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Abstract
Over the past decade, DNA has emerged as a new storage medium with intriguing data volume and durability capabilities.
Despite its advantages, DNA storage also has crucial limitations, such as intricate data access interfaces and restricted
random accessibility. To overcome these limitations, DNAContainer has been introduced with a novel storage interface for
DNA that spans a very large virtual address space on objects and allows random access to DNA at scale. In this paper,
we substantially improve the first version of DNAContainer, focusing on the update capabilities of its data structures and
optimizing its memory footprint. In addition, we extend the previous set of experiments on DNAContainer with new ones
whose results reveal the impact of essential parameters on the performance and memory footprint.

Keywords DNAContainer · DNA Storage · DNA Data Structures

1 Introduction

Due to the rapid increase in daily data produced, traditional
storage devices like disks and tapes can no longer cope
with these high storage demands. Even today, the overall
capacity of existing data storage devices is already behind
that of the data created [1]. In addition, these traditional
storage devices are expensive [2] and require continuous
replacement every few years due to their low durability [3].
To overcome these severe storage problems, it is of utmost
importance to develop novel storage devices with substan-
tially higher capacities and lower storage costs than existing
ones.

Among recent developments, deoxyribonucleic acid
(DNA) storage is one of the most promising technological
trends for managing persistent data. DNA is an extremely
dense biomaterial holding up to 455 exabytes per gram, and
thus at least six orders of magnitude denser than current
devices [3]. DNA endures several centuries and consumes
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around eight orders of magnitude less energy than tradi-
tional storage devices [1, 4, 5]. Despite these apparent
advantages, current technologies for reading and writing
DNA induce a high latency (from hours to days). However,
around 80% of generated digital information worldwide is
considered cold [6, 7], i.e., the data is not accessed fre-
quently, making DNA storage a potential candidate for the
management of cold data. In addition, the cost of reading
and writing DNA has declined dramatically over the past
years [8], and this trend is expected to continue. From a da-
tabase perspective, one of DNA’s serious problems is its
poor support for scalable random access and the inapprop-
riate interface for data access. To provide scalable random
access, most previous approaches, such as [9], have essen-
tially relied on the parallel use of multiple DNA storage
devices, so-called tubes, as one logical storage device.

Recently, DNAContainer [10] has emerged to overcome
these drawbacks of current approaches for single-tube DNA
storage. DNAContainer provides an interface for reading
objects from and writing to DNA storage similar to the
ones of a traditional device. Based on a translation table,
it overcomes the problem that there is no natural address
scheme for DNA storage. Furthermore, it organizes DNA
storage in units of oligonucleotides (oligos) that are con-
tiguous subsequences on DNA and generally of fixed size.
An oligo is split up into two sections. One consists of a bar-
code that serves as an address, and the other contains the
content. Since similarities between different oligos cause
contention when reading the DNA [11], DNAContainer in-
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troduces various coding steps to create only oligos that are
sufficiently different from others. Thus, an efficient test for
dissimilarity among oligos is critical in DNAContainer.

This paper addresses certain limitations and proposes
further extensions to the original design of DNAContainer
that has been published in [10]. First, the current interface
of DNAContainer is limited to reading objects and append-
ing new ones. So far, it is not possible to update or delete
an object from DNA. This hinders the implementation of
even basic data structures such as lists and arrays. Thus,
we propose an extension of the interface supporting up-
dates and deletions of objects, and we show how an arbi-
trary insertion in lists can be implemented using the new
interface. Second, the creation of oligos is complex as it
involves checks of biochemical constraints, and it also re-
quires verifying that a new oligo is substantially different
from all the other ones already kept on DNA. The cur-
rent algorithm is expensive, especially regarding its mem-
ory footprint. Consequently, the size of directly accessible
DNA storage is still small compared to that of traditional
devices because DNAContainer hits the memory limit early.
Thus, we develop new strategies for reducing the memory
footprint. The basic idea is to introduce compression on
locality-sensitive hashing (LSH) that is internally used for
the dissimilarity check. Third, we conducted extensive ex-
periments with varying parameter settings showcasing the
usability and effectiveness of DNAContainer. We verified
that DNAContainer generates DNA adhering to the required
constraints for different data sets and induces only a small
extra storage overhead. We also examined the scalability
of DNAContainer, demonstrating its ability to generate and
support up to billions of addresses, providing large-scale
random access while utilizing storage efficiently.

The remainder of the paper is structured as follows. The
following Sect. 2 discusses recent works and studies on
DNA systems and virtual address spaces. Next, Sect. 3
introduces terminology commonly used in the context of
DNA storage. Then, Sect. 4 provides an overview of the de-
sign and implementation of DNAContainer and its compo-
nents. In Sect. 5, we introduce extensions and enhancements
of DNAContainer. After that, Sect. 6 presents experimen-
tal results of a simulation with DNAContainer managing
billions of oligos. Finally, Sect. 7 concludes the paper.

2 RelatedWork

In the following, we first discuss related work on DNA
storage systems. After that, we focus on approaches with
virtual address spaces.

In [6], relational data objects are encoded as oligos in-
terleaved with meta-information, including table name and
primary key. Polymerase Chain Reaction (PCR) is used for

reading, but the same address is used for multiple records
to overcome biochemical restrictions. Additional meta-in-
formation is used to filter records after fetching all oligos
tagged with a specific address, resulting in a storage capac-
ity utilization of around � 16.5%.

In [9], 35 different files were placed in a DNA pool
physically separated into tubes, storing a total of 200MB
of information. Since PCR was utilized for random access,
this physical separation of files was necessary to overcome
the imposed limitations. Additionally, there are 35 phys-
ical addresses, each of which resembles a physical loca-
tion of a single tube with one file, which significantly de-
creases information density over all tubes. To the contrary,
DNAContainer is primarily designed for a single tube.

Fountain codes were used in [12] to encode 2.15MB of
data plus 7% redundancy. Similar to our previous work [13],
fountain codes provide a direct way to tune redundancy
and are very practical for DNA encoding. Nevertheless, the
work in [12] does not support random access at a large
scale.

In [14], an alternative technology called DORIS is pro-
posed to overcome the biochemical limitations yielding
a larger address space at around 12,000 available addresses.
However, even 12,000 addresses are insufficient to exploit
the massive storage capacity of DNA.

The random access approach presented in [15] encodes
data physically encapsulated in impervious silica capsules
that are surface-labeled with selected DNA sequences called
barcodes. These barcode labels re-emit light when excited.
Hence, each file is labeled with specific barcodes and is
detected by special optical channels. For example, the file
“bird” can be detected with the barcode “can fly” and so
on. However, special equipment is needed, and only la-
beled files can be detected. Nevertheless, using barcodes
overcomes the severe limitations when utilizing PCR.

According to [16, 17], most recent studies do not support
random access on their DNA storage system. These systems
require a 5 to 3000-fold physical and logical redundancy
to reduce errors, substantially reducing storage density. In
addition, many DNA systems fail to encode information
such that the resulting DNA is sufficiently stable for long-
time archival [18]. Furthermore, we are unaware of a system
with virtual address space to access data objects. Instead,
a user has to provide a physical DNA address for reading
an object. More complex queries beyond simple key-value
queries are not supported on data collections. In particular,
data structures like lists and arrays are not supported in
any system, making data management difficult. Contrary to
most previous approaches, we use barcodes to exploit the
large available address space [13], whereas most current
systems still rely on PCR and thus support only a small
address space.
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Computer systems have a plethora of work related to
virtual address spaces. For example, a few object-oriented
database systems like O2 [19] have used an address trans-
formation table to convert unique object addresses visible
to the user into internal addresses. In addition, a flash disk
also offers a similar mapping known as the flash translation
layer (FTL) to implement wear leveling [20]. However, the
designs of these approaches do not consider the unique fea-
tures of DNA storage and thus are not directly applicable.

3 Preliminaries

Today’s technologies allow near-perfect DNA writing (syn-
thesis) of thousands of DNA fragments in parallel. How-
ever, a small error can already lead to a significant decrease
in product quality, and redundancy is introduced to avoid
these errors. Thus, modern sequencing machines [21] read
the same sequence multiple times. Both synthesizing and
sequencing costs have been declining dramatically over the
past years, and sequencing productivity has already out-
paced Moore’s law by 2008 [6]. However, sequencing ma-
chines are designed to read the entire DNA and not for
random access so far.

3.1 DNA Constraints

As discussed above, sequencing and synthesizing DNA are
error-prone. For example, it is well-known that DNA se-
quences with a too high or low number of G’s and C’s result
in a high error probability in the sequencing process [22].
Hence, to reduce errors, our generated DNA codes must
adhere to the following constraints:

1. The number of G’s and C’s (GC content) should be around
50%.

2. Consecutive repeats of the same nucleotide (Homopoly-
mer) should be avoided.

3. Mutual overlaps of DNA addresses should be avoided.
4. Mutual overlaps of the oligos should be avoided.

The first two constraints considerably reduce sequencing
and synthesizing errors [22]. Constraint (3) reduces con-
tention of DNA addresses, i.e., ensures that every DNA
address is treated uniquely. Finally, constraint (4) guaran-
tees that a DNA oligo does not interact with others within
a DNA library.

4 Review of DNAContainer

This section describes the architecture and functionality of
DNAContainer. DNAContainer provides an interface for
writing binary data to and reading it from DNA into the

Fig. 1 An outline of an oligo in DNAContainer

memory of a computer system. It manages a DNA pool
consisting of oligos of fixed length Loligo, similar to a block
on common storage devices. Every oligo is composed of
an address and a payload. Addresses are of fixed length
Laddress, and payloads are then of length Lpayload = Loligo −
Laddress. All sizes are given in units of nucleotides. Current
DNA synthesis and sequencing costs are typically lower
for shorter oligos (Loligo � 250) than for longer ones [23,
24]. Thus, the size of an oligo is substantially smaller than
a typical block size. Fig. 1 provides an example of an oligo
of Loligo = 18, Laddress = 6, and Lpayload = 12.

Suppose a large data object like a block has to be
written to DNA, exceeding the size of an oligo. Then,
DNAContainer splits the data object into multiple seg-
ments, each fitting into an oligo’s payload. To read the data
object back from DNA, DNAContainer first computes all
DNA addresses of the relevant oligos. Then, a special de-
vice such as a microarray [25] retrieves the corresponding
oligos, and finally, the oligos are assembled and decoded
such that the object (block) is in memory again.

In the following, we give an overview of the original
functionality of DNAContainer, which can manage a set of
objects in a linear address space. If objects refer to fixed-
size blocks, DNAContainer offers the standard interface of
block-based storage. In contrast to traditional devices, how-
ever, objects are not required to be of the same length.

Each data object written to the DNA storage is tagged
with a unique integer number Id obtained from a linear
virtual address space. Furthermore, the Id is translated to
a DNA address and vice-versa (see Sect. 4.1), creating an
unambiguous mapping Id$DNA address. The Id is
a virtual address visible to the user, while the associated
DNA address refers to the root oligo of the object. In par-
ticular, a user can read the associated data object from DNA
by simply using the virtual address. Similar to bad blocks on
disks, this mapping ensures that all virtual addresses are us-
able, which is not valid for the underlying DNA addresses.
This process is further explained in Sect. 4.1. Furthermore,
the data object, i.e., the information in an oligo’s payload,
can be encoded with different methods that we discuss in
more detail in Sect. 4.2. Fig. 2 provides an overview of the
architecture of DNAContainer. DNAContainer is composed
of the following main components: an address translation
that maps a virtual integer identifier (Id) to a DNA ad-
dress and vice-versa, an address routing that maps a DNA
address to a new valid DNA address, the payload encoder,

K



214 Datenbank-Spektrum (2023) 23:211–220

Fig. 2 Overview of DNAContainer

the payload decoder, and the DNA pool where the data is
stored.

The DNAContainer interface provides an abstraction
layer to the methods mentioned above. In particular, the
function put writes a data object to DNA, the function
get reads a data object from DNA, and register pre-
registers an Id that can be used to write a data object at
a later point in time.

Given an Id, the function get(Id) reads the data object
and returns it to the caller. Hence, get is the inverse of put.
Thus, the following equality obj = get(put(obj))
holds for every data object obj.

4.1 Address translation

The original interface of DNAContainer offers a virtual ad-
dress space on integers. The put operation writes a data
object into the DNA storage by generating a new Id, which
is translated to a DNA address. The data object is encoded
to the payload, and the oligo is formed by annealing the
DNA address and the obtained payload. The following sec-
tion explains the encoding of data objects as payloads and
the translation of Ids to DNA addresses.

DNAContainer utilizes the method described in [26] to
encode an Id to a DNA address. First, the Id is converted to
a string of bytes by mapping every digit in base 10 to a byte
character. Next, the string is compressed with a static Huff-
man code of base three. Then, each of the obtained Huff-
man digits is mapped to a nucleotide, forming a DNA se-
quence. To avoid DNA sequence being longer than Laddress,
we set Laddress sufficiently large. Note that this method is
reversible, i.e., following each mentioned step backward
leads to the initial Id again.

In case the obtained DNA sequence is shorter than
Laddress or even violates the constraints mentioned in Sect. 3,
we apply padding and permutations [10]. In particular,
specific padding is inserted into short DNA sequences,
adjusting their GC content and ensuring they reach the
length Laddress. Subsequently, we perform a certain number

of permutations on the modified sequence, selecting the
permutation that best conforms to the defined constraints.
However, if none of the permutations align with the re-
quired constraints, we redirect the associated Id to a new
identifier, prompting the generation of a new DNA address
that complies with the constraints.

Suppose an encoded and optimized DNA address ob-
tained for a given Id does not fulfill our constraints in
Sect. 3. Then, a routing algorithm is called searching for
a new Id termed IdR such that the associated DNA ad-
dress fulfills all the constraints. This search iterates IdR

over Id + 1; Id + 2; ::: until it returns an appropriate DNA
address. Because an Id is stable and the method register
can deliver an Id without having generated a verified DNA
address, a routing table maintains the mapping Id 7! IdR .
This table is kept on a traditional device. In order to read
an object with Id from DNA, the method get(Id) first
checks the routing table for a mapping Id 7! IdR . If such
a mapping exists, the DNA address is computed from IdR .
Otherwise, the DNA address is obtained from Id.

4.2 Payload Encoding
Given a data object as a stream of bytes, there are multi-
ple encoding methods for mapping it to DNA nucleotides.
For example, a straightforward method is to map every two
consecutive bits of the stream to a respective DNA nucle-
otide, e.g., 00 7! A, 01 7! C, 10 7! T, and 11 7! G. In
that case, a data object consisting of long runs of zeros or
ones in its stream would result in homopolymers, violat-
ing the required constraints in Sect. 3. More sophisticated
methods [12, 26–29] have been proposed, providing DNA
codes that adhere to some or all the required constraints
regardless of the input stream. DNAContainer allows using
any of these encoding methods. Suppose the DNA code of
a payload is not satisfactory. In that case, like improving
DNA addresses, DNAContainer applies padding and per-
mutations [10] to return payloads that adhere to all our
constraints.

Furthermore, if the given data object is too large, mean-
ing that the payload is greater than Lpayload, the payload is
partitioned among multiple oligos. This procedure is further
detailed in [10].

4.3 Data Structures on DNAContainer

Recall that we refer to an object stored on DNAContainer
as a reference. Moreover, DNAContainer offers support for
data collections, such as arrays and lists. An array or a list
is also addressed by a virtual Id, which is used to read
the entire structure. The implemented methods are further
explained in [10]. Furthermore, deletions and updates are
not supported on references and objects within structures
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like arrays and lists, which we address in the following
section.

5 DNAContainer Extensions

This section introduces two essential extensions of
DNAContainer. First, we discuss methods for reducing
its memory footprint. Then, we extend the interface of
DNAContainer to support deletions and updates.

5.1 ReducingMemory Footprint of LSH

The produced DNA must adhere to every constraint in
Sect. 3. In particular, constraints (3) and (4) require that
DNA addresses and payloads show a sufficiently mutual
dissimilarity. Thus, DNAContainer has to check the simi-
larity of a new DNA sequence to all the previously gener-
ated sequences. If the similarity is too high, DNAContainer
rejects the sequence and has to create a new one. Thus,
the similarity check is a critical operation that must be per-
formed quickly. In our original approach, we simply kept
all generated sequences in memory. However, this causes
high memory cost and is impractical for large databases.
In the following, we briefly present our original approach,
and after that, we introduce techniques for improving the
memory footprint.

To efficiently support similarity searches on a set of
addresses (and payloads), DNAContainer follows a com-
mon approach [30]. It employs the Jaccard similarity that
splits up a DNA sequence into k-mers and uses the rela-
tive overlap between sets of k-mers for measuring similar-
ity. Furthermore, locality-sensitive hashing (LSH) is used
to approximate the Jaccard similarity [30–32]. LSH effi-
ciently supports testing whether a newly generated DNA
sequence, representing either an address or a payload, is
too similar to the previously generated ones [33]. Our orig-
inal approach used LSH directly to maintain the generated
DNA sequences. For a new sequence S , DNAContainer first
computes its hash address h using LSH, then calculates the
Jaccard distance to the DNA sequences in the hash bucket
h.

To improve the memory footprint, we consider the fol-
lowing approximate approaches. First, instead of maintain-
ing a complete hash table, the first approach maintains a set
(Set_HA) consisting of the hash values whose buckets con-
tain at least one sequence. For a newly generated sequence,
the hash value h is computed and tested if it is in Set_HA.
Compared to the original approach, this approach rejects
more sequences than necessary because the hash bucket
h could only contain DNA sequences that are sufficiently
different from S . However, as we will show in our experi-
ments, this probability is low due to the design principle of

LSH to keep only similar sequences in a bucket. Instead of
maintaining a set of hash addresses, our second approach
is to maintain a bitset where bit i is set if hash bucket i is
occupied. In general, the memory footprint of this approach
is smaller than that of Set_HA, but it could still become
a problem for a very large number of sequences. To limit
the number of bits to an upper bound n, where n is less than
the number of buckets, we could use a simple mapping like
i mod n. However, this would increase the false positive
rate even more because one bit would no longer represent
similar sequences. Another approach is to use a Bloom fil-
ter with multiple LSH hash functions instead. Though this
approach would be a technical option, it is not meaningful
because it would result in accepting a sequence that one of
the LSH deciced to be similar to an existing one. Instead,
our third approach is to use a Bloom filter on Set_HA and
consider multiple independent uniform hash functions that
map from Set_HA to f0; :::; n − 1g. For a given false po-
sitive rate " and a given number of sequences, we set the
number of hash functions optimal such that the size n of the
Bloom filter is minimized [34]. We call this method BF_HA.
Note that our second approach is indeed a special Bloom
filter with only one hash function, and thus, it is not opti-
mal regarding memory use. In the following, BF_HA (1)
refers to our second approach, denoting the use of one hash
function.

5.2 Enhancing Data Structures

As outlined in Sect. 4, the original interface of DNAContainer
only supports three operations put, get, and register.
In the following, we extend the interface to enable updates
and deletions of objects and sketch an implementation of
these operations.

Recall that the routing table is responsible for mapping
the virtual Ids of the objects to physical DNA addresses.
Hence, to update or delete an object, e.g., stored within an
oligo on DNA, its corresponding entry in the routing table
is modified or deleted, i.e., the virtual address is mapped to
a different DNA address. In addition, the associated oligo
can be physically removed by fetching and discarding it [35,
36]. Furthermore, the original address could also be re-
moved from LSH if DNAContainer uses the original ap-
proach for managing the addresses. However, as discussed
above, the new version of DNAContainer uses a Bloom fil-
ter where the deletion of an address should have no effect.
We currently recommend a complete rebuild of the Bloom
filter in case of many deletions and updates. However, we
examine more advanced Bloom filters [37, 38] that support
deletions in our future work.

By introducing deletions and updates of objects in the
interface, the new version of DNAContainer can also sup-
port dynamic and mutable data structures, further facili-
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Fig. 3 Insertion of a new object into a list

tating data management. Let us consider, as an example,
how to use updates in a list. In the original version of
DNAContainer, it was only possible to append a new ob-
ject to the tail of the list. Due to the update support in
the new version, DNAContainer allows inserting objects
at arbitrary positions into the list, as illustrated in Fig. 3.
The initial list contains three elements e0; e1, and e2, each
consisting of a unique Id for addressing, an Id to refer-
ence the next element, and a value. The following steps
are performed to insert a new value vnew into the list be-
tween e1 and e2. First, we create two unique Ids, Idnext
and Idnew. Then, we write the pair .vnew; Idnext/ to DNA
and receive a new DNA address addr . We insert the pair
.Idnew; addr/ into the translation table. Finally, we insert
the pairs .Id2; Idnew/; .Idnext; Id2/ into the routing table. This
results in the new list displayed on the right-hand side of
Fig. 3.

To read a list element for a given IdS , we first check if
an Id entry exists in the routing table. In that case, we use
the associated Id for accessing the DNA storage. Otherwise,
we use IdS itself.

6 Experiments

We implemented DNAContainer in Java1 and conducted
experiments by simulating put and get operations. We
used a real data set from the Global Biodiversity Infor-
mation Facility (GBIF) in [39] consisting of a relational
table representing information of over 500,000 species. All
experiments were performed on an AMD computer with
256 logical cores (1.5–2.25 GHz each) and 1 TB of RAM.
Table 1 shows the parameters and default settings in our
experiments.

We examined the three different LSH structures in the
following experiments and labeled them as follows. HT

1 https://github.com/alexelshaikh/DNAContainer.

Table 1 Parameters and default settings

Parameter Default Value

Address size Laddress 80

Payload size Lpayload 170

k-mer length 6

Number of Permutations 8

Padding size 10% of Lpayload

False positive probability " 1%

refers to the LSH structure using a hash table whose buckets
contain the associated DNA sequences. Set_HA refers to
the set of hash values from the occupied buckets of LSH
only, without storing the DNA sequences. BF_HA refers to
the optimal Bloom filter as outlined in Sect. 5.1 with default
false positive probability " = 0.01. Finally, BF_HA (1)
refers to a Bloom filter with the same setting of BF_HA,
but only one hash function is used instead of using the
optimal number of hash functions.

In the following, we discuss the results from four of our
experiments. First, we discuss the impact of our parameter
settings for padding size and number of permutations on the
GC content and homopolymers to satisfy our first two con-
straints. Then, we show the impact of these settings on the
storage. Third, we show how often our generated addresses
are rejected for various address sizes. Finally, we give proof
of the scalability of our method. Except for the last one, all
experiments first inserted 1 million records (� 500 MB)
into DNAContainer, resulting in about 14 million oligos.
Every record is represented as an object with a reference in
DNAContainer. A fountain code [40] is used to encode the
payloads, and LSH is configured as described in [41].

First, let us discuss the results depicted in Fig. 4a and
b where the average GC content and average longest ho-
mopolymer are plotted as a function of padding size and
the number of permutations, respectively. An increase of the
padding size leads to a GC content closer to 50%, adhering
to the first constraint in Sect. 3. The padding size does not
vary much because the fountain code already returns DNA
codes satisfying this constraint. Thus, we decided to use
10% of the payload for padding. For other encodings, the
variance of our results was indeed higher. Similarly, increas-
ing the number of permutations lowered the homopolymers’
lengths in the oligos, as shown in Fig. 5b. An increase from
8 to 16 did not significantly reduce the homopolymers’
lengths. Setting the number of permutations to 8 seems to
be a good choice because more permutations no longer sig-
nificantly reduce the lengths of homopolymers. In addition
to avoiding long homopolymers, permutations also impact
the oligos’ mutual overlaps. For 8 permutations, for exam-
ple, we could reduce the mutual overlap compared to not
using permutations by � 25%.

In the second series of experiments, we examined the bit
rate of oligos and payloads. The bit rate is defined as the
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Fig. 4 The GC content, the
hompolymer lengths, and the
bit rate as a function of key
parameters. a The GC content.
b The longest homopolymer
length. c The bit rate of oligos.
d The bit rate of payloads

a b

c d

total number of bits for an object in memory divided by the
total number of nucleotides used for storing the object in
DNA. The upper bound of the bit rate is 2, but the bit rate
will be lower due to error correction, padding, and the extra
addresses in the oligos. In order to distinguish the bit rate
with and without addressing, Fig. 4 depicts the bit rate of
oligos and payloads in two different graphs where Fig. 4c
and d show the results for the entire oligo and payload as
a function of the payload size, respectively. Obviously, the
bit rate of the payloads is always higher than the bit rate
of oligos. As shown, the larger the payload, the higher the
bit rate. DNAContainer achieves a near-optimal bit rate of
� 1.8 for payloads. The slight difference to the optimum
is mainly because of padding that requires additional bits.

Since a payload of length Lpayload represents at most
2 �Lpayload bits, the maximum capacity in bytes is calculated

as 2 � Lpayload

8 . For example, by setting Lpayload = 170, the
payload could encode up to 42.5 bytes. Plugging in our
system’s capacity utilization of 1.8 bits/nucleotide (90%)
yields � 38.25 bytes per payload.

The next experiments reveal the number of invalid ad-
dresses among a given number of generated addresses for
various settings of Laddress (the size of an address). An ad-
dress becomes invalid if one of the four quality constraints
is not satisfied, e.g., if an address is too similar to an ad-
dress previously generated. Fig. 5a displays the number of
invalid addresses while creating a total of 10 million ad-
dresses for Laddress = 20; 40; 60; 80. Even for the case of
Laddress = 20, only 50% of the computed addresses are in-
valid after all records are inserted. Thus, 20 million ad-

dresses are computed, of which 10 million are valid. For
larger addresses, the number of invalid addresses is signifi-
cantly smaller. It is interesting to note that a larger address
does not always result in fewer invalid addresses. For ex-
ample, our experiments return the lowest number of invalid
addresses for Laddress = 60. The reason is that the Jaccard
distance delivers a higher similarity for larger sequences
assuming a constant length of the k-mers.

Fig. 5b displays the rejection probability of a newly
generated DNA address. When using a classical hash table
(HT), the rejection rate is the lowest because the bucket
to which a newly generated DNA address belongs might
contain only dissimilar addresses. Then, the address is ac-
cepted and inserted into that bucket. This is different when
Set_HA is used. It only accepts the address if the corre-
sponding hash bucket is empty. Moreover, using a Bloom
filter instead of Set_HA results in a higher rejection rate.
For both Bloom filters, BF_HA and BF_HA (1), we use
the common settings for the number of bits under the
assumption that ", the probability of false positives, is
given [34]. However, the Bloom filter BF_HA (1), which
makes use of one hash function only, shows a substantially
higher rejection rate than BF_HA, the Bloom filter with
the optimal number of hash functions. Thus, we no longer
consider BF_HA (1) in the remaining experiments. The
rejection rate of BF_HA is only slightly higher than the one
of Set_HA, while the required space is significantly lower,
as shown in Fig. 5c. Supplementary Figs. 1–3 further show
the rejection rate and memory requirements by varying the
parameters Laddress = 20; 40; 60; 80 and k = 6; 7; 8.
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Fig. 5 The number of invalid
addresses, rejection probability,
size, and computational time
as a function of the number
of the generated addresses. a
The number of invalid DNA
addresses using BF_HA for
Laddress = 20; 40; 60; 80. b The
address rejection probability by
varying the LSH’s structure. c
The LSH structures’ sizes in
bytes. d The computational time
in seconds

a b

c d

Furthermore, Fig. 5d depicts the required wall-clock time
for generating 10 million DNA addresses for HT, Set_HA,
and BF_HA. Despite the fact that HT offers the lowest re-
jection probability, the required computational time is the
highest. The reason is the overhead of the Jaccard similarity
computations when a newly generated address belongs to
a non-empty bucket. Because the more addresses are gen-
erated, the higher the expected occupancy of a bucket, and
thus, the additional overhead for similarity computations
increases for HT.

In our final experiments, we examine the scalability of
our approach, i.e., how many addresses DNAContainer is
able to generate. For this experiment, we generated 10 bil-
lion addresses with Laddress = 80, adhering to every con-
straint in Sect. 3. For HT, the memory of 1 TB was fully
exhausted after generating � 400 million addresses. With
BF_HA, we generated 10 billion addresses in � 6 days
without running out of memory. For Lpayload = 170 and
a bit rate of 1.8, we could store up to 3.825 � 1011 bytes or
382.5GB of information. To the best of our knowledge, we
are unaware of a larger DNA system with random access
capabilities [17].

In order to increase the storage capacity even more, we
could either increase the address space or exploit a larger
payload for oligos. Regarding an increase in the payload,
current DNA synthesis technologies only support synthe-
sizing relatively short DNA sequences, whereas longer se-
quences are costly or not supported yet [42]. However, new
synthesis technologies are currently under development, al-
lowing the synthesis of several thousand nucleotides in an

oligo [43]. For example, if we choose Lpayload = 6000 and
use 1010 addresses, then the theoretical storage capacity of
DNAContainer would be � 13.5 TB.

7 Conclusion

Due to its remarkable advantages regarding storage den-
sity and long-term persistence, DNA could be a promis-
ing alternative to tapes for managing cold data in the near
future. In this paper, we present an extended version of
DNAContainer that provides an interface for randomly ac-
cessing objects on DNA storage similar to a traditional stor-
age device. DNAContainer provides an abstraction layer us-
ing a virtual address space with put, get, update, and delete
operations on objects rather than interacting with DNA stor-
age via low-level bio-chemical synthesizing and sequencing
processes. Thus, it enables the implementation of common
data structures, such as arrays and lists on DNA.

The extended version of DNAContainer provides new ef-
fective techniques with a small memory footprint for check-
ing the similarity of DNA sequences, which is an essen-
tial requirement for achieving the stability of DNA storage.
The memory savings are up to two orders of magnitude
compared to the original version of DNAContainer without
a major impact on the rejection rate of sequences. Thus,
DNAContainer makes an essential step forward to support
large-scale random access on DNA to billions of oligonu-
cleotides.
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In our future work, we will examine how to support fil-
ter queries like range queries on DNA and use a more ad-
vanced Bloom filter supporting deletions. We also continue
improving the similarity computation with respect to time
and memory. Finally, we are also extending DNAContainer
to work on a real physical DNA device.

The online version of this article (https://doi.org/10.1007/s13222-023-
00460-3) contains supplementary material, which is available to autho-
rized users.
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