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In this paper, we are interested in considering the following singular elliptic problem with concave-

convex nonlinearities



−∆u− µ

|x|2 u = f(x)|u|p−2u + g(x)|u|q−2u, in Ω \ {0},

u = 0, on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain with 0 ∈ Ω, 0 < µ < µ = (N−2)2

4 , 1 <

q < 2 < p < 2∗ and 2∗ = 2N
N−2 is the Sobolev critical exponent, the coefficient functions

f, g may change sign on Ω. By the Nehari method, we obtain two solutions, and one of them

is a ground state solution. Under some stronger conditions, we point that the two solutions are

positive solutions by the strong maximum principle.
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1. INTRODUCTION AND MAIN RESULTS

Consider the following singular elliptic problem with concave-convex nonlinearities



−∆u− µ

|x|2 u = f(x)|u|p−2u + g(x)|u|q−2u, in Ω \ {0},

u = 0, on ∂Ω,

(1.1)

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain with 0 ∈ Ω, 0 < µ < µ = (N−2)2

4 , 1 <

q < 2 < p < 2∗ and 2∗ = 2N
N−2 is the Sobolev critical exponent. The coefficient functions f ∈

L
2∗

2∗−p (Ω), g ∈ L
2∗

2∗−q (Ω) and satisfy the following condition.

(H0) The sets {x ∈ Ω : f(x) > 0} and {x ∈ Ω : g(x) > 0} with positive measures, that is,

f, g ≥ 0 or f, g change sign on Ω.

Very recently, Chen and Chen studied problem (1.1) with f(x) = µW (x), where W, g ∈ C(Ω),

g(x) ≥ 0 and the set {x ∈ Ω : W (x) > 0} with positive measure, see [10]. By the Nehari method,

they obtained that there exists Tλ > 0 such that problem (1.1) has at least two positive solutions for

0 < µ < Tλ.

When µ = 0 in problem (1.1), it reduces to the classic semilinear elliptic problem with concave-

convex nonlinearities. Much interest has grown on the concave-convex problem, starting from the

celebrated paper of Ambrosetti, Brézis and Cerami [1]. After that, the concave-convex problem has

been extensively studied, and some important and interesting results have been obtained, such as [2-4,

6-12, 14, 17-24, 26-32]. Particularly, Sun [26] considered problem (1.1) with λ = 0, f, g satisfying

the same conditions of [10]. By using the Nehari method, the author obtained that there exists Tλ > 0

such that problem (1.1) has at least two positive solutions for 0 < λ < Tλ. In fact, [10] generalized

the results of [26] to problem (1.1).

In this article, we are interested in studying multiple solutions of problem (1.1). Motivated by [10]

and [26], an interesting study is the relevance of coefficient functions of the concave-convex terms to

the multiplicity of solutions of problem (1.1). In the present paper, by the Nehari method, we get two

nonnegative solutions of problem (1.1) under some constraint conditions on f, g; then, we obtain two

positive solutions of problem (1.1) under some stronger constraint conditions on f, g.

Let Sµ be the best Sobolev constant, that is

Sµ : = inf
u∈D1,2(RN )\{0}

∫
RN

(
|∇u|2 − µ

|x|2 u2
)

dx

(∫
RN |u|2∗dx

) 2
2∗

= inf
u∈H1

0 (Ω)\{0}

∫
Ω

(
|∇u|2 − µ

|x|2 u2
)

dx

(∫
Ω |u|2∗dx

) 2
2∗

.

(1.2)
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The energy functional corresponding to problem (1.1) is defined as follows

I(u) =
∫

Ω

(
|∇u|2 − µ

|x|2 u2

)
dx− 1

p

∫

Ω
f(x)|u|pdx− 1

q

∫

Ω
g(x)|u|qdx,

for all u ∈ H1
0 (Ω). We denote ‖u‖µ =

[∫
Ω

(
|∇u|2 − µ

|x|2 u2
)

dx
] 1

2
as the norm of H1

0 (Ω). By the

the Hardy inequality (see [5] or [15]), one has
∫

Ω

µ

|x|2 u2dx ≤ 1
µ

∫

Ω
|∇u|2dx,

for all u ∈ H1
0 (Ω). Thus, the norm ‖u‖µ is equivalent to the usual norm ‖u‖ =

(∫
Ω |∇u|2dx

) 1
2 of

H1
0 (Ω).

In general, a function u is called a weak solution of problem (1.1) if u ∈ H1
0 (Ω) and for all

ϕ ∈ H1
0 (Ω) it holds

∫

Ω

[
(∇u,∇ϕ)− µ

|x|2 uϕ
]
dx−

∫

Ω
f(x)|u|p−2uϕdx−

∫

Ω
g(x)|u|q−2uϕdx = 0.

So if such a solution exists then it must lie in Nehari manifold N , which is defined by

N =
{

u ∈ H1
0 (Ω) : ‖u‖2

µ −
∫

Ω
f(x)|u|pdx−

∫

Ω
g(x)|u|qdx = 0

}
.

In order to obtain the multiplicity of solutions, we make splitting for N . For this purpose, we

define a fibering map Ju : t → I(tu) for all t > 0, that is,

Ju(t) =
t2

2
‖u‖2

µ −
tp

p

∫

Ω
f(x)|u|pdx− tq

q

∫

Ω
g(x)|u|qdx,

where u ∈ H1
0 (Ω). Then we have

J ′u(t) = t‖u‖2
µ − tp−1

∫

Ω
f(x)|u|pdx− tq−1

∫

Ω
g(x)|u|qdx,

J ′′u(t) = ‖u‖2
µ − (p− 1)tp−2

∫

Ω
f(x)|u|pdx− (q − 1)tq−2

∫

Ω
g(x)|u|qdx.

Clearly, N =
{
u ∈ H1

0 (Ω) : J ′u(1) = 0.
}

. For all u ∈ N ,

J ′′u(1) = ‖u‖2
µ − (p− 1)

∫

Ω
f(x)|u|pdx− (q − 1)

∫

Ω
g(x)|u|qdx

= (2− q)
∫

Ω
g(x)|u|qdx− (p− 2)

∫

Ω
f(x)|u|pdx

= (2− p)‖u‖2
µ + (p− q)

∫

Ω
g(x)|u|qdx

= (2− q)‖u‖2
µ − (p− q)

∫

Ω
f(x)|u|pdx.
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Thus, we make the following decomposition

N + =
{

u ∈ N : J ′′u(1) > 0
}

,

N 0 =
{

u ∈ N : J ′′u(1) = 0
}

,

N − =
{

u ∈ N : J ′′u(1) < 0
}

.

Our approach to problem (1.1) is upon the structure of the constrained sets N ±,N 0. Under

some conditions, we can prove that N ± 6= ∅ and N 0 = {0}.

The main results can be described as follows:

Theorem 1.1 — Assume that 0 < µ < µ = (N−2)2

4 , 1 < q < 2 < p < 2∗ and f ∈ L
2∗

2∗−p (Ω), g ∈
L

2∗
2∗−q (Ω) satisfy (H0). Then there exists Λ > 0 such that problem (1.1) has at least two nonnegative

solutions for all |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ, and one of them is a ground state solution.

Remark 1.1 : To our best knowledge, our result is up to now. Our Theorem 1.1 is a general result

of the multiplicity of nonnegative solutions of the singular elliptic problem involving concave-convex

nonlinearities. And, we should point out that f, g are may change sign in Ω. Moreover, when µ ≡ 0,

Theorem 1.1 is also true.

Theorem 1.2 — Suppose Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary ∂Ω.

Assume that 0 < µ < µ = (N−2)2

4 , 1 < q < 2 < p < 2∗ and f, g satisfy the following condition,

(H1) f ∈ L∞(Ω) with the set {x ∈ Ω : f(x) > 0} of positive measures, and g ∈ L∞(Ω) with

g(x) ≥ 0, g 6≡ 0.

Then the same conclusions of Theorem 1.1 hold. Moreover, the two nonnegative solutions are

positive solutions.

Remark 1.2 : Under the condition of (H1), by the strong maximum principle, we can prove

that the nonnegative solutions are positive. According to [16] (pp: 158, 198), the condition of the

boundary of Ω is necessary. Compared with Theorem 1.1 in [10], our Theorem 1.2 is more general.

Particularly, when µ ≡ 0, Theorem 1.2 is also true which generalizes Theorem 1.1 in [26].

Theorem 1.3 — Assume that 0 < µ < µ = (N−2)2

4 , 1 < q < 2 < p < 2∗ and f, g satisfy the

following condition,

(H2) f ∈ L
2∗

2∗−p (Ω), g ∈ L
2∗

2∗−q (Ω) are nonzero and nonnegative functions.
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Then the same conclusions of Theorem 1.1 hold. Moreover, the two nonnegative solutions are

positive solutions, and the positive ground state solution belongs to N +.

Remark 1.3 : It is worth noticing that we could not confirm the ground state solution lying in N +

or N − when f may change sign, because N + and N − may not be connected submanifolds. Under

the condition of (H2), we obtain that the positive ground state solution lies in N +.

This paper is organized as following. We present some preliminary results in Section 2. In Section

3, we give the proof of Theorems 1.1-1.3. Throughout this paper, the norm in Lp(Ω) is denoted by

|u|p =
(∫

Ω |u|pdx
) 1

p .

2. SOME PRELIMINARY RESULTS

In this section, we give some lemmas in preparation for the proof of our main results.

Lemma 2.1 — Assume that f ∈ L
2∗

2∗−p (Ω), g ∈ L
2∗

2∗−q (Ω) satisfy (H0), then there exists a

constant Λ > 0 such that N ± 6= ∅ for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ. Moreover, N 0 = {0} and N − is a

closed set for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ.

PROOF : According to the assumptions of f there exists u ∈ H1
0 (Ω) such that

∫

Ω
f(x)|u|pdx > 0.

In fact, let E = {x ∈ Ω : f(x) > 0}, one obtains that E is a positive measure set. Then for any

ε > 0 there exist a closed set F and a open set G such that F ⊂ E ⊂ G and mes (G−F ) < ε. From

the arbitrariness of ε, we have mes F > 0. We choose ũ ∈ C1
0 (Ω) with 0 ≤ ũ ≤ 1 such that ũ = 1

in F and ũ = 0 in Ω \G. Obviously, ũ ∈ H1
0 (Ω). By Hölder’s inequality, one has

∫

Ω
f(x)|ũ|pdx ≥

∫

F
f(x)dx−

∫

G−F
|f(x)||ũ|pdx

≥
∫

F
f(x)dx− (mes(G− F ))

p
2∗

(∫

G−F
|f | 2∗

2∗−p dx

) 2∗−p
2∗

≥
∫

F
f(x)dx− ε

p
2∗ |f | 2∗

2∗−p

≥ 1
2

∫

F
f(x)dx

> 0,

where we choose ε = min





(R
F f(x)dx

2|f | 2∗
2∗−p

) 2∗
p

, mes G
2



 such that mes F ≥ mes G

2 > 0 and ε
p
2∗ |f | 2∗

2∗−p
≤

1
2

∫
F f(x)dx. Similarly, we can prove that there exists u ∈ H1

0 (Ω) such that
∫
Ω g(x)|u|qdx > 0.
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Case A : For any u ∈ H1
0 (Ω) such that

∫
Ω g(x)|u|qdx > 0, we define Φ ∈ C(R+,R) by

Φ(t) = t2−p‖u‖2
µ − tq−p

∫

Ω
g(x)|u|qdx.

Then,

Φ′(t) = −(p− 2)t1−p‖u‖2
µ + (p− q)tq−p−1

∫

Ω
g(x)|u|qdx,

let Φ′(t) = 0, we can verify

tmax =
[
(p− q)

∫
Ω g(x)|u|qdx

(p− 2)‖u‖2
µ

] 1
2−q

.

Simple computations show that Φ′(t) > 0 for all 0 < t < tmax and Φ′(t) < 0 for all t > tmax.

Thus Φ(t) attains its maximum at tmax, that is,

Φ(tmax) =
2− q

p− 2

[
(p− 2)
p− q

] p−q
2−q ‖u‖

2(p−q)
2−q

µ
(∫

Ω g(x)|u|qdx
) p−2

2−q

.

From (1.2), we have

Sµ|u|22∗ < ‖u‖2
µ, (2.1)

and by Hölder’s inequality, one has
∫

Ω
f(x)|u|pdx ≤ |f | 2∗

2∗−p
|u|p2∗ , (2.2)

∫

Ω
g(x)|u|qdx ≤ |g| 2∗

2∗−q
|u|q2∗ . (2.3)

Then from (2.1)-(2.3), one gets

Φ(tmax)−
∫

Ω
f(x)|u|pdx >

2− q

p− 2

(
p− 2
p− q

) p−q
2−q ‖u‖

2(p−q)
2−q

µ
(
|u|q2∗ |g| 2∗

2∗−q

) p−2
2−q

−|f | 2∗
2∗−p

|u|p2∗

=
{

2− q

p− 2

(
p− 2
p− q

) p−q
2−q

(
‖u‖2

µ

|u|22∗

) p−q
2−q 1

|f | 2∗
2∗−p

|g|
p−2
2−q
2∗

2∗−q

−1
}
|f | 2∗

2∗−p
|u|p2∗

> 0,

(2.4)

when |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ, where we can choose Λ =
(

2−q
p−q

) 1
p−2

(
p−2
p−q

) 1
2−q

S
p−q

(p−2)(2−q)
µ .
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On the one hand, when
∫
Ω f(x)|u|pdx ≤ 0. Since Φ(t) → −∞ as t → 0+ and Φ(t) → 0 as

t → +∞, there exists a unique t+ satisfying 0 < t+ < tmax such that
∫

Ω
f(x)|u|pdx = Φ(t+), Φ′(t+) > 0,

that is, t+u ∈ N +. Moreover, since

Ju(t) = I(tu) =
t2

2
‖u‖2

µ −
tp

p

∫

Ω
f(x)|u|pdx− tq

q

∫

Ω
g(x)|u|qdx, (2.5)

J ′u(t) =
dI(tu)

dt
= tp−1

[
Φ(t)−

∫

Ω
f(x)|u|pdx

]
, (2.6)

one gets dI(tu)
dt < 0 for all 0 ≤ t < t+, and dI(tu)

dt > 0 for all t > t+. Thus

I(t+u) = inf
0≤t≤tmax

I(tu).

On the other hand, when
∫
Ω f(x)|u|pdx > 0, there exist t+0 and t−0 satisfying 0 < t+0 < tmax < t−0

such that

Φ(t+0 ) =
∫

Ω
f(x)|u|pdx = Φ(t−0 )

and

Φ′(t−0 ) < 0 < Φ′(t+0 ),

that is, t+0 u ∈ N + and t−0 u ∈ N −. Moreover, according to (2.5) and (2.6), we have dI(tu)
dt < 0 for

all 0 ≤ t < t+0 and dI(tu)
dt > 0 for all t+0 < t < t−0 , and dI(tu)

dt < 0 for all t > t−0 . Consequently, one

has

I(t+0 u) = inf
0≤t<tmax

I(tu), I(t−0 u) = sup
t≥tmax

I(tu).

Thus N ± are non-empty whenever |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ.

Next, we prove that N 0 = {0} for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ. By contradiction, suppose that there

exists u0 ∈ N 0. Obviously, u0 6= 0 and u0 ∈ N , it follows that

‖u0‖2
µ =

∫

Ω
f(x)|u0|pdx +

∫

Ω
g(x)|u0|qdx (2.7)

and

(p− 2)‖u0‖2
µ = (p− q)

∫

Ω
g(x)|u0|qdx. (2.8)

From (2.7) and (2.8), one has
∫

Ω
f(x)|u0|pdx =

2− q

p− q
‖u0‖2

µ. (2.9)
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Then, according to (2.4) and (2.9), for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ, we have

0 <
2− q

p− 2

(
p− 2
p− q

) p−q
2−q ‖u0‖

2(p−q)
2−q

µ
(∫

Ω g(x)|u0|qdx
) p−2

2−q

−
∫

Ω
f(x)|u0|pdx

=
2− q

p− 2

(
p− 2
p− q

) p−q
2−q ‖u0‖

2(p−q)
2−q

µ
(

p−2
p−q

) p−2
2−q ‖u0‖

2(p−2)
2−q

µ

− 2− q

p− q
‖u0‖2

µ

=
2− q

p− 2
‖u0‖2

µ −
2− q

p− q
‖u0‖2

µ

= 0,

which is a contradiction. Thus N 0 = {0} for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ.

Finally, we claim that N − is a closed set for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ.

Suppose that {un} ⊂ N − such that un → u as n → ∞ in H1
0 (Ω), we need prove u ∈ N − for

|f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ.

Since un ∈ N −, one has

‖un‖2
µ −

∫

Ω
f(x)|un|pdx−

∫

Ω
g(x)|un|qdx = 0 (2.10)

and

(2− q)‖un‖2
µ − (p− q)

∫

Ω
f(x)|un|pdx < 0. (2.11)

Since un → u in H1
0 (Ω) as n →∞, it follows that

‖u‖2
µ −

∫

Ω
f(x)|u|pdx−

∫

Ω
g(x)|u|qdx = 0

and

(2− q)‖u‖2
µ − (p− q)

∫

Ω
f(x)|u|pdx ≤ 0,

thus u ∈ N −∪N 0. If u ∈ N 0, since N 0 = {0} for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ, one has u = 0. However,

from (2.10) and (2.11), for all un ∈ N −, we obtain

(2− q)‖un‖2
µ < (p− q)

∫

Ω
f(x)|un|pdx,
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consequently, by the Hölder inequality and (1.2), one has

‖un‖µ >


 (2− q)S

p
2
µ

(p− q)|f | 2∗
2∗−p




1
p−2

> 0, ∀un ∈ N −,

which contradicts u = 0. Thus u ∈ N − for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ. Thus our claim is proved to be true.

Case B : For any u ∈ H1
0 (Ω) such that

∫
Ω f(x)|u|pdx > 0, we define Ψ ∈ C(R+,R) by

Ψ(t) = t2−q‖u‖2
µ − tp−q

∫

Ω
f(x)|u|pdx.

Then

Ψ′(t) = t1−q

[
(2− q)‖u‖2

µ − (p− q)tp−2

∫

Ω
f(x)|u|pdx

]
,

let Ψ′(t) = 0, one has

t̃max =

[
(2− q)‖u‖2

µ

(p− q)
∫
Ω f(x)|u|pdx

] 1
p−2

.

Clearly, Ψ′(t) > 0 for all 0 < t < t̃max and Ψ′(t) < 0 for all t > t̃max. Thus Ψ achieves its

maximum at t̃max, that is

Ψ(t̃max) =
p− 2
2− q

(
2− q

p− q

) p−q
p−2 ‖u‖

2(p−q)
p−2

µ
(∫

Ω f(x)|u|pdx
) 2−q

p−2

.

Then from (2.1)-(2.3), one gets

Ψ(t̃max)−
∫

Ω
g(x)|u|qdx ≥ p− 2

2− q

(
2− q

p− q

) p−q
p−2 ‖u‖

2(p−q)
p−2

µ
(
|u|p2∗ |f | 2∗

2∗−p

) 2−q
p−2

−|g| 2∗
2∗−q

|u|q2∗

=
{

p− 2
2− q

(
2− q

p− q

) p−q
p−2

(
‖u‖2

µ

|u|22∗

) p−q
p−2 1

|g| 2∗
2∗−q

|f |
2−q
p−2
2∗

2∗−p

−1
}
|g| 2∗

2∗−q
|u|q2∗

> 0,

(2.12)

for all |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ, where Λ is defined in Case A. If
∫
Ω g(x)|u|qdx ≤ 0, since Ψ(0) = 0 and

Ψ(t) → −∞ as t → +∞, there exists a unique t− with t− > t̃max such that

Ψ(t−) =
∫

Ω
g(x)|u|qdx, Ψ′(t−) < 0,
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thus it follows that t−u ∈ N −. Moreover from (2.5) and

dI(tu)
dt

= tq−1

[
Ψ(t)−

∫

Ω
g(x)|u|qdx

]
, (2.13)

consequently, dI(tu)
dt > 0 for all 0 < t < t− and dI(tu)

dt < 0 for all t > t−. Then

I(t−u) = sup
t≥0

I(tu).

If
∫
Ω g(x)|u|qdx > 0, there exist t+0 and t−0 satisfying 0 < t+0 < t̃max < t−0 such that

Ψ(t+0 ) =
∫

Ω
g(x)|u|qdx = Ψ(t−0 )

and

Ψ′(t+0 ) > 0, Ψ′(t−0 ) < 0.

Thus t+0 u ∈ N + and t−0 u ∈ N −. Moreover, according to (2.5) and (2.13), we have dI(tu)
dt < 0

for all 0 ≤ t < t+0 and dI(tu)
dt > 0 for all t+0 < t < t−0 , and dI(tu)

dt < 0 for all t > t−0 . Consequently,

one has

I(t+0 u) = inf
0≤t<t̃max

I(tu), I(t−0 u) = sup
t≥t̃max

I(tu).

Thus N ± are non-empty for all |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ.

Next, similar to Case A, we can prove that N 0 = {0} and N − is a closed set for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

<

Λ. We omit the detail proof. Thus the proof of Lemma 2.1 is completed. 2

Lemma 2.2 — Given u ∈ N +(N −) and for all w ∈ H1
0 (Ω), then there exist ε > 0 and a

continuous differentiable function t = t(w) > 0, ‖w‖µ < ε satisfying that

t(0) = 1, t(w)(u + w) ∈ N +(N −), ∀w ∈ H1
0 (Ω) ‖w‖µ < ε.

PROOF : For all u ∈ N +, define F : R×H1
0 (Ω) → R by

F (t, w) = t2−p‖u + w‖2
µ − tq−p

∫

Ω
g(x)|u + w|qdx−

∫

Ω
f(x)|u + w|pdx,

then

Ft(t, w) = (2− p)t1−p‖u + w‖2
µ − (q − p)tq−p−1

∫

Ω
g(x)|u + w|qdx.

Since u ∈ N +, it follows that F (1, 0) = 0 and

Ft(1, 0) = (2− p)‖u‖2
µ + (p− q)

∫

Ω
g(x)|u|qdx > 0.
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Thus, applying the implicit function theorem at the point (1, 0), we can obtain ε > 0 and a

continuous differentiable t : B(0, ε) ⊂ H1
0 (Ω) → R satisfying that

t(0) = 1, t(w) > 0, t(w)(u + w) ∈ N +, ∀w ∈ H1
0 (Ω) with ‖ω‖µ < ε.

Similarly, we can prove that the conclusion of the case u ∈ N − is true. This completes the proof

of Lemma 2.2. 2

Lemma 2.3 — I is coercive and bounded from below on N .

PROOF : From (2.2) and (2.3), by the Sobolev inequality and (1.2), one has∫

Ω
f(x)|u|pdx ≤ S

− p
2

µ |f | 2∗
2∗−p

‖u‖p
µ,

∫

Ω
g(x)|u|qdx ≤ S

− q
2

µ |g| 2∗
2∗−q

‖u‖q
µ.

Consequently, for all u ∈ N , it follows that

I(u) =
1
2
‖u‖2

µ −
1
p

∫

Ω
f(x)|u|pdx− 1

q

∫

Ω
g(x)|u|qdx

=
(

1
2
− 1

p

)
‖u‖2

µ −
(

1
q
− 1

p

)∫

Ω
g(x)|u|qdx

≥
(

1
2
− 1

p

)
‖u‖2

µ −
(

1
q
− 1

p

)
S
− q

2
µ |g| 2∗

2∗−q
‖u‖p

µ,

this implies that I is coercive and bounded from below on N . Then the proof of Lemma 2.3 is

completed. 2

3. PROOF OF THEOREMS

From Lemma 2.1 and Lemma 2.3, for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ, the following definitions are well defined

m+ = inf
u∈N +

I(u), m− = inf
u∈N −

I(u).

Moreover, we can claim that m+ < 0. In fact, for all u ∈ N +, we have

(p− q)
∫

Ω
g(x)|u|qdx > (p− 2)‖u‖2

µ,

consequently, since 2 < p < 2∗, 1 < q < 2 and u 6= 0, it follows that

I(u) =
1
2
‖u‖2

µ −
1
p

∫

Ω
f(x)|u|pdx− 1

q

∫

Ω
g(x)|u|qdx

=
(

1
2
− 1

p

)
‖u‖2

µ −
(

1
q
− 1

p

) ∫

Ω
g(x)|u|qdx

<
p− 2
2p

‖u‖2
µ −

p− 2
pq

‖u‖2
µ

< 0,
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this implies that m+ < 0. In this part, we prove that problem (1.1) has a nonnegative local minimizer

solution in N + and N −, respectively. Now, we give the proof of Theorem 1.1.

PROOF OF THEOREM 1.1 : Let |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ. The proof of Theorem 1.1 will be divided

into two steps.

Step 1 : We prove that there exists a nonnegative solution of problem (1.1) in N +.

Obviously, N + ∪N 0 is a closed set for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ. From Lemma 2.3, inf
u∈N +∪N 0

I(u)

is well defined. Applying Ekeland’s variational principle (see [13]) to this minimization problem,

there exists a sequence {un} ⊂ N + ∪N 0 with the following properties:

(i) I(un) < inf
u∈N +∪N 0

I(u) +
1
n

;

(ii) I(u) ≥ I(un)− 1
n
‖u− un‖µ, ∀u ∈ N + ∪N 0.

Since I(u) = I(|u|), we can assume that un(x) ≥ 0 for all x ∈ Ω. Obviously, {un} is bounded

in H1
0 (Ω), going if necessary to a subsequence, still denoted by {un}, there exists u∗ ≥ 0 such that





un ⇀ u∗, weakly in H1
0(Ω),

un → u∗, strongly in Ls(Ω), 1 ≤ s < 2∗,

un(x) → u∗(x), a.e. in Ω,

as n →∞. Now we will prove that u∗ is a nonnegative solution of problem (1.1).

Firstly, we prove that u∗(x) 6≡ 0 in Ω. By the Vitali theorem (see [25] pp: 133), we claim that

lim
n→∞

∫

Ω
f(x)|un|pdx =

∫

Ω
f(x)|u∗|pdx. (3.1)

Indeed, we only need prove that {∫Ω f(x)|un|pdx, n ∈ N} is equi-absolutely-continuous. Note

that {un} is bounded in H1
0 (Ω), by the Sobolev embedding theorem, then exists a constant C1 > 0

such that |un|2∗ ≤ C1 < ∞. From (2.2), for every ε > 0, setting δ > 0, when E ⊂ Ω with

mes E < δ, we have

∫

E
f(x)|un|pdx ≤ |un|p2∗

(∫

E
|f | 2∗

2∗−p dx

) 2∗−p
2∗

< ε,

where the last inequality is from the absolutely-continuity of
∫
Ω |f |

2∗
2∗−p dx. Thus, our claim is true.

Similarly,

lim
n→∞

∫

Ω
g(x)|un|qdx =

∫

Ω
g(x)|u∗|qdx. (3.2)
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By the weakly lower semicontinuity of the norm, combining (3.1) and (3.2), we have

I(u∗) =
1
2
‖u∗‖2

µ −
1
p

∫

Ω
f(x)|u∗|pdx− 1

q

∫

Ω
g(x)|u∗|qdx

≤ lim inf
n→∞

[
1
2
‖un‖2

µ −
1
p

∫

Ω
f(x)|un|pdx− 1

q

∫

Ω
g(x)|un|qdx

]

= lim inf
n→∞ I(un)

= m+

< 0,

which implies that u∗(x) 6≡ 0 in Ω. Thus u∗ ≥ 0, u∗ 6≡ 0 in Ω. Since

m+ = inf
u∈N +

I(u) <, 0

thus

inf
u∈N +∪N 0

I(u) = inf
u∈N +

I(u) < 0. (3.3)

Moreover, combining (i) with (3.3), for all n large enough we have I(un) < 0. Therefore, the

sequence {un} has a subsequence, still denoted by {un}, such that {un} ⊂ N +.

Secondly, we prove that u∗ is a weak solution of problem (1.1). Let s > 0 small enough, ϕ ∈
H1

0 (Ω), we choose u = un, w = sϕ ∈ H1
0 (Ω) in Lemma 2.2, thus we get tn(s) = tn(sϕ) satisfying

tn(0) = 1, tn(s)(un + sϕ) ∈ N +.

Note that

‖un‖2
µ −

∫

Ω
f(x)up

ndx−
∫

Ω
g(x)uq

ndx = 0. (3.4)

Then, from (ii), one has

|tn(s)− 1| · ‖un‖µ + stn(s)‖ϕ‖µ

n
≥ 1

n
‖tn(s)(un + sϕ)− un‖µ

≥ I(un)− I[tn(s)(un + sϕ)],

=
1− t2n(s)

2
‖un‖2

µ +
tpn(s)− 1

p

∫

Ω
f(x)|un + sϕ|pdx

+
tqn(s)− 1

q

∫

Ω
g(x)|un + sϕ|qdx

+
t2n(s)

2
(‖un‖2

µ − ‖un + sϕ‖2
µ

)

+
1
p

∫

Ω
f(x)(|un + sϕ|p − up

n)dx

+
1
q

∫

Ω
g(x)

(|un + sϕ|q − |un|q
)
dx.
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Consequently, combining with (3.4), dividing by s and letting s → 0+, it follows that

|t′n(0)|‖un‖µ + ‖ϕ‖µ

n
≥ −t′n(0)‖un‖2

µ + t′n(0)
∫

Ω
f(x)|un|pdx

+t′n(0)
∫

Ω
g(x)|un|qdx−

∫

Ω

[
(∇un,∇ϕ)− µ

|x|2 unϕ
]
dx

+
∫

Ω
f(x)|un|p−2unϕdx +

∫

Ω
g(x)|un|q−2unϕdx

= −t′n(0)
(
‖un‖2

µ −
∫

Ω
f(x)|un|pdx−

∫

Ω
g(x)|un|qdx

)

−
∫

Ω

[
(∇un,∇ϕ)− µ

|x|2 unϕ
]
dx

+
∫

Ω
f(x)|un|p−2unϕdx +

∫

Ω
g(x)|un|q−2unϕdx

= −
∫

Ω

[
(∇un,∇ϕ)− µ

|x|2 unϕ
]
dx

+
∫

Ω
f(x)|un|p−2unϕdx +

∫

Ω
g(x)|un|q−2unϕdx.

Hence, we can deduce

|t′n(0)|‖un‖µ + ‖ϕ‖µ

n
≤

∫

Ω

[
(∇un,∇ϕ)− µ

|x|2 unϕ
]
dx

−
∫

Ω
f(x)|un|p−2unϕdx−

∫

Ω
g(x)|un|q−2unϕdx,

(3.5)

for any ϕ ∈ H1
0 (Ω). Since (3.5) also holds for −ϕ, one gets

|t′n(0)|‖un‖µ + ‖ϕ‖µ

n
=

∫

Ω

[
(∇un,∇ϕ)− µ

|x|2 unϕ
]
dx

−
∫

Ω
f(x)|un|p−2unϕdx−

∫

Ω
g(x)|un|q−2unϕdx.

(3.6)

Moreover, Lemma 2.2 suggests that there exists a constant C2 > 0, such that |t′n(0)| ≤ C2 for

all n ∈ N+. Therefore, from the boundedness of {un}, we can choose a subsequence of {un} still

denoted by {un}, passing to the limit as n →∞ in (3.6), we get

∫

Ω

[
(∇u∗,∇ϕ)− µ

|x|2 u∗ϕ
]
dx−

∫

Ω
f(x)|u∗|p−2u∗ϕdx−

∫

Ω
g(x)|u∗|q−2u∗ϕdx = 0, (3.7)

for all ϕ ∈ H1
0 (Ω), this implies that u∗ is a weak solution of problem (1.1).

Finally, we prove that u∗ ∈ N +. Choosing ϕ = u∗ in (3.7), one has

‖u∗‖2
µ −

∫

Ω
f(x)|u∗|pdx−

∫

Ω
g(x)|u∗|qdx = 0, (3.8)
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this implies u∗ ∈ N . Since un ∈ N +, we have

(2− p)‖un‖2
µ + (p− q)

∫

Ω
g(x)|un|qdx > 0.

Consequently, one has

(2− p)‖u∗‖2
µ + (p− q)

∫

Ω
g(x)|u∗|qdx ≥ 0.

We claim that

(2− p)‖u∗‖2
µ + (p− q)

∫

Ω
g(x)|u∗|qdx > 0.

In fact, suppose

(2− p)‖u∗‖2
µ + (p− q)

∫

Ω
g(x)|u∗|qdx = 0,

according to Lemma 2.1, N 0 = {0} for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ, then one has u∗ ≡ 0 in Ω. This

contradicts u∗ 6≡ 0 in Ω. Thus our claim is true. Therefore, u∗ ∈ N +.

Step 2 : We prove that there exists a nonnegative solution of problem (1.1) in N −.

Similarly, applying Ekeland’s variational principle to the minimization problem m− = inf
u∈N −

I(u),

there exists a sequence {vn} ⊂ N − with the following properties:

(i) I(vn) < m− +
1
n

;

(ii) I(u) ≥ I(vn)− 1
n
‖u− vn‖µ, ∀u ∈ N −.

Since I(u) = I(|u|), we can assume from the beginning that vn(x) ≥ 0 for all x ∈ Ω. Obviously,

{vn} is bounded in H1
0 (Ω), going if necessary to a subsequence, still denoted by {vn}, there exists

u∗∗ ≥ 0 such that 



vn ⇀ u∗∗, weakly in H1
0(Ω),

vn → u∗∗, strongly in Ls(Ω), 1 ≤ s < 2∗,

vn(x) → u∗∗(x), a.e. in Ω,

as n →∞. Now we will prove that u∗∗ is a nonnegative solution of problem (1.1).

Firstly, we prove that u∗∗(x) 6≡ 0 in Ω. Since vn ∈ N −, we have

(p− 2)‖vn‖2
µ > (p− q)

∫

Ω
g(x)|vn|qdx,

which is equivalent to

(2− q)‖vn‖2
µ < (p− q)

∫

Ω
f(x)|vn|pdx.
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Consequently, combining with (2.2) and (2.1), one has

(2− q)‖vn‖2
µ ≤ (p− q)

∫

Ω
f(x)|vn|pdx

≤ (p− q)|f | 2∗
2∗−p

|vn|p2∗
< (p− q)|f | 2∗

2∗−p
S
− p

2
µ ‖vn‖p

µ,

thus

‖vn‖µ >


 (2− q)S

p
2
µ

(p− q)|f | 2∗
2∗−p




1
p−2

, ∀vn ∈ N −,

which implies u∗∗ ≥ 0 and u∗∗ 6≡ 0.

Secondly, we prove that u∗∗ is a weak solution of problem (1.1). According to Lemma 2.2, we

can word by word repeat the corresponding arguments in Step 1, and obtain that u∗∗ is a nonnegative

solution of problem (1.1), that is,
∫

Ω

[
(∇u∗∗,∇ϕ)− µ

|x|2 u∗∗ϕ
]
dx−

∫

Ω
f(x)|u∗∗|p−2u∗∗ϕdx−

∫

Ω
g(x)|u∗∗|q−2u∗∗ϕdx = 0,

for all ϕ ∈ H1
0 (Ω).

Finally, we prove that u∗∗ ∈ N −. Choosing ϕ = u∗∗ in above equality, we have

‖u∗∗‖2
µ −

∫

Ω
f(x)|u∗∗|pdx−

∫

Ω
g(x)|u∗∗|qdx = 0,

this implies u∗∗ ∈ N . Since vn ∈ N −, we have

(2− p)‖vn‖2
µ + (p− q)

∫

Ω
g(x)|vn|qdx < 0.

Consequently, one has

(2− p)‖u∗∗‖2
µ + (p− q)

∫

Ω
g(x)|u∗∗|qdx ≤ 0.

We claim that

(2− p)‖u∗∗‖2
µ + (p− q)

∫

Ω
g(x)|u∗∗|qdx < 0.

In fact, suppose

(2− p)‖u∗∗‖2
µ + (p− q)

∫

Ω
g(x)|u∗∗|qdx = 0,

according to Lemma 2.1, one has u∗∗ ≡ 0 in Ω for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ, which contradicts u∗∗ 6≡ 0

in Ω. Thus our claim is true. Therefore, u∗∗ ∈ N −. Obviously, one has I(u∗) = m+ and I(u∗∗) =
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m−. Thus, u∗ or u∗∗ is a ground state solution of problem (1.1). Then the proof of Theorem 1.1 is

completed. 2

PROOF OF THEOREM 1.2 : According to the proof of Theorem 1.1, we only need prove that

u∗, u∗∗ > 0 in Ω. Assume that (H1) holds. Since u∗, u∗∗ ∈ H1
0 (Ω), by the embedding theorem

we have u∗, u∗∗ ∈ L2∗(Ω). Since f, g ∈ L∞(Ω), by the regularity of weak solutions, we have

u∗, u∗∗ ∈ W
2, 2

∗
p (Ω). Then, by the classical bootstrap argument, one has u∗ ∈ W 2,s(Ω) for all

1 ≤ s < ∞. Using the embedding theorem again, we have u∗ ∈ C1,α(Ω) for some 0 < α < 1. Since

u∗ ≥ 0, u∗ 6≡ 0 and g(x) ≥ 0, g 6≡ 0, one has

−∆u∗ =
µ

|x|2 u∗ + f(x)up−1
∗ + g(x)uq−1

∗

≥ f(x)up−1
∗

≥ −f−up−2
∗ u∗

≥ −Cu∗,

where f± = max{±f, 0} and f = f+− f−, and C > 0 is a constant. Thus, by the strong maximum

principle, one has u∗ > 0 in Ω. Similarly, we can obtain that u∗∗ > 0 in Ω. Then the proof of Theorem

1.2 is completed. 2

In order to prove Theorem 1.3, we give the following lemma.

Lemma 3.1 — Given u ∈ N and for all w ∈ H1
0 (Ω), then there exist ε > 0 and a continuous

differentiable function t = t(w) > 0, ‖w‖µ < ε satisfying that

t(0) = 1, t(w)(u + w) ∈ N , ∀w ∈ H1
0 (Ω) ‖w‖µ < ε.

PROOF : The proof is similar to the proof of Lemma 2.2, we omit the detail proof. 2

Now, we give the main proof of Theorem 1.3.

PROOF OF THEOREM 1.3 : According to Lemma 2.1 and Lemma 2.3, one obtains that m =

inf
u∈N

I(u) is well defined. Obviously, m ≤ m− < 0 and m ≤ m+. From Lemma 3.1, by Ekeland’s

variational principle, similarly to Step 1 of the proof of Theorem 1.1, we can prove that there exists a

nonnegative solution of problem (1.1) in N . Without loss of generality, we also denote this solution

by u∗, then I(u∗) = m and u∗ ∈ N . Now, we claim that u∗ ∈ N +. On the contrary, assume

that u∗ ∈ N −(N 0 = ∅ for |f |
1

p−2
2∗

2∗−p

|g|
1

2−q
2∗

2∗−q

< Λ). From (H2), one has
∫
Ω f(x)|u|pdx > 0 and

∫
Ω g(x)|u|qdx > 0. By Lemma 2.1, then there exist positive numbers t+0 < tmax < t−0 = 1 such that

t+0 u∗ ∈ N + and t−0 u∗ ∈ N − and

I(t+0 u∗) ≤ I(t−0 u∗) = I(u∗) = m,
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which is a contradiction. Hence, I(u∗) = m = m+ and u∗ ∈ N +. Obviously, u∗ is a nonnegative

ground state solution of problem (1.1). Similarly to Step 2 of the proof of Theorem 1.1, we get that

there exists a nonnegative solution u∗∗ ∈ N −.

Now, we only need prove that u∗, u∗∗ > 0 in Ω. Assume that (H2) holds, it follows from (3.7)

that ∫

Ω

[
(∇u∗,∇ϕ)− µ

|x|2 u∗ϕ
]
dx ≥ 0 for ϕ ∈ H1

0(Ω),

which means that u∗ satisfies

−∆u∗ ≥ 0, in Ω.

Since u∗ ≥ 0, u∗ 6≡ 0, the strong maximum principle suggests that u∗ > 0 in Ω. Similarly, we

can prove that u∗∗ > 0 in Ω. This completes the proof of Theorem 1.3. 2
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