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Abstract
Knowledge Graphs (KGs) present factual information about domains of interest. They are used in a wide variety of applica-
tions and in different domains, serving as powerful backbones for organizing and extracting knowledge from complex data.
In both industry and academia, a variety of platforms have been proposed for managing Knowledge Graphs. To use the full
potential of KGs within these platforms, it is essential to have proper provenance management to understand where certain
information in a KG stems from. This plays an important role in increasing trust and supporting open science principles.
It enables reproducibility and updatability of KGs. In this paper, we propose a framework for provenance management of
KG generation within a web portal. We present how our framework captures, stores, and retrieves provenance information.
Our provenance representation is aligned with the standardized W3C Provenance Ontology. Through our framework, we
can rerun the KG generation process over the same or different source data. With this, we support four applications:
reproducibility, altered rerun, undo operation, and provenance retrieval. In summary, our framework aligns with the core
principles of open science. By promoting transparency and reproducibility, it enhances the reliability and trustworthiness
of research outcomes.
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1 Introduction

Knowledge Graphs (KGs) [1] consist of nodes, represent-
ing real-world entities, and edges connecting them, repre-
senting relationships among entities. They present factual
information about a particular domain or set of domains.
Nowadays, KGs are generated for different domains such
as biodiversity [2], or biomedicine [3], and in various ap-
plications such as recommendation systems [4]. Both in in-
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dustry and academia, different KG management platforms
(cf. [5, 6]) have been suggested. A KG platform is a por-
tal for creating, managing, and using KGs. Such platforms
aim to provide functionalities and services to cover the life
cycle of KGs. However, to use the full potential of KGs in
any application and domain, it is essential to have proper
provenance management, such that it is possible to under-
stand where certain information in the KG stems from. This
increases trust in the information provided and supports
open science principles [7]. Moreover, a provenance ma-
nagement infrastructure in KG management platforms can
ease the successful reproducibility of KGs. Reproducibility
is an important concept that recreates a KG with the goal
of producing the same graph and ensuring the expected re-
sults. Also, provenance management can help in recreating
a graph while taking new settings into account. This helps
in updating KGs effectively. All of the above are important
factors in increasing the usage of KGs.

Assume a user aims to build a KG from their source
data. To generate the KG, different steps are required such
as cleaning, converting data, linking to other resources, or
augmenting with new knowledge. The user uses multiple
software tools in a specific order to generate the KG. To
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make the most of the KG, one may need to know: under
which processes a KG is built; by whom and on which
source data it is created; whether the resulting KG can be
recreated with the same source data and the same processes;
whether the same processes can be applied on other source
data, and so on. To handle these issues, the web portal needs
to include a powerful provenance management framework.
Upon that, the workflow of generating a KG can be saved,
rerun, edited, and applied to other source data, supporting
reproducibility.

For computational tasks, it is often desired to have
a record representing what happened during their execu-
tion. Generally, such records are known as provenance data.
Capturing, storing, accessing, and sharing provenance data
are complex problems. Solutions to these problems vary
widely depending on factors like the computational environ-
ment, methods, desired provenance granularity, and much
more. One solution is to integrate a computational task into
an environment capable of capturing the provenance of the
results of these tasks. Perez et al. [8] have systematically
reviewed 25 popular provenance systems. Even though the
term provenance system is not explicitly defined, it can be
derived from their survey that these include, e.g., Scalable
Workflow Management Systems (SWfMS) [9] or Database
Management Systems (DBMS). In the survey, a taxonomy
is built from the observed approaches in provenance sys-
tems that deal with different provenance issues. Moreover,
Perez et al. summarized different aspects of provenance
systems and discussed in detail how multiple systems ad-
dressed these aspects. They considered that the decision on
a provenance solution depends on the real interests, needs,
and expectations of the developer or potential users and
depends heavily on the application domain.

In contrast to developing a desktop application for
a single user, in web development there are usually more
dependencies, restrictions, and security issues that need to
be considered. In a web portal, there is often a frontend
(client side), serving as a presentation layer and a possibil-
ity for the user to interact with the portal. Such interactions
issue requests to the backend. The backend needs a high
fault tolerance and automated functionalities to handle user
requests. Extending backend functionalities with third-
party tools needs security, safe execution, and careful mo-
nitoring. Such tools may come with different programming
languages and dependencies. It is also essential to imple-
ment these tools such that they do not affect each other in
particular or general dependency issues, writing files, or
memory usage. In most web portals, developing a backend
architecture with high flexibility is necessary for further im-
plementations. Moreover, requirements on the provenance
solution for the web portal might change during ongoing
development.

When thinking about including a provenance platform
in our studied portal, we faced a number of practical is-
sues: Existing provenance systems (cf. the reviewed sys-
tems in [8]) tend to have constraints on programming lan-
guages and domains. It is a complex task to apply changes
to big code bases when a specific feature is missing or
needs to be changed. Depending on the tool’s complexity,
integrating third-party tools into a computational notebook
can be difficult. Additionally, connecting such a provenance
system or computational notebook to the web portal’s func-
tionalities adds an extra layer of complexity if possible at
all.

To address the mentioned problems, in this paper, we
contribute to creating a customized provenance framework
in a KG generation portal with the aim of benefiting as
much as possible from the collected provenance data. As
a whole, our contributions can be summarized as follows:

� We introduce a framework capable of capturing the
coarse-grained workflow provenance of generated KGs
within a web portal. This framework is customized in
our studied platform, but the underlying principle can be
adapted for other platforms. We refer to the provenance
data of the KG generation process as a workflow. It holds
information about all executed tools and necessary inputs
and outputs during KG generation.

� We ensure that the data about the computational tasks
required to create the KG are stored in a reusable work-
flow associated with the KG and are efficiently accessi-
ble. We describe how we align captured provenance to
W3C PROV-DM [10] and show the ability to store this
data in RDF triple format according to W3C PROV On-
tology [11].

� We associate the provenance data with two distinct ap-
proaches, operating at both the graph and triple level.

� Our provenance data can be used in four applications: re-
producing a KG, undoing operations during KG genera-
tion, update a KG with adapted workflow or data, retrieve
provenance info.

This idea has been initially proposed in [12]. In this
revised version of our paper, we introduce several enhance-
ments to our initial publication. Firstly, we extend the de-
scription of our proposed framework to provide a more
comprehensive understanding. This allows for a deeper ex-
ploration of its potential applications. Additionally, we have
extended the information covered in our literature review.
We also provide a detailed explanation of the provenance
data, mapped to the PROV standard, ensuring a clear and
precise representation. Our new contribution here, which
brings novelty to our work, is the implementation of an
alternative approach for provenance storage and associa-
tion in the form of triples, that also allows for provenance
retrieval using SPARQL queries on the KG.
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The rest of the paper is organized as follows. Sect. 2
presents the literature review. Sect. 3 shows our proposed
framework, followed by implementation details in Sect. 4.
We conclude the paper in Sect. 5.

2 Literature Review

The provenance of an object is the history of its origin
and derivation [13]. Provenance tracking records the prove-
nance of an object. In the literature, there have been differ-
ent surveys (cf. [8, 14]) on provenance characteristics and
provenance models.

Provenance data can be partitioned into two types,
prospective and retrospective provenance. According to
a survey by Freire et al. [15] ‘Prospective provenance
captures the specification of a computational task (i.e.,
a workflow)—it corresponds to the steps that need to be
followed (or a recipe) to generate a data product or class of
data products. Retrospective provenance captures the steps
that were executed as well as information about the execu-
tion environment used to derive a specific data product —
a detailed log of the execution of a computational task.’ In
this work, we focus on capturing retrospective provenance.
Provenance can be captured at varying levels of detail. In
this work, we collect coarse-grained provenance [16] by
documenting the workflow of generating KGs from source
data in a web portal.

Another important issue is finding a proper data model
to represent provenance data. There have been efforts to
unite the most common provenance data points into stand-
ardized specifications [17–19]. Key for our work is the
W3C PROV family of specifications for modeling prove-
nance data [20]. In detail, we chose to use ‘The PROV
Data Model (PROV-DM)’ [10] and ‘The Provenance On-
tology (PROV-O)’ [11]. PROV-DM [21] is a ‘generic data
model for provenance that allows domain and application
specific representations of provenance to be translated into
such a data model and interchanged between systems’. This
data model uses entities, activities and agents to describe

Fig. 1 Simple Provenance Example with two Entities, an Activity, and
an Agent

provenance. Any digital or physical thing or object, for
example a dataset, may become an entity. An activity is
‘something that occurs over a period of time and acts upon
or with entities’, e.g. an operation on said dataset. An agent
is ‘something that bears some form of responsibility for
an activity taking place, for the existence of an entity, or
for another agent’s activity’. Researchers generating a KG
in our web portal become agents, but also external tools
used to complete certain tasks can become specific types of
agents, i.e. ‘SoftwareAgents’. In practice, these three con-
cepts can be connected through relationships to explain the
workflow. For example, an activity can perform an action
on a dataset to generate an output dataset; in PROV terms
this means that the activity prov:used an input dataset,
and that the output dataset prov:wasGeneratedBy the
activity; and prov:wasDerivedFrom the input dataset.
This example is visualized in Fig. 1. Additionally, the three
classes also have optional attributes. Through these, it be-
comes possible to attach important provenance information.
For example, an entity describing the input dataset can have
attributes containing the original filename, type, the date of
creation, or when it was uploaded to the application.

PROV-O [22] provides an encoding of PROV-DM in
OWL2 Web Ontology Language [23, 24]. It provides ‘a set
of classes, properties, and restrictions that can be used to
represent and interchange provenance information gener-
ated in different systems and under different contexts’. We
chose to use the PROV data model because an existing
Python package (prov [25]) allows for straightforward im-
plementation.

The importance of provenance on large-scale KGs and
the Web of Data has been highlighted in [26]. As a solu-
tion to manage provenance, computational Notebooks (cf.
Jupyter Notebook [27]) have gained widespread adoption
in recent years, cf. ProvBook [28]. However, implement-
ing large, complex projects in a notebook, especially when
multiple programming languages are used, is not straight-
forward.

Another issue is the automation of a notebook. We faced
different problems to connect a piece of software imple-
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mented in Jupyter Notebook to the backend of our studied
platform, and executing cells when we receive specific user
requests. On the other hand, web-based interactive develop-
ment environments such as JupyterLab that can be hosted
and accessed by multiple people would introduce security
issues.

Existing tools such as Open Refine [29] and others can
track operations applied on the data and thus capture prove-
nance information. However, we did not use such tools as
a provenance solution, as they are not a fully-fledged devel-
opment environment and it is not always possible to extend
those tools with arbitrary code and still make use of its
provenance features.

To the best of our knowledge, a few KG platforms [5,
6, 30, 31] apply a provenance solution in some capacity.
Of those, Blue Brain Nexus [6] is the only one explicitly
mentioning the importance of provenance data and their
usage of theW3C PROV ontology [11]. The other platforms
did not explain their approach on provenance management
in their publications.

3 Our Proposed Provenance Management
Framework

Knowledge Graph (KG) generation is an ordered execution
of tools in different phases, where source data is the input
and a KG is the output. With tool, we mean an executable
piece of software that performs some computational task
such as cleaning, linking, or converting datasets. The input
of a tool is a file along with a configuration (set of input
parameters). The output of a tool is a new processed file.
For simplicity, we assume that tools are run sequentially to
generate a KG. This execution order needs to be preserved.
We assume the input of a tool execution is the output of the
prior tool execution. Every tool execution has a file as an
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generation process

Capturing provenance data

Provenance
Data

1
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3
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Fig. 2 Overview of our management framework for managing the
provenance of the KG generation in a web portal

input and a new file as an output. We define any such file
as a data object.

Fig. 2 shows our provenance management framework in
the KG generation of a web portal. The users go through
different phases to generate the KG based on their source
data. The resulting KG is added to the knowledge base.
Thus, with each generation of a new (sub-)KG, the over-
all KG (in the remainder of the paper referred to as main
KG) is extended. The provenance data of each phase is
captured ( ), stored ( ), and associated with the gener-
ated KG ( ). The provenance data can be used for various
applications ( ).

3.1 Provenance Data Capture andMapping to PROV

We capture provenance data related to the KG generation

process (see in Fig. 2). Our provenance data can be
mapped to the existing provenance models, namely PROV-
O [11] and PROV-DM [10]. In the web portal, each KG
generation starts by uploading source data by a user. After
that, the user selects a tool with a specific configuration
and then the tool gets executed. This happens sequentially
multiple times until the KG is generated. In our frame-
work, we capture the provenance of each data object that
got processed by a tool execution during the KG genera-
tion process. All executed tools, configurations, and input
and output of each phase of the KG generation are saved
separately. For each, we store a set of information such
as the version of the tool or the storage location of a file.
All provenance data of an executed tool at every phase is
captured by our system. We call the information about all
executed tools in the sequential phases of the KG genera-
tion a workflow. It is an ordered collection of provenance
data of executed tools in all phases of the KG generation
process. Note that, the provenance data of a data object in-
cludes all stored data of prior phases until that phase. We
use existing provenance vocabulary (PROV-O and PROV-
DM) to structure captured data using entities, activities, and
agents, following these rules:

1. A user using the web portal to generate a KG is repre-
sented as a prov:Agent.

2. The main KG becomes a prov:Entity of type
prov:Collection.

3. Users and KG entities are connected through the
prov:wasAttributedTo relationship to show who
was responsible for a specific KG.

4. From each uploaded dataset, a sub-KG is generated.
Each sub-KG is a prov:Entity.

5. Sub-KGs are appended to the main KG through the
prov:hadMember relationship.
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6. The workflow of our method to generate knowledge
graphs becomes a prov:Entity, more specifically
an entity of type prov:type=prov:Plan.

7. The provenance data of each phase of a workflow be-
comes a prov:Activity.

8. Phases are linked to the sub-KG using the prov:was
AssociatedWith relationship. This relationship has
an additional argument to input a prov:Plan with
which we can state that phases are executed according
to the workflow.

9. The configuration of each phase (user’s selections in the
web portal) becomes a prov:Entity.

10. Phases and the configurations they use are connected
using the PROV prov:used relationship.

11. Every tool becomes an agent, specifically a prov:
SoftwareAgent.

12. Tools use configurations. Each configuration is saved as
a prov:Entity.

13. Tools and their configurations are also connected using
the prov:wasAttributedTo relationship.

14. Tools and phases are connected through the prov:was
AssociatedWith relationship.

15. Every phase has an input and an output data object, both
mapped to prov:Entities. The first input data ob-
ject is called the source dataset. If a data object consists
of multiple parts, it becomes a prov:Collection
and its sub-entities are append using prov:had
Member.

16. The phase activities and their inputs are connected
through prov:used, while the generated outputs use
the prov:wasGeneratedBy relationship.

17. Output and input objects connect using prov:was
DerivedFrom.

Fig. 3 shows an excerpt of provenance for a workflow,
visualized using the prov Python package [25]. Blue rect-
angles depict activities, yellow ovals depict entities, and
orange boxes describe agents. Edges depict relations ac-
cording to the listing above. Note that in this example, to
increase readability, prov attributes are not shown. Fig. 6
shows the RDF triples corresponding to the example in
PROV-O format.

3.2 Provenance data storage and KG association

During KG generation, the provenance data of each pro-

duced data object is stored (see in Fig. 2). This infor-
mation ensures transparency and enables users to assess the
reliability of the generated KG. Each generated KG is a sub-
KG of the main KG in the web portal. The challenge lies in
how we store and associate captured provenance data to its
corresponding sub-KG (see in Fig. 2). We differentiate

Fig. 3 Provenance data example captured in our workflow in PROV-O
syntax for a given phase i of the KG generation process; orange boxes
show agents, yellow ovals present entities, and blue rectangles show
activities; edges show relationships between objects as described in
Sect. 3.1

between graph-level and triple-level associations. Graph-
level association represents how captured provenance data
is connected to its corresponding KG. Triple-level associ-
ation shows how a specific triple is coupled to its prove-
nance. In our work, we consider two storage and associa-
tion approaches using either the knowledge base itself, or
a relational database. The second approach has been imple-
mented in our previous work [12]. The new, first approach,
is presented below.

Approach 1 – Triple-based KG Provenance Storage:
In this approach, KGs and their provenance data are saved
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Fig. 4 Visualisation of Approach 1 with an example KG. Nodes attached to the left of sub-KG show the KG itself. Nodes on the right, attached
to prov-sub-KG, contain provenance information

in the knowledge base. This requires the provenance data to
be represented as triples. The aforementioned provenance
capture approach allows for generating output files in dif-
ferent file formats, including TTL. As such, the files can
be saved in the knowledge base. In the current implementa-
tion, once provenance data is captured, it is associated with
the corresponding sub- and main-KG at runtime, such that
there exists a triple connecting the sub-KG to the main-
KG (see Fig. 6) that can be retrieved by using a query
containing the sub-KGs identifier. This way, provenance is
associated at graph-level. Since all provenance data for the
workflow is connected to the sub- and main-KG in triple
form through the prov:wasAssociatedWith relation-
ship (see Fig. 3), the triple-level can be queried by providing
the identifiers of the main or sub-KG and additional infor-
mation about the specific parameter, e.g., which phase or
tool should be retrieved.

Currently, coarse-grained provenance about the work-
flow is tracked. Each input dataset is associated with its
own sub-KG. Therefore, triples contain information about
how a dataset is transformed at each phase. However, the
provenance capture approach does not have the granularity
to track how each entry of the input dataset was transformed
by each step.

Fig. 5 Visualisation of prove-
nance data in the KG. Shown
here are data points associated
with the phases of KG genera-
tion

Fig. 4 shows a visualisation of an example KG in
GraphDB [32]. The example KG combines actual graph
information (cell, row, and column values), attaches it to
a node representing the sub-KG, couples it to a node repre-
senting the sub-KG’s provenance (through owl:sameAs)
and attaches all provenance data points to that node. Fig. 5
shows in more detail, how the provenance nodes and edges
are represented in the KG. Querying the workflow prove-
nance in the KG itself therefore becomes straightforward.

Approach 2 – RDBMS-based KG Provenance Stor-
age: The generated KGs are stored in a knowledge base,
while their provenance data is stored in a relational data-
base. This separation allows for efficient organization and
retrieval of provenance information. To handle the prove-
nance storage in the web portal, we save provenance data
of the KG generation process (i.e., workflow) as a JSON-
string inside the provenance record. For each new KG ge-
neration, a new entry in the relational database is created.
This entry contains provenance data about each phase of the
workflow and is called provenance record. Each KG gene-
ration process has a primary key and belongs to a specific
project. Here, both graph- and triple-levels are supported.
At the graph-level, the reference (URI of the sub-KG in
the knowledge base) of a sub-KG is stored in the rela-
tional database. This ensures a direct link between the sub-
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Fig. 6 Example of a workflow holding one phase in RDF

KG and its provenance data. Therefore, each sub-KG in the
knowledge base has an associated reference (id) in its prove-
nance data. At the triple-level, subjects, predicates, and ob-
jects of all triples are annotated (e.g., via rdfs.seeAlso,
rdfs.comment, or other defined annotations) with their
respective provenance ids.

The provenance data of a specific sub-KG or a term
(subject, predicate, object) can be retrieved by a lookup via
the reference of the sub-KG and optional provenance id.
The association is of type “no-coupling” according to [8].
The associated provenance data can be stored in different
formats such as JSON, XML, or TTL.

3.2.1 Comparison of Approaches

In this section, we provide the respective strengths and
weaknesses of the two provenance storage approaches pre-
sented earlier.

Approach 1 – Advantages:

� Smooth integration with existing knowledge base struc-
ture.

� Directly aligns with the RDF-based representation of the
KG.

� Provides comprehensive provenance data about the entire
workflow.

� Provenance can be retrieved by querying the graph itself.
No further technologies are necessary.

Approach 1 – Disadvantages:

� Limited granularity in tracking transformations of in-
dividual input dataset entries. However, in future work
there may be solutions on how to include and associate

fine grained provenance data. Smaller granularity might
increase the graph’s complexity considerably.

� By saving provenance in the KG itself, the number of
triples grows with each data source used. This uses more
storage space, might increase the complexity of queries,
but also can hinder a persons ability to understand the
KG.

Approach 2 – Advantages:

� Efficient organization of provenance data.
� Allows for structured storage and easy accessibility/

retrieval of provenance records.
� Provenance is not stored in the KG itself. This mitigates

disadvantages mentioned above.

Approach 2 – Disadvantages:

� More complex implementation compared to Approach
1. This complexity arises from the need to establish and
manage the database schema and ensuring compatibility
with the existing infrastructure. Additionally, the pro-
cess of integrating and querying data from the relational
database requires specialized knowledge in database
management. Moreover, maintaining synchronization
between the knowledge base and the relational database
introduces an additional layer of complexity.

It becomes evident that each method presents distinct
advantages and disadvantages. The choice between these
approaches will depend on specific project requirements,
resource availability, and the desired depth of provenance
tracking.

4 Implementation and Application

This section gives a detailed description of the implemen-
tation of our provenance framework within the iKNOW
project and its applications.

4.1 Implementation

In this section, we provide detailed insights into the techni-
cal implementation, including an overview of the technolo-
gies used.

About iKNOW: Our provenance framework is a part of
the iKNOW platform [33]. iKNOW aims to create a seman-
tic-based toolbox for Knowledge Graph creation and evolu-
tion in the biodiversity domain. Within iKNOW, we had the
opportunity to run initial tests of the provenance framework
using real-world data. The implementation of our frame-
work is available under an open-source license [34].

Backend and Frontend Technologies: For the backend,
we use the Python web framework Django [35] due to its
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Fig. 7 Top-Left: Provenance retrieval GUI – Users select which term or sub-KG they want to retrieve the provenance for; Bottom-Left: result of
provenance retrieval; Right: The GUI for the altered rerun scenario

flexibility in data operations. For building user interfaces
on the frontend, we use Svelte [36], SvelteKit [37], and
Skeleton [38] for their smooth integration and efficiency in
creating dynamic and user-friendly interfaces.

Dependency Management: We use Docker [39] to en-
capsulate different tools. A Docker container packages up
code and all associated dependencies. This prevents depen-
dency issues and provides an isolated runtime environment.

Data Management and Storage: We use
PostgreSQL [40] for managing data of the portal function-
alities and provenance data of Approach 2 (see Sect. 3.2).
Moreover, we use Blazegraph [41] for storing and accessing
KGs.

Provenance Storage Approach: The implementation
of the RDBMS-based approach of storing provenance
(Sect. 3.2) has been described previously [12]. We im-
plemented the new approach of provenance storage and
association using the prov python package.

4.2 Applications

As a whole, our provenance framework can support four

different applications (see in Fig. 2):

1 – Reproducibility. A reproducible KG increases trust
in the information it contains and supports open science
principles. Reproducing a KG is the process of re-execut-
ing all steps that lead to the creation of the original KG to
gain the same result. Reproducing the KG can be done by
re-running a pre-existing workflow of a sub-KG (captured
through provenance data). The application of this process
is automatic within our framework. Through the GUI, users
can select an existing workflow and re-run the entire pro-
cess. Afterwards, the resulting KG can be downloaded sep-
arately. Users can also compare the new KG to the original
by comparing their triples and metadata shown in the web
portal. One should note, though, that the same results can
only be achieved with the same input. Thus, in the case of
dynamic input sources that do not easily allow accessing
earlier versions, reproducibility is only possible, if copies
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of the sources are stored. This is not automatically provided
by our framework.

2 – Altered rerun. To compare or achieve better results
based on different tools or configurations used within an
existing workflow, executing it again with small changes
should be possible. This can also include exchanging the
source data. This is particularly important, if KGs are based
on non-static data sources that are updated frequently or
extended.

A user might want to generate a new KG based on
an existing workflow of a pre-generated KG while pos-
sibly changing tools, configurations, or even source data.
To achieve this, as we have shown in Fig. 7, right users can
select a workflow, apply desired changes to it, and rerun
the workflow over the same or other source data. The main
advantage here is the possibility of generating a new KG
automatically with an already known workflow. This pro-
vides user convenience. In the end, the altered workflow is
saved as a new workflow in the web portal.

3 – Undo operation. When generating a new sub-KG,
executed tools may not produce the expected results. There-
fore, it should be possible to undo the last operations. Dur-
ing the KG generation process in the iKNOW portal, users
can roll back one or several executed tool(s). If this func-
tionality is used, provenance will be updated accordingly.
Some additional implementation details, e.g. deleting files
or maintaining the consistency of provenance data and files
in the database, must be considered to ensure the safety of
the operation.

4 – Provenance retrieval. Retrieving provenance data
is important for users to interpret and use data correctly.
Through our GUI, users can select which sub-KG they want
to retrieve the provenance data from (see Fig. 7, left). It
is also possible to retrieve the provenance data of a spe-
cific term. The system first searches on which sub-KG the
queried term exists. It then shows the list of sub-KGs to the
user. Afterwards, users can select one of the sub-KGs to
see its provenance data. Users can observe by who, when,
and how the sub-KG was built. It is currently possible to
download provenance data of a sub-KG as a TTL file ac-
cording to the first approach, and as a JSON file according
to the second approach.

5 Conclusion

We proposed a framework showing an environment capa-
ble of provenance management to capture, store and re-
trieve provenance data of Knowledge Graph generation in
a web portal. We have presented how our provenance data
can be mapped to PROV-DM and PROV-O. Also, we in-
troduced two different approaches for its storage and re-
trieval. Moreover, we presented four different applications

to show the benefit of our proposed framework. The frame-
work has been implemented as part of iKNOW, a project
aiming at providing a platform for KG generation for the
biodiversity domain. In our future work, we will leverage
this setting to perform extensive user tests with real world
biodiversity data and scientists from that domain. This will
help to validate or make design choices, but also provide
valuable insights into the general usability and usefulness
of the framework. Additionally, we plan for several possi-
ble extensions of the framework, including extending the
provenance capture and storage for tools with special re-
quirements outside of our definition. This can involve, e.g.,
multiple inputs and outputs of a tool.
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