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Corrections to Matrix polynomial generalizations of the sample variance-covariance matrix when
pn~t — y € (0, oo), Indian Journal of Pure and Applied Mathematics, 48(4) (2017), 575-607
by Monika Bhattacharjee and Arup Bose.

Statement of Theorem 4.2 is not correct as stated. The corrected statement (and its proof) is
given below in Theorem C4.2. Lemma 4.3 was used to prove Theorem 4.2. Now this needs to be
replaced by Lemma C4.3 given below. Specifically, texts between (4.11) and (4.22) and the proofs
given in Sections 5.4 and 5.5 should be considered deleted. This does not affect any of the subsequent
corollaries and consequences of Theorem 4.2. They continue to remain valid with the new Theorem
C4.2.
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1+y
Rj jy ja.gs (f

) = (L y)@d;ej,6 ) s Ry o (f,11) = T@(ﬁgjléj:SSj—l)fjm
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[e.9] o0
Aj1,j27]'3 (Z’i’ ) = Z Z_ZRi,jl,jz,js (i’ 1T), Ajl,j27j3 (2, f, 1) = Z Z_ZRi,jhjz,js (f, 10D).
=1 =1

The following lemma guarantees existence of the above sums. Recall the states poqq and peven defined
on the spaces Ayqq and Aeven respectively. Clearly {d;, e;} are in Aqqq and { f;} are in Aeyen.

Lemma C4.3 — Suppose for all sufficiently large ||, 2 € C™, and for some C' > 0, |@oqq ((TIIT*)")|
< Crforallr > 1. Then A4, j, j, (2, f,1I) and A;, ;, j, (2, f,II) exist in the sense of (4.10).

PROOF : There exists a C' > 0 such that for any {ag;—1} € {b2i—1,05;_1}, {a2:} € {b2i, b5, } and
h>1,

(@(@as - am—1)] < ", |p(agay - -ag)| < C", |5(8")] < C". 1)

Proof of (1) is along the same lines as the proof of Carleman’s condition (C) in Theorem 4.1. Hence
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we omit it. Now by (1), for some C7 > 0, we have

Cl’(Peven(f};)’ Z (H ’Z’—ik’@(ﬁgjléjggik—l)’)

|[peven((Ajy,ja,gs (2, £, 1)) <

11,82,..,0r=1 k=1

< Cilpeven (f7,)|((TIT*))"* (2((&5,d5, djy 255)%)) "/
~ Z H ‘Z|_Zk 64% 4))1/4)

P12, ir=1 k=1

< 01037’ Z ( H ‘Z|_chzk)
i1z, ir=1 k=1
= C1C*"(|]z| — C)™", for sufficiently large |z|.
This completes the proof of the Lemma. O

Theorem C4.2 — Assume (A1)-(A3) hold and p,n — oo, p/n — y > 0.

(a) The following recursive relation holds:

Aj1,j27j3 (Z’ivﬁ) = @(deléj:%)f' (2)

1+y[
z =J2

+ Z AlO lt 1, lt 1 f[CZ é H Alu+1 lu lu 1))i ]
t=1 1
As a consequence, for z € Ct, |z| large, m;(z) is given by

t

ma(z) = 143 Y o([] At i s (£ 1)]. ®
t=1 1

u=1

(b) The following recursive relation holds:

1
Ajjogs (2, [ 1) = — [@Odd(ndjlejs)sz (4)
t—2
+ Z Zy Peven Alo Lo i1 (25 ) 11dj €55) H Al sl (2, f, 1))fj2] .
t=1 1 u=0

As a consequence, for z € Ct, |z| large, m,(z) is given by

mu(z) = 1+Zzy Peven HAlu lue 10w ( f;l))] (5)

t=1 1

PROOF : To prove the theorem we shall prove a lemma that provides expression for @(I16").
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lo,l1,..le—1=1 1=ko<ki<ko<..<ki_1<7

q
S dy =Ty, k=71,

Lemma 1 — Suppose (A1)-(A3) hold and p, n = n(p) — oo, p/n — y > 0. Then

T

t—1

ey =33 >+ w'e([] el st )1, ).
t=1 u=0

1 2 =

PROOF : By Lemma C4.3, we have

p(Ilo") = (Hy)%(ﬁ(z disf sei)")

= (1+y)7"z Z @K(o’)[ill7éllczl27ilz7élzczl37"‘7élrﬁJl1]

oc€eNC2(2r)

where K (o) is the Kreweras complement of o (see Definition 9.21 in [1]) and

To = (1 + y)’f' Z@K(U) [ill, éllczlgail27 éle_l37 sy élrﬁd_ll]-
3

Now to compute (7), we consider the decomposition of NCy(2r) = Ui_, P?", where

and forall 2 <t <,

P = {0 NCy2r):0 ={2ky—1,2k_1},{2ko,2ky — 1}, {2k, 2ky — 1},

Hence, (7) is equivalent to

P ={o € NCy(2r) : {1,2} € 0}

oo 2k2,2kp 1 — 1}, 1 =Fko < k1 <---<hkp1 <7}

785
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where forall1 <t <r,

T = Z 1+y Z Z@K(U Iy, 7€l1dl21fl 7el2dl37 'aélrﬁjll]

UGPZT 06732T 3
t—1
= (1+y) ZZ‘P Hf nge ghutt == 1dlu+1)
= (HyYZZ@(H ple, o r ey, ) f, ) (10)
1 2 u=0

Note o € P?" implies that one block of K (o) is {2ko — 1,2k; — 1,...,2k;—1 — 1} and its other
blocks are subset of {2k,,, 2k, +1,...,2ky11—2,} : 0 <wu < t—2. Thus by using Lemma M5.1(b),
above third equality holds. Moreover, recall (4.7) and note that each & involves one (1 + y). In the
third equality we have > (K, +1 — k, — 1) = r — ¢ many ¢ and therefore they absorb (1 + y)"~*.
Hence the lemma follows by (9) and (10). O

PROOF OF (2) :

Ajh]éja (2, £, 1I) Zz ' Hd]lejsér 1)ij2 =T + T, (say) (11)
where
1Y S fid e S - (r+) (T, &, 5"
T = ——¢(lld;,e5)f,,, and T = I (1+y)e(Td;,,0")f - (12)
r=1

Let Z Z . Now by Lemma 1, c?lt = ﬁCZjl éj30710 and

11,82,0.,0¢ =1

—1
R WD TN CTE R TATS
=0

r=1t=1
t—1
= 1+yzzzzz 1+y H90€ gruri—hu= 1dlu+1)fl )i]é
t=1r=t 1
t—1
_ 1+yzzzz—(u+m+ (1 4 y)p Hgo e, 0" ldlu+1)fl )ij
—1 u=0
00 — 00

T (14 y)p(@, 0 T ) ) ]

u=014,41=1
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H Z Z_i“HRiuﬂ,luﬂ,lu’l“(i’1))

=01y 41=1

14y — _ _
— Y Z Z (/_D(Alolt—l,lt—l Hd é H Alu+1 lu, lu 1)) (13)
1

Hence (2) is established by (11)-(13).

PROOF OF (3) : Note that

mu(z) = ¢((0 == 270" ) = —(1+y) M Aooo(z £, 1).
=1
Thus (3) follows by (2) and observing that dy = 1, &y = 1 and io =1.
This completes the proof of the theorem C'4.2(a).

PROOF OF (b) : By (1), note that for any polynomials IT;, ITs, . . ., ITj, of the same form as IT, we

have
@(H Rjkajlk»jZkajBk (i? ﬁk))
k=1
= (1+ y)T@(ijmim a 'ij%) H @(ﬁkdhkéjzakgjk_l)
k=1
yr r 1 _'_ y = _ _ <
= m@even(fjm Fina + fiar) ’:fl:[l (T@(dejlkejzsk‘sjk 1))
y" -
= wweven(g Ry jrigongsn (f+ i)
Thus
— yr r
H Jusdandan H k) = ?QPGVGD(H Ajigongan (25 [ 1)) (14)
k=1 Yy k=1
Therefore, by (2) and (14), we have
- _ 1
Aj1,j2,j3 (Z,i, H) = ; [ySOOdd(del €3 )ijz (15)
t—2

+ Z Z Y even (Ao 1,y 11 (2, . Tdj, €55) H Al il (25 1, 1))ij2} :

t=1 1 u=0
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Hence, (4) follows from the above equation and (1).

Now by (4.9), (3) and (14), we have

t

y 11 1 = yt
mmu(z) — m; = _;[1 + tzl 1+ ySOeven( H Alu,lufl,lu71(z7f7 1))]

u=1

Simplifying the above equation,

00 t
mu(z) = —% [1 + Z Z yt_liﬂeven( H Alu,lu_l,lu_l(za fs 1))]
u=1

t=1 1

This establishes (5) and hence completes the proof of Theorem C'4.2.
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