =

∫ 0

−τ
e−stS(t)dt

and P̄ (s), Q̄(s), R̄(s), S̄(s) are the Laplace transforms of P (t), Q(t), R(t), S(t) respectively.

Combining all the equations of (3.2) and using (2.7), we obtain,

[
s4 + a1s

3 + a2s
2 + a3s + a4 − cV ∗e−sτ (s3 + b1s

2 + b2s + b3)
]
P̄ (s)

=
[
s3 +

(
K∗I∗

V ∗ +
β1T

∗V ∗

I∗
+ d4 − cV ∗e−sτ

)
s2

+
{(

kI∗

V ∗ +
β1T

∗V ∗

I∗

)(
d4 − cV ∗e−sτ

)
+ cpV ∗Z∗e−sτ

}
s

+
β1cpT ∗V ∗2Z∗

I∗
e−sτ

]
P (0)

+
[
(α− β2T

∗)s2 +
{

(α− β2T
∗)

(
kI∗

V ∗ + d4 − cV ∗e−sτ

)
− kβ1T

∗
}

s

−d2d4kI∗

V ∗ + {d2kI∗ + (α− β2T
∗)pV ∗Z∗} ce−sτ

]
Q(0)

− [
s2 + (d2 + d4 − cV ∗e−sτ )s + d2(d4 − cV ∗e−sτ )

]
β1T

∗R(0)

+ (s + d2)β1pT ∗V ∗S(0) + cZ∗e−sτK1(s) + cV ∗e−sτK2(s).

A necessary and sufficient condition for E∗ to be locally asymptotically stable is that all the poles

of P̄ (s) must have negative real parts [35]. Therefore, by using the Nyquist criterion [36], we obtain

the sufficient conditions for local asymptotic stability of E∗ as follows

ImH(iη0) > 0, (3.3)

ReH(iη0) = 0 (3.4)

where H(s) = s4 + a1s
3 + a2s

2 + a3s + a4− cV ∗e−sτ (s3 + b1s
2 + b2s + b3), and η0 is the smallest
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positive root of ReH(iη0) = 0, which satisfies ImH(iη0) > 0 as well. Now, (3.3) and (3.4) give

−a1η
3
0 + a3η0 + cV ∗(η3

0 − b2η0) cos(η0τ)− cV ∗(b1η
2
0 − b3) sin(η0τ) > 0, (3.5)

η4
0 − a2η

2
0 + a4 + cV ∗(b1η

2
0 − b3) cos(η0τ) + cV ∗(η3

0 − b2η0) sin(η0τ) = 0. (3.6)

Therefore the sufficient condition for stability of E∗ is that (3.5) and (3.6) hold simultaneously.

In order to estimate the length of the delay to preserve the stability of E∗, we have to find an upper

bound of η0 (independent of τ ). From (3.6), we have,

η4
0 = a2η

2
0 − a4 − cV ∗(b1η

2
0 − b3) cos(η0τ)− cV ∗(η3

0 − b2η0) sin(η0τ). (3.7)

Using the bounds | sin(η0τ)| ≤ 1 and | cos(η0τ)| ≤ 1, we obtain from (3.7),

η4
0 − cV ∗η3

0 − (a2 + cV ∗|b1|)η2
0 − cV ∗|b2|η0 − a4 − cV ∗|b3| ≤ 0. (3.8)

Let η+ be the smallest positive root of (3.8) when the equality holds. Then η0 ≤ η+. Inequality

(3.5) can be written as

a2η
2
0 <

a2a3

a1
+

a2cV
∗

a1

(
η2
0 − b2

)
cos(η0τ)− a2cV

∗

a1η0

(
b1η

2
0 − b3

)
sin(η0τ). (3.9)

Adding (3.6) and (3.9), we obtain,

cV ∗
[
η3
0 +

(
a2b1

a1
− b2

)
η0 − a2b3

a1η0

]
sin(η0τ) + cV ∗

[(
b1 − a2

a1

)
η2
0 +

(
a2b2

a1
− b3

)]

[1− cos(η0τ)] <
a2a3

a1
− a4 + cV ∗

(
a2b2

a1
− b3

)
+ cV ∗

(
b1 − a2

a1

)
η2
0 − η4

0. (3.10)

We have sin(η0τ) ≤ η+τ and 1 − cos(η0τ) = 2 sin2(η0τ
2 ) ≤ η+2

τ2

2 . We now suppose that

M1τ
2 + M2τ < M3 holds, where

M1 =
cV ∗

2

(∣∣∣∣b1 − a2

a1

∣∣∣∣ η+4 +
∣∣∣∣
a2b2

a1
− b3

∣∣∣∣ η+2
)

,

M2 = cV ∗
(

η+4 +
∣∣∣∣
a2b1

a1
− b2

∣∣∣∣ η+2 +
a2b3

a1

)
,

M3 = a4 +
a2a3

a1
+ cV ∗

∣∣∣∣
a2b2

a1
− b3

∣∣∣∣ + cV ∗
∣∣∣∣b1 − a2

a1

∣∣∣∣ η+2 + η+4
.

Therefore, (3.3) and (3.4) are satisfied simultaneously if M1τ
2 + M2τ < M3 holds. Hence,

Nyquist criterion holds for 0 ≤ τ ≤ τ+, where τ+ = 1
2M1

(
−M2 +

√
M2

2 + 4M1M3

)
is the

maximum length of the delay for which the stability of the bifurcating limit cycle is preserved.
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Parameters Descriptions Values Units Sources

λ Recruitment rate of uninfected cell 10 cells ml−1 day−1 [10, 11]

β1 Virus-to-cell infection rate 0.01 ml virion−1 day−1 [10, 11]

β2 Cell-to-cell infection rate 0.01 ml cell−1 day−1 [24]

d1 Death rate of uninfected cell 0.01 day−1 [7]

d2 Death rate of infected cell 1 day−1 [7]

d3 Death rate of virion 1 day−1 [10, 11]

d4 Death rate of B cell 0.3 day−1 [37]

α Cure rate of infected cell 0.01 day−1 [38]

k Production rate of virion 2.9 virions cell−1 day−1 [7]

p Neutralization rate of virion by B cell 0.1 ml cell−1 day−1 [39]

c Development rate of B cell 0.1 ml virion−1 day−1 [37]

Table 1: The list of parameter values for numerical simulations for the model system (2.1)

4. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, we present several numerical illustrations to analyze the effect of time delay in

the generation of B cells, in addition to investigating the effect of the development rate of B cells,

on the dynamical behavior of the model system (2.1). In order to perform the numerical simulation,

we chose the parameter values given in Table 1 and made use of MatLab R©. We first demonstrate

the global stability of the boundary equilibria of the system (2.1) through numerical simulation, by

considering three different initial conditions, namely, ic1 := (80, 5, 2, 50), ic2 := (50, 2, 0.5, 80) and

ic3 := (30, 8, 6, 70) each for three different immune delays, namely, τ = 6, 12, 25. The various

trajectories of uninfected hepatocytes (Figs. 1a and 2a), infected hepatocytes (Figs. 1b and 2b),

virions (Figs. 1c and 2c) and B cells (Figs. 1d and 2d) for three different initial conditions and three

different time delays are presented as follows:

• Blue lines : ic1(80, 5, 2, 50),
• Red lines : ic2(50, 2, 0.5, 80),
• Green lines : ic3(30, 8, 6, 70),
• Solid lines : τ = 6,

• Dashed lines : τ = 12,

• Dotted lines : τ = 25.

In order to illustrate the case R0 < 1, we choose the parameter values listed in Table 1, except

λ = 1 [10, 11], β2 = 0.001 [24], d3 = 6 [7, 40], which correspond to R0 = 0.5775. This scenario
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is presented in Fig. 1, which shows that the uninfected hepatocytes (Fig. 1a) with three different

initial levels, increase gradually and then finally stabilize at the level T = 100, whereas the infected

hepatocytes (Fig. 1b) as well as virions (Fig. 1c) gradually decrease and eventually converge to zero.

The behavior of B cells (Fig. 1d) depends on the initial condition at the beginning, but after a period

of time, it also converges to zero. This simulation also indicates that the variation of immune delay

does not in any way affect the trajectories of uninfected and infected hepatocytes as well as virion

population (solid, dashed and dotted lines merged on same path in Figs. 1a, 1b and 1c), but the

slow convergence of B cells (solid lines of all colors converging to zero earlier than other patterned

lines of corresponding colors in Fig. 1d) occurs due to increase in value of the immune delay. This

suggests that the infection-free equilibrium E0 (100, 0, 0, 0) is globally asymptotically stable for any

time delay in the generation of B cells, which supports the theoretical result in Theorem 1.

In order to study the case RH < 1 < R0, we choose λ = 1 [10, 11] with the other parameter

values being the ones as in Table 1, which correspond to R0 = 3.8613 < 1 +
d2

α
(= 101) and RH =

0.7731. This scenario is presented in Fig. 2. This figure shows that the uninfected hepatocytes (Fig.

2a), infected hepatocytes (Fig. 2b) and virions (Fig. 2c) starting with three different initial positions

are oscillating for a period of time and then finally converge to their corresponding stabilized levels

(T = 25.8974, I = 0.7410, V = 2.1489). The trajectories of the corresponding populations follow

the similar oscillatory behavior in all cases with the larger cycle (slower convergence) being observed

due to increase in immune delay. The B cell (Fig. 2d) after starting with different positions changes

its behavior depending upon the initial conditions and then suddenly falls down to zero level. It is

also observed that B cells take more time to reach the zero stabilized level due to increase in immune

delay. This simulation indicates that the process of B cells generation will not be continued without

a large amount of viral load and enough infection. This suggests that the immune-free equilibrium

E1 (25.8974, 0.7410, 2.1489, 0) is globally asymptotically stable for any time delay in the generation

of B cells, which is obtained theoretically in Theorem 2.

Furthermore, we perform numerical simulation to show the Hopf bifurcation and stability switches

occurring at the interior equilibrium E∗ as the immune delay τ increases. For this purpose, we

choose all the parameter values listed in Table 1. The corresponding RH = 7.7312 > 1 and

E∗ = (76.2402, 9.2375, 3, 79.2967). We compute the roots of the equation (2.11) and obtain two

positive real roots, namely, γ1 = 0.1235 and γ2 = 0.1082, which satisfy the condition of Theorem 3.

Therefore, using the formula (2.13), we calculate τ
(j)
n , n = 1, 2; j = 0, 1, 2, . . . as follows

τ
(0)
1 = 5.7944, τ

(0)
2 = 7.4298, τ

(1)
1 = 23.6734,

τ
(1)
2 = 26.5270, τ

(2)
1 = 41.5524, τ

(2)
2 = 45.6242



1688 SONJOY PAN AND SIDDHARTHA P. CHAKRABARTY

with the value of τ
(j)
n for j ≥ 3 being calculated similarly. Therefore we get τ0 = τ

(0)
1 = 5.7944

and G′(ω2
0) = 1.7072 > 0, which satisfies the existence condition of Hopf bifurcation in Theorem 3.

We plot the densities (Figs. 3a-8a) of the four model populations against time and the phase portraits

(Figs. 3b-8b) of the trajectories of uninfected and infected hepatocytes as well as virion population

for various time delays (τ ). It is clearly noticed in Fig. 3 that E∗(76.2402, 9.2375, 3, 79.2967) is

locally asymptotically stable when τ = 5 < τ0. From the numerical simulation, it can be observed

that E∗ is locally asymptotically stable when τ ∈ [0, τ0), which is obtained theoretically in Theorem

3. Moreover, by Theorem 3, when τ is increased past the critical value τ0, a Hopf bifurcation occurs

at τ = τ0. The result for τ = 6 > τ0 is shown in Fig. 4, which implies that E∗ becomes unstable and

consequently a bifurcating periodic solution exists for τ ∈ (τ0, τ
(0)
2 ). Again, when τ crosses another

critical value τ
(0)
2 , E∗ regains local asymptotical stability which is presented for a particular value

τ = 14 in Fig. 5. This shows that E∗ is asymptotically stable again for τ ∈ (τ (0)
2 , τ

(1)
1 ). For the case

τ ∈ (τ (1)
1 , τ

(1)
2 ), E∗ losses stability and a periodic oscillation exists around the equilibrium E∗ which

is exhibited for τ = 25 in Fig. 6. If τ is increased and exceeds τ
(1)
2 , then the interior equilibrium

E∗ becomes stable again, which is illustrated with τ = 35 ∈ (τ (1)
2 , τ

(2)
1 ) in Fig. 7. Further, we

simulate the system for a large value of τ , namely, τ = 43 ∈ (τ (2)
1 , τ

(2)
2 ), which is demonstrated in

Fig. 8, showing that the stability switch occurs again with a periodic oscillation of the populations.

In the same way, when the bifurcation parameter τ is increased and passes the critical bifurcation

values τ0, τ
(0)
2 , τ

(1)
1 , τ

(1)
2 , τ

(2)
1 , τ

(2)
2 and so on; stability of the interior equilibrium E∗ of the system

(2.1) changes from stable to unstable, Hopf bifurcation occurs at these critical values and then regains

asymptotic stability from unstable behavior successively. From this numerical discussion, we can con-

clude that Hopf bifurcation and stability switches occur at the critical values of the bifurcation parame-

ter, which are τ
(j)
1 and τ

(j)
2 , j = 0, 1, 2, . . . . Therefore, combining the numerical results obtained, one

can finally conclude that the interior equilibrium E∗(76.2402, 9.2375, 3, 79.2967) is locally asymp-

totically stable for τ ∈ [0, τ0)
⋃



∞⋃

j=0

(
τ

(j)
2 , τ

(j+1)
1

)

 with τ

(j)
2 < τ

(j+1)
1 , j = 0, 1, 2, . . ..

In the preceding discussion, we have shown that the time delay in generation of B cells has a

significant influence on the dynamical behavior of the system. Moreover, as B cells are directly

involved in the neutralization of the virions, so the viral infection can be affected depending on the

development rate of B cells as well. We therefore investigate (in Fig. 9), the effect of the development

rate (c) of B cells on the dynamics of uninfected hepatocytes (Fig. 9a), infected hepatocytes (Fig.

9b) and viral load (Fig. 9c) as well as antibody response (Fig. 9d). For this, the numerical simulation

is performed for five different values of c, namely, c = 0.01, 0.03, 0.07, 0.1, 0.5 with the other

parameters values being retained as in Table 1. It is observed from Fig. 9 that when B cells are
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generated very slowly (in case of c = 0.01), the viral load as well as infected hepatocytes increase

to a very high level, which results in a decrease of the uninfected hepatocytes to a very low level

resulting in the antibody not responding anymore. Moreover, a slight increase in the development

rate of B cells, raises the uninfected hepatocytes highly with a significant decrease in virions density.

However, the changes in density of infected hepatocytes with the development rate of B cells is

relatively very small. For a certain range of c (for example c = 0.07, 0.1), disturbance in the stability

of the equilibrium and subsequent occurrence of bifurcating periodic orbits are noticed. Finally, one

can observe from the expression of R0 and RH that RH is positively correlated with c, but c does not

affect R0. Therefore complete cure of infection for a patient is not possible by only magnifying the

development rate of B cells. However, a high antigenic stimulation in the generation of B cells is

beneficial for uninfected hepatocytes.
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Figure 1: The trajectories of the four populations of the system (2.1) with three different initial conditions ic1, ic2, ic3 and
three immune delays τ = 6, 12, 25 in case of R0 < 1. Blue lines : ic1, red lines : ic2, green lines : ic3, solid lines : τ = 6,
dashed lines : τ = 12, dotted lines : τ = 25.
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Figure 2: The trajectories of the four populations of the system (2.1) with three different initial conditions ic1, ic2, ic3 and
three immune delays τ = 6, 12, 25 in case of RH < 1 < R0. Blue lines : ic1, red lines : ic2, green lines : ic3, solid lines :
τ = 6, dashed lines : τ = 12, dotted lines : τ = 25.
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5. CONCLUSIONS

In this paper, we analyzed HCV dynamics considering both viral and cellular transmissions with the

effect of humoral immune delay. The model also included the conversion of infected hepatocytes into

uninfected ones through the non-cytolytic process. The feasibility of the model has been justified

by establishing the positivity and boundedness of the solution. We have investigated that the bound-

ary equilibria, namely, infection-free and immune-free equilibrium are locally as well as globally

asymptotically stable under the conditions on the basic reproduction number as well as the humoral

immune reproduction number. The infection-free and immune-free equilibrium are globally asymp-

totically stable if R0 ≤ 1 and RH ≤ 1 < R0 ≤ 1 +
d2

α
respectively. The model system undergoes

a Hopf bifurcation from the interior equilibrium when the bifurcation parameter crosses the critical

values. The numerical results demonstrate the existence of stability switches and bifurcating periodic

solutions due to increase in the immune delay.
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The simulation showed that the development rate of B cells drives the system from stable to

unstable and then from unstable to stable again. The findings suggested that a small increment in

the development rate of B cells significantly increases the uninfected hepatocytes being neutralizing

the virions. Therefore, a high antigenic stimulation in the generation of B cells is beneficial for

uninfected hepatocytes. However complete cure from infection not possible by only magnifying the

development rate of B cells.
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