
FACHBEITRAG

https://doi.org/10.1007/s13222-023-00459-w
Datenbank-Spektrum (2024) 24:53–62

PyPads

Transparent Machine Learning Experiment Tracking

Thomas Weißgerber1 · Mehdi Ben Amor1 · Christofer Fellicious1 · Michael Granitzer1

Received: 31 May 2021 / Accepted: 9 October 2023 / Published online: 28 November 2023
© The Author(s) 2024

Abstract
Despite algorithmic advancements in the field of machine learning, a need for improvement in the infrastructure supporting
machine learning development and research has become increasingly apparent. Machine learning experiments usually
tend to be more ad-hoc in nature, and results are communicated most often in the form of a publication. Experimental
details are often omitted due to size or time constraints, or simply because the complexity in terms of technical setup
or parametrization became intractable. Even access to code bases, disregard important properties of the environment and
experimental setup, like for example random generators or computing infrastructure. At the same time, tracking and
communicating an often inherently exploratory scientific process is a task with considerable effort. We explored different
venues to tackle these issues from a data science engineering point of view. The efforts resulted in PyPads, a framework
providing an infrastructure to extend experimental setups with logging, communication and analysis features in a mostly
non-intrusive way. PyPads can be extended to different Python-based frameworks, utilizing community driven, descriptive
metadata in an effort to harmonize library specific logs in an ontology. Meanwhile, we also try to emphasize similarities
to practices in software engineering, which have turned out to be essential in practical applications.

Keywords Machine Learning · Reproducibility · Open Science · Automated Logging · Python

1 Introduction

In the last decade, the research and development efforts in
Machine Learning and Data Science have increased signifi-
cantly. This can be seen in the number of new conferences,
research tracks, funding and trending searches related to
the domain. Another indication can be seen in the quan-
tity of yearly published machine learning papers and Deep
Learning models, as shown in Fig. 1 for arXiv.

This growth fosters breakthroughs and may deliver cut-
ting edge AI models that are performing efficiently in
many fields of applications. However, there are operational
difficulties to overcome when developing a hypothesis,

� Thomas Weißgerber
thomas.weissgerber@uni-passau.de

Mehdi Ben Amor
mehdi.benamor@uni-passau.de

1 ITZ/IH 161, University of Passau, Innstraße 43, 94032 Passau,
Germany

conducting experiments and reporting on findings in many
domains of computer science. As shown by Pawlik et
al. for data reproducibility [1] and Risch et al. for web
science [2], best practices have to be developed to tackle
these challenges. This is especially true in special branches
of the data science field, like for example in Deep Learning.
While Deep Learning provides exceptional results, an in-
herent trade-off on understandability and robustness exists.
Non-obvious changes like the introduction of adversarial
examples may for example devolve classification results
rapidly [3].

Some of these difficulties can be traced back to gaps
in the current infrastructure for data scientists. These gaps
mainly manifest when Open Science aspects are to be ap-
plied to the machine learning domain. With the great quan-
tity of published machine learning research, a significant
number of publications are not meeting one or more of
the core scientific principles required for an Open Science
environment. The nature of machine learning itself repre-
sents a factor for missing compliance to these principles.
High data quantities as well as a high number of exper-

K

https://doi.org/10.1007/s13222-023-00459-w
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-023-00459-w&domain=pdf
http://orcid.org/0000-0003-3532-354X
http://orcid.org/0000-0002-1785-8367

54 Datenbank-Spektrum (2024) 24:53–62

Fig. 1 Statistics for Machine Learning Papers tagged as one of cs.cv,
cs.cl, cs.ai, cs.ne or stat.ml released on arXiv.com per year

imental parameters complicate persisting entire pipelines,
intermediate steps and results. The resulting systems tend
to be opaque and hard to debug. Results mostly are based
on correlation, while arguing about causation with plain
performance metrics is hard.

The idea of “reproducible research”, a term introduced
by Jon Claerbout in his paper on his experience creating
a reproducible research environment [4], gained support
in the majority of research communities ([5, 6]). One of
the pressing issues in the scientific domain and related to
reproducible research is the reproducibility crisis. Repro-
ducibility crisis is when another researcher cannot repro-
duce the results from a piece of scientific literature. But
how widespread is this reproducibility crisis? How much
does it affect researchers? Taking a look at a survey done
by Nature magazine in 2016 called “1,500 scientists lift
the lid on reproducibility” we find that more than 70%
of researchers have tried and failed to reproduce another
scientist’sR experiments, and more than half have failed
to reproduce their own experiments. These telling figures
emerged from the survey’s brief online questionnaire on
reproducibility in research [7]. This means that researchers
sometimes are unable to even verify their own results. If the
authors themselves cannot reproduce the results, the same
task will be harder for others. This reproducibility crisis
has been the focal point of many studies such as [8–10]
or [11], justifying the shift to more openness of the sci-
entific community. In this context, Stodden [12] identified
a research compendium based on preceding works [13].
This compendium includes the used data, the experiment
code, and it’s results, the paper itself and auxiliary material
like interface and visualizations of the data. In summary,
three minimal requirements must be highlighted: Used in-
put data, a comprehensive paper describing the method and
results and the software itself have to be easily available.
Theoretically, additional high quantity of well-structured
metadata about experiments should facilitate reproducibil-

ity. To further ease the communication and exploration in
a scientific domain, a set of vital features was identified in
the last centuries and shown to be essential to react quickly
in times of crisis [14]. These properties were summarized
with the term Open science [15–17] and need to be imple-
mented in for the research domain suitable ways [18–20].
Open science encompasses practices like open access, open
data, open software, which encourage researchers to make
their data and source code and publications accessible and
available.

In a preceding analysis, the Open Science Process Model
for machine learning (OSPMML) [21] describes a non-ex-
haustive set of requirements for an open science ML re-
search environment. This consists of providing replicability,
reproducibility, understandability, comparability and com-
pleteness in the context of the scientific process. When nav-
igating the steps of preparation, implementation, execution
and distribution, multiple sub steps must be considered.
This is needed to not only enable repeating experiments,
but also allow for comparison, error analysis and repro-
ducing them in different settings, with different data and
environments. Part of these steps include the often-over-
looked details about software dependencies, used hardware
and drivers. Unfortunately, in the current situation logging
and managing this information requires extensive coding
effort, while the heterogeneous properties of used environ-
ments, libraries and versions hinder an easy reuse of exist-
ing solutions.

In this paper, we present an initial tool for an ecosystem
that helps fellow researchers in creating reproducible scien-
tific environment by mainly supporting the log production
and management process. While taking virtues of software
engineering into account, controlling executions and log-
ging the results, setups and environmental information are
to be made more accessible. PyPads1 is a tool which tries
to allow for automated tracking and logging of meta in-
formation about experiments in different abstraction levels
and degrees of fuzziness. This is to be achieved without
enforcing any conceptual paradigm to be followed by the
machine learning experiment and its data.

The article is structured as follows: The basics of PyPads
are discussed in Sect. 2 on the basis of a first mapping file
developed for a popular python machine learning library.
Sect. 3.1 discusses the concept of community driven map-
ping files and how we use them to offer automated and
unobtrusive logging utilities, while Sect. 3.2 describes log-
ger outputs and their schemas, an extension of an existing
ontology model, and an application of PyPads in a Kuber-
netes cluster. Other tools and approaches for reproducible
research are identified in Sect. 4 and shortly set into rela-
tion to PyPads. Sect. 5 gives an outlook of what PyPads

1 https://github.com/padre-lab-eu/pypads.

K

https://github.com/padre-lab-eu/pypads

Datenbank-Spektrum (2024) 24:53–62 55

aims to achieve and presents future plans for improving the
framework.

2 Logging Requirements and Code-Injection

In a heterogeneous environment of available machine learn-
ing tools, packages and libraries, experiment tracking can
be complex. This includes logging aggregated metrics, ex-
ecution parameters and reproducibility artifacts. Due to the
exploratory nature of machine learning experiments, set-
tings and conditions have to be known to be able to interpret
results and their origination process consistently. Therefore,
extensive logging is needed in order to compare the impact
of implementation details of libraries and custom code. This
logging has to be applicable in a lot of environments, inde-
pendent of dependencies of the experimental setup. Getting
an overview of the process is important in science, applica-
tion and learning supervision. Beginners as well as experts
can profit from being able to reflect on their last steps.

Another factor for understandability is the scope and
quality of logs. Generally, the more logs are available, the
more one can argue about the reasoning in the process.
To a lesser extent introducing logs with bad quality, i.e.
hardly interpret-able interim values, can clutter the output
and hinder the overview. The impact of this issue can be
reduced with further steps like structural analysis over the
logs themselves. Nevertheless, logging everything is sim-
ply not feasible. High quantities of data in practice force
data scientists to work with aggregated measures. For ex-
ample, a log of every weight change in a neural network
can be impractical. Especially if there are many iterations
of the training algorithm to be executed to find suitable
hyperparameter settings. Meanwhile, time and effort must
be managed conservatively due to a multitude of factors
like funding limits and the pressure to publish. In sum-
mary, a hands-on approach for logging is required in an
infrastructure allowing for verbosity configuration and easy
extension, while minimizing the configuration effort.

While algorithms might not change between every ver-
sion of machine learning libraries, small changes in the
architecture might already impact the experiment outcome
and automated logging capabilities. In general, a single sci-
entific pipeline is based on a lot of such components and
libraries, where a modification of a single part can have
a great impact. This is especially critical in sensitive setups,
which can already be impacted by small deviations in the
computational process resulting in non-determinism2 [22,
23] or random seeds [24]. Therefore, experimental setups
can be quite fragile. In these cases flexible, but structured,
logging needs to be implemented to understand why results

2 https://pytorch.org/docs/stable/notes/randomness.html.

are different in between runs. Logging must be possible
over a wide range of different environments, while provid-
ing well-defined formats and metadata about the experiment
and data itself. Properties for such an infrastructure include:

AdaptabilityDue to the high pace of progress in the field of
machine learning and frequent changes in existing libraries,
a logging infrastructure has to be able to cope with modi-
fications of the environment and dependencies. Additional
differing scopes and scales of experiments drive the need
for customizable abstraction levels in logging itself. In large
scale experiments, tracking every weight change of a neural
network for example is not feasible, while in other settings
one might want to consider it.
Extensibility To facilitate community driven logging and
integrate newly developed algorithms, the infrastructure has
to be easily extendable. In its base form, the infrastructure
should be framework-agnostic as far as possible.
Non-intrusiveness In day to day work, the effort for log-
ging must be reduced. This includes plumbing code needed
for managing logs themselves and to the experiment itself
interfacing log logic. In practice, ad-hoc experiments other-
wise often only log aggregated metrics. Logging logic itself
should be removed from the experiment as far as possible
to modularize it and to further reusability. This follows the
principles of aspect-oriented coding.
Robustness and Completeness The integration of logging
must be robust on a set of issues. In general, logging some-
thing, even if incomplete, is mostly better than logging
nothing. Nevertheless, defining tracking logic for every ver-
sion of every available library is a considerable task, which
can’t be solved easily. While community driven logging
may distribute the workload, as much of the existing se-
tups need to be made log-able to provide comparability and
value quickly. Generating value is essential to uphold the
incentive for community-based development. In this context
one must make do with available logging functionality even
if not developed for the specific combination of dependen-
cies, hardware, language version etc. This is error-prone and
results in a fuzziness of logged data. Logs can not always be
considered complete. The infrastructure additionally needs
defensively programmed logging modules to not impact the
experiment itself.
Quality Subsequently, log quality varies not only depend-
ing on which logging functionality was used, but also, on
which setup it was used. To allow for veracity assessment,
provenance must be ensured for every log. Furthermore, the
log functionality itself should provide schemata of expected
output to ease interpretation and facilitate error detection in
the logs themselves.

A possibility to extend experiment code with the needed
functionality, is to inject it into scripting languages on the
fly. Python as a dynamically typed language with live in-

K

https://pytorch.org/docs/stable/notes/randomness.html

56 Datenbank-Spektrum (2024) 24:53–62

terpreted source code is predestined for such approaches.
The MLflow3 library (see Sect. 4) has shown that injection
in general can be considered a powerful means of extract-
ing meta information about experiments. To investigate the
limits and identify potential alternatives to hard coded in-
jections, we examined the evolution of the source code for
one of the vastly used machine learning libraries, Scikit-
learn4.

As a representative of a core library in academics and
practice, Scikit-learn provides a considerable number of 116
tagged versions on GitHub. Analyzing its 51 main releases
on code changes shows that library development is to be
considered non-linear. Old code might be added again or
refactored naming rolled back. The overlap of classes, func-
tions and variable assignments via full path can be seen in
Fig. 2. One of such rollbacks is represented by the changes
between versions 0.19.x and 0.20.x. Version 0.20.1 has
more similarities to the 0.19.x family of the library than its
chronologically closer related predecessor 0.20.0. A simi-
lar but less distinct effect can be observed between versions
0.13.x and version 0.14.1. Major versions tend to stay rather
stable in their structure, resulting in a block pattern in the
given heat-map. This allows for a robust live injection of
logging functionalities, while changes indicate that the need
for an update of the logging extension is more likely. Data
like this enable the selection of candidates clusters for re-
spective logging injection. Extending the analysis to include
levenshtein distance between versioned files on aligned ab-
stract syntax trees in a further step allow for tracking fine-
grained changes in the potential clusters.

3 PyPads: A community-Driven logging
infrastructure for ML

To overcome the challenges introduced by the evolution of
software libraries and make use of the identified phases of
code-stability, methods to inject logging code in a flexi-
ble non-intrusive way have to be found. Approaches like
hard coded logging extensions result in a multitude of log-
ging packages which must be chosen manually to suite the
current setup and requirements. Investing too much time
into logging is generally not accepted, therefore leading to
sparsely documented conclusions. The need for different
log levels, configurations and heterogeneous environments
calls for a management of the logging itself. We devel-
oped a small library to provide a first iteration of such
an infrastructure. PyPads’ main feature provides users with
automated, non-intrusive, community-driven, and semanti-
cally structured logging. The automated tracking is based

3 https://www.mlflow.org/docs/latest/tracking.html.
4 https://pypi.org/project/scikit-learn/.

Fig. 2 Heatmap of Shared Function and Class references from version
0.9 to 0.24.dev0 of Scikit-learn

on a wrapping mechanism/system that can also be referred
to as a duck-punching system for providing hooks into the
libraries used by the tracked experiment.

In dynamic programming languages like python, a com-
mon method for modifying or extending code is duck-
punching, which is also known as monkey-patching [25].
The general concept does not restrict how underlying meth-
ods, classes attributes or functions are modified. They can
add additional logic or in the case of dynamically typed
languages even completely change up signatures. Patches
are applied on memory only and don’t have to be included
in the source code. To secure the requirements qualities of
Open Science, the configurations and logging infrastruc-
ture itself has to be made available in a structured manner.
PyPads employs versioned mapping files to define, which
functions need to be patched on the libraries. It introduces
the tracking functionality using dynamically configurable
loggers and injects the entry points for them when import-
ing the libraries, omitting the need for manual activation.
An abstract depiction of the architecture of PyPads can be
found in Fig. 3.

When wrapping functions, PyPads uses a similar struc-
ture as the alias_method_chain or prepend of Rails5, while
preserving the original functionality of libraries. Extending
the importlib and therefore modifying the outcome of the
dynamic loading process of python, allows for a modular
extension of user-imported objects.

5 https://littlelines.com/blog/2018/01/31/replace-alias-method-chain.

K

https://www.mlflow.org/docs/latest/tracking.html
https://pypi.org/project/scikit-learn/
https://littlelines.com/blog/2018/01/31/replace-alias-method-chain

Datenbank-Spektrum (2024) 24:53–62 57

Fig. 3 Composition of PyPads [26]

Extending Python’s Importlib PyPads’s duck punch-
ing consists of modifying the import process of modules,
classes, and functions by wrapping them if they are ref-
erenced in PyPads’ algorithm mappings. Algorithm map-
pings are items in the mapping registry6. This is done by
adding the above-mentioned custom import logic to the
python importlib extension. Depending on the type of the
imported object, PyPads takes the object, the context defin-
ing it and the matched mapping found in the mapping file
and feeds it into the suitable wrapper to inject with logging
functionalities.

3.1 Mapping Files

’YAML’ based mapping files are a structured and human-
readable medium for linking loggers with code (via hooks),
including extra metadata and domain concepts.

Similar to classic XML mapping files in the software en-
gineering domain, these files can be considered as a struc-
tural configuration including descriptive metadata [27]. The
decoupled nature of mapping files makes them easily shared
and extended-on by users, hence their community-driven
aspect.

Static monkey-patching, like i.e. the MLflow auto-log-
ging functionality, can become obsolete due to constant
changes and updates in a library’s code life cycle. Versioned
mapping files circumvent this problem since it makes mon-
key-patching dynamic in the sense of specifying the path
of module, class, or function to patch within a single adapt-
able file. Application of the duck punching itself can be
decided on import time, taking environmental data as well
as metadata of the mappings into account. A mapping en-

6 A collection of hash maps created by compiling all the available
mapping files with corresponding packages’ names as keys.

try represents the object that we wish to inject with logging
functionalities. Each entry consists of three parts: a relative
path to the object in the library, a set of hooks that maps
to the corresponding loggers defined as events, and a data
field for all the additional metadata and domain concepts.
PyPads also allows for the use of regular expressions (or
Regex) for the object’s relative path, which offers a degree
of flexibility to the mapping file that makes it resistant to
minor and major re-factors in the source code of a library.
Listing 4 shows an example of how a mapping file is struc-
tured. Each mapping file would contain a list of mappings.

In the current iteration of PyPads, the system attempts to
execute loggers for every found valid mapping, regardless
if the mapping file was directly compiled for the installed
version of the target library. In case the logging process
fails due to a version mismatch between the logger and
library implementation, the system falls back to the original
function call. In these cases, a log failure flag is included
in the Logger-call objects, which are stored themselves for

Fig. 4 Shortened example of a minimal YAML mapping file for the
Scikit-learn library

K

58 Datenbank-Spektrum (2024) 24:53–62

a

c

a

Fig. 5 Distribution of execution times of the import statement, metric
function f1-score, and CoverTypes loading function fetch_covtype in
sub-figures (a), (b), and (c) respectively. a On import of scikit-learn. b
On f1-score execution. c On dataset loading (fetch_covtype function)
for a size of 1000.0.17%/ and 100 000.17%/ samples

data provenance reasons. This allows for a more fuzzy, but
traceable way of meta information storage.

3.1.1 Performance Impact

To show the performance impact introduced by PyPads
both on import and on execution level of patched objects
(or more specifically patched functions), we ran a minimal
example script 10 times when we imported all modules
of sklearn, load the CoverType dataset7, fit a decision tree
classifier and compute the f1-score on the predicted labels.
An empty dummy Logger is defined to highlight the in-
troduced constant overhead, it was used for duck-punching
any matched mapping for the library metrics i.e, f1_score
(with hook:“pypads_metric”).

Additionally, loggers could also introduce an over-
head that scales with the size of the experiment, i.e, the
size of the dataset. Therefore, we defined a custom log-
ger that trains a Random Forest Regressor and logs the
feature importance weights when loading the data (with
hook:“pypads_dataset”).

Fig. 5a shows that the overhead in execution time when
using PyPads’ Importlib extension is around 1200ms on
average, which is not of much significance given the size
of the mapping file with over 20k lines. The Importlib ex-
tension overhead mostly depends on the number and size of

7 https://scikit-learn.org/stable/datasets/real_world.html#forest-
covertypes.

Fig. 6 Compatibility of a mapping file across 20 different releases of
Scikit-learn

mapping files used during the lookup, as well as the number
of imported objects. Fig. 5b highlights the overhead intro-
duced by the monkey-patching and execution of our dummy
logger for the metric function f1-score. There is no signifi-
cant performance impact (� 100ms on average) introduced
when executing the patched f1-score function. The other
kind of introduced overhead can be seen in Fig. 5c, where
our custom logger was executed when loading 0.17%, and
17% of the Covertype dataset (1000 and 100000 samples
respectively). Fig. 5c simply shows an example of the po-
tential scaling of overhead in execution time when using
loggers that deals with input data.

3.1.2 Compatibility and Log-Coverage

Similarly to the study in Sect. 2 where we looked into the
changes in the source code across the life cycle of a li-
brary i.e, the Scikit-learn library, we wanted to show the
compatibility of our current mapping file created for Scikit-
learn (version 0.21.3) by comparing the number of matched
mappings, monkey-patches, and imported objects when im-
porting all modules. Fig. 6 shows the values for 20 differ-
ent releases of the library from 0.19.0 to 0.24.2. It can be
observed that matched mappings are stable across all ver-
sions, except for the transition from 0.21.3 to 0.22.0. The
decrease in the number of matched mappings and duck-
punched functions is also seen in the heatmap of Fig. 2.
The overlap in shared functions, classes dropped drastically
from above 90% to below 45%. This is most likely related
to a major change in the naming scheme of classes and
functions. Looking into it, the reason behind this change
can be linked to the clear definition of private and public

K

https://scikit-learn.org/stable/datasets/real_world.html%23forest-covertypes
https://scikit-learn.org/stable/datasets/real_world.html%23forest-covertypes

Datenbank-Spektrum (2024) 24:53–62 59

APIs which was introduced in the 0.22 milestone8 of the
library’s life cycle.

3.2 Output and Formats

Every logger defined in PyPads needs to adhere to a basic
interface enforcing provenance and structure information.
Loggers have to define JSON-Schema compatible output
model for their produced logs, while also defining a set
of meta-information about themselves. The content of the
logs can furthermore be grouped in different tracked ob-
ject classes and arbitrary metadata. In the logging context,
loggers have access to the mapping files and their corre-
sponding mappings relevant for the current execution. This
information is summarized with run-time statistics and ad-
ditional metadata provided by the mapping itself, as well
as programmatic logic of the logger into the log. Listing 7
depicts the reduced output schema of a feature importance
extraction logger.

The output of loggers is intended to be integrated into an
ontology. For this purpose, the PyPads extension PyPads-
Onto was developed. As base ontology for the conversion,
ML-Schema [28] was chosen due to its easy structure and
focus on machine learning structures. PyPads-Onto extends
ML-Schema Ontology from its initial 21 Classes to 211
Classes including relations to SUMO and additional details
like logger, libraries and their meta-information as objects
themselves. Parts of the extensions to ML-Schema can be
seen in Fig. 8.

To enable the mapping of output logs into ontologies,
two main procedures can be conducted. Either logs have to
be transcribed into RDF on the fly or, after their storage
as JSON, via a cronjob. The second approach is to be con-
sidered less detailed than the first due to the converter not
having access to the full context information anymore. Only
the logged metadata itself can be used for the conversion,
instead of analyzing the environment of the live system. To
control and enrich available metadata mapping files can be
used, adding information like RDF types on hooks. We ex-
pect this enriching information to represent most of a full-
fledged mapping file, due to the compressed syntax of the
mappings themselves. A current version of sklearn mapping
consists of 95.89% semantic context mappings [26].

This mapping data can not only be used to embed the
produced logs into the correct ontological environment but
could in further steps also be used to supplement a mining-
based mapping approach. The injection infrastructure may
be able to analyze the executed code base on the fly to
identify suitable mapping candidates.

Currently, PyPads finds application in a small scale
setup, delivering computation containers as a service. Stu-

8 https://github.com/scikit-learn/scikit-learn/issues/9250.

Fig. 7 Logger output schema without require and definitions

dents and data scientist get access to computation containers
in a Kubernetes9 cluster via a JupyterHub10 deployment.
Logs are written with Kubernetes native logging systems to
an Elasticsearch backend. The data flow diagram in Fig. 9
gives an insight into the communication process. Logs are
gathered in the cluster via custom fluentd filters in sidecar
containers. References to artifacts like pickled models are
identified by a fluentd filter calling an upload script to store
the binary data in corresponding s3 buckets. A trial run to
transfer logs into the ontology was conducted. In further
steps, it has to be revisited if the benefits of RDF storage
out-weight the significant overhead registered on the live
data.

4 RelatedWork

Due to the increased interest on structuring ML research
and ensuring its openness, a set of frameworks were de-
veloped and released. The goal was to provide necessary
features to secure an open, shareable and reproducible en-
vironment for ML research experiments. In the following
section, a selection of tools that focuses on managing, track-
ing and deploying re-usable machine learning workflows
are described.

9 https://kubernetes.io.
10 https://jupyter.org/hub.

K

https://github.com/scikit-learn/scikit-learn/issues/9250
https://kubernetes.io
https://jupyter.org/hub

60 Datenbank-Spektrum (2024) 24:53–62

Fig. 8 Excerpt of the in PyPads-Onto used 221 Classes. Blue is the PyPads namespace, orange SUMO, green Expo and grey ML-Schema

Fig. 9 Dataflow of pypads in the
kubernetes cluster

MLflow [29] is a well-known platform for the machine
learning life cycle by Databricks. The open source platform
aims to manage the end-to-end machine learning life cycle.
Its main function is to track experiments for recording and
comparing results, packaging the machine learning code in
a reusable and reproducible form and managing deployable
models from a variety of model serving and inference plat-
forms. MLflow’s key principle is an open interface design,
where data scientists and engineers can bring their own
training code, metrics, and inference logic while benefit-
ing from a structured development process [30]. However,
since MLflow does not enforce standardized structure on
the written logs, it becomes hard to understand and make

use of an experiment’s logs in some cases. Logging with
MLflow is mainly done manually by adding additional lines
into the existing code base, which could present an unnec-
essary overhead for researchers. While their auto-logging
feature aims to solve this problem, it is based on static mon-
key-patching and will require constant updates in case of
huge revisions and reworks in the source code of the target
library.

Sacred [31] is an open source project which allows for
annotation and tracking of experiments. Sacred facilitates
easy configuration of experiments and uses annotations
as a way to offer non-intrusive logging, from which Py-
Pads takes inspiration to remedy the limitations presented

K

Datenbank-Spektrum (2024) 24:53–62 61

by MLflow. Similarly, Weights and Biases [32] provides
experiment tracking and dataset versioning via manual
code integration. PyPads improves on MLflow by enforc-
ing a schema model for each produced logs to guarantee
a defined structure for every logger. This helps standardize
logs and makes them easily shareable among scientists.
It also extends upon MLflow’s auto-logging feature by
using mapping files to dynamically match and inject target
functions with the corresponding loggers based on defined
hooks. Hence, the introduction of dynamic monkey-patch-
ing. The latter reduces efforts in manual code configuration
and annotation required by Sacred [31] and Weights and
Biases [32].

Reusable Analysis(REANA) [33], Data Version
Control(DVC) [34], OpenML [35], Sumatra [36], and
Kubeflow [37] to add a few more to a non-exhaustive list
of tools and frameworks that were developed to help with
the tracking of the research workflow by providing ways to
ease logging for developers.

5 Conclusion

The paper presents the workings of a prototypical logging
framework for machine learning, making use of dynamic
code injection, community driven mappings and cluster na-
tive logging applications. With an ontology and resource
description framework export, we hope to facilitate seman-
tic harmonization between libraries and further the under-
standability of experiment outcomes. The paper presets key
concepts and features of PyPads, while shining the light on
needed extensions, i.e, PyPads-Onto. The modular nature of
the stack and the code-less tracking capabilities aim to facil-
itate an ecosystem sustained by community efforts. Exist-
ing Loggers support the automated bookkeeping of the used
hardware, parameter set, metrics and setups of mapped li-
braries. To show the capabilities for not only providing log-
ging but also supporting the development of experiments,
PyPads implements a simple TensorFlow determinism war-
ning validator.

On top of existing state-of-the-art tools, PyPads intro-
duces a novel approach of non-intrusive logging using map-
ping files that ensure the flexibility and extensibility of
our autologging functionality and offer a community-driven
support for the evolving ML algorithms and frameworks.
Moreover, PyPads provides end-to-end provenance history
of every log by enforcing a JSON schema model on the pro-
ducing logger, which also defines metadata about the logger
itself that can be packaged and referenced with a version-
ing system i.e, Git. The last main contribution of PyPads
consists of extending ML-Schema Ontology with logs en-
riched with a semantic context that can be added via the
aforementioned mapping files.

Future versions of PyPads aim to incorporate additional
tools to secure replicability of experimental runs. One such
venture could be built on the logger employing strace to
track process calls similarly to ReproZip [38], CARE [39],
PTU [40], Sumatra [36], and CDE [41] or by directly us-
ing these tools. These environment capturing tools “solve”
replicability by persisting all libraries and data files ac-
cessed in a run on the operating system layer. A current im-
plementation for reproducibility semi-automatically com-
piles the experiment code into a docker image. While Py-
Pads can currently use the hooks to define a simple call
graph, more sophisticated approaches could be introduced
by extending the PyPads stack with tools such as Prove-
nanceCurious [42] or noWorkflow [43], which apply tracing
routines and code inspection to include additional data flow
information on source code basis. A taxonomic overview
of tracing tools [44] may in the future allow for a struc-
tured tracing with differing granularity depending on the
use case.

Funding This work has been partially funded by the Bavarian Min-
istry of Economic Affairs, Regional Development and Energy by
means of the funding program “Internetkompetenzzentrum Ostbay-
ern” as well as by the German Federal Ministry of Education and
Research in the project “Provenance Analytics” with grant agreement
number 03PSIPT5C.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Pawlik M, Hütter T, Kocher D, Mann W, Augsten N (2019) Daten-
bank Spektrum 19(2):107. https://doi.org/10.1007/s13222-019-
00317-8

2. Risch J, Krestel R (2019) Datenbank Spektrum 19(2):117. https://
doi.org/10.1007/s13222-019-00316-9

3. Kurakin A, Goodfellow I, Bengio S et al (2016) Adversarial exam-
ples in the physical world

4. Schwab M, Karrenbach N, Claerbout J (2000) Comput Sci Eng
2(6):61

5. Vanschoren J, Blockeel H, Pfahringer B, Holmes G (2012) Mach
Learn 87(2):127

6. Sonnenburg S, Braun ML, Ong CS, Bengio S, Bottou L, Holmes
G, LeCun Y, MÃžller KR, Pereira F, Rasmussen CE et al (2007)
J Mach Learn Res 8(Oct):2443

7. Baker M (2016) Nat News 533(7604):452

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s13222-019-00317-8
https://doi.org/10.1007/s13222-019-00317-8
https://doi.org/10.1007/s13222-019-00316-9
https://doi.org/10.1007/s13222-019-00316-9

62 Datenbank-Spektrum (2024) 24:53–62

8. Olorisade BK, Brereton P, Andras P (2017) ICML 2017 RML
Workshop: Reproducibility in Machine Learning

9. Begley CG (2013) Nature 497(7450):433
10. Hutson M (2018) Artificial intelligence faces reproducibility crisis
11. Wendlinger L, Stier J, Granitzer M (2021) Genetic Programming.

EuroGP 2021. In: Hu T, Lourenço N, Medvet E (eds) Genetic
Programming. EuroGP 2021. Lecture Notes in Computer Science,
Springer, Cham, vol 12691, pp 162–178

12. Stodden V (2009) Ann Intern Med. https://doi.org/10.1109/MCSE.
2009.19

13. Gentleman R (2007) D. Temple Lang. J Comput Graph Stat. https://
doi.org/10.1198/106186007X178663

14. Homolak J, Kodvanj I, Virag D (2020) Scientometrics 124(3):2687.
https://doi.org/10.1007/s11192-020-03587-2

15. Fecher B, Friesike S (2014) Opening science, pp 17–47
16. Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breck-

ler SJ, Buck S, Chambers CD, Chin G, Christensen G, Contesta-
bile M, Dafoe A, Eich E, Freese J, Glennerster R, Goroff D,
Green DP, Hesse B, Humphreys M, Ishiyama J, Karlan D, Kraut
A, Lupia A, Mabry P, Madon T, Malhotra N, Mayo-Wilson E,
McNutt M, Miguel E, Paluck EL, Simonsohn U, Soderberg C,
Spellman BA, Turitto J, VandenBos G, Vazire S, Wagenmakers
EJ, Wilson R, Yarkoni T (2015) https://science.sciencemag.org/
content/348/6242/1422. Science 348(6242):1422. https://doi.org/
10.1126/science.aab2374

17. McNutt M (2014) Science 343(6168):229. https://doi.org/10.
1126/science.1250475 (https://science.sciencemag.org/content/
343/6168/229)

18. Braun ML, Ong CS (2018) Implementing reproducible research.
Chapman and Hall/CRC, pp 343–365

19. Marwick B, d’Alpoim Guedes J, Barton CM, Bates LA, Baxter M,
Bevan A, Bollwerk EA, Bocinsky RK, Brughmans T, Carter AK et
al (2017) SAA archaeological. Record 17(4):8

20. Dienlin T, Johannes N, Bowman ND, Masur PK, Engesser S, Küm-
pel AS, Lukito J, Bier LM, Zhang R, Johnson BK, Huskey R,
Schneider FM, Breuer J, Parry DA, Vermeulen I, Fisher JT, Banks
J, Weber R, Ellis DA, Smits T, Ivory JD, Trepte S, McEwan B,
Rinke EM, Neubaum G, Winter S, Carpenter CJ, Krämer N, Utz
S, Unkel J, Wang X, Davidson BI, Kim N, Won AS, Domahidi E,
Lewis NA, de Vreese C (2020) J Commun 71(1):1. https://doi.org/
10.1093/joc/jqz052

21. Weißgerber T, Fellicious C, Granitzer M (2019) PADRE: Platform
for mAchine learning and Data science REproducibility. Open Sci
Process Model Mach Learn (OSPMML). https://doi.org/10.5281/
zenodo.4870627

22. Heumos L, Ehmele P, Menden K, Cuellar LK, Miller E, Lemke
S, Gabernet G, Nahnsen S (2021) CoRR abs/2104.07651. https://
arxiv.org/abs/2104.07651. Accessed 19.4.2021

23. Nagarajan P, Warnell G, Stone P (2018) CoRR abs/1809.05676.
http://arxiv.org/abs/1809.05676. Accessed 5.10.2018

24. Fellicious C, Weißgerber T, Granitzer M (2020) LOD
25. Hunt J (2019) A beginners guide to python 3 programming.

Springer, pp 325–336
26. Weißgerber T, BenAmor M, Fellicious C, Granitzer M (2021) Py-

pads: bootstrapping community-driven open. Science for Machine
Learning https://doi.org/10.5281/zenodo.4697245

27. Keith M, Schincariol M, Nardone M (2018) XML Mapping Files.
Apress, Berkeley, pp 593–654 https://doi.org/10.1007/978-1-4842-
3420-4_13

28. Publio GC, Esteves D, Lawrynowicz A, Panov P, Soldatova LN,
Soru T, Vanschoren J, Zafar H (2018) CoRR abs/1807.05351. http://
arxiv.org/abs/1807.05351. Accessed 2018-8-13

29. MLFlow. Mlflow – a platform for the machine learning lifecycle |
mlflow. https://mlflow.org/. Accessed 2019-12-17

30. Zaharia M, Chen A, Davidson A, Ghodsi A, Hong SA, Konwinski
A, Murching S, Nykodym T, Ogilvie P, Parkhe M et al (2018) IEEE
Data Eng Bull 41(4):39

31. Greff K (2015) J. Schmidhuber, proceedings of the AutoML. Inter-
national machine learning society

32. W&B. Weigths & biases. https://docs.wandb.ai/. Accessed 2021-
08-02

33. Šimko T, Heinrich L, Hirvonsalo H, Kousidis D, Rodríguez D
(2019) EPJ web of conferences. EDP Sci 214:6034

34. dvc. Data version control · dvc. https://dvc.org/. Accessed 2020-03-
16

35. Vanschoren J, Van Rijn JN, Bischl B, Torgo L (2014) ACM
SIGKDD. Explor Newsl 15(2):49

36. Davison AP, Mattioni M, Samarkanov D, Teleńczuk B (2018)
Sumatra: A Toolkit for Reproducible Research. Implementing
Reproducible Research [Internet] 2018:57–78. https://doi.org/10.
1201/9781315373461-3

37. Google. Kubeflow|kubeflow. https://www.kubeflow.org/docs/about/
kubeflow/. Accessed 2019-11-16

38. Chirigati F, Rampin R, Shasha D, Freire J (2016) SIGMOD 2016 -
proceedings of the 2016 international conference on management
of data (association for computing machinery, 2016), proceedings
of the ACM SIGMOD international conference on management
of data. In: ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2016, pp 2085–2088 https://doi.org/10.
1145/2882903.2899401

39. Janin Y, Vincent C, Duraffort R (2014) Proceedings of the 1st ACM
SIGPLAN Workshop on Reproducible Research Methodologies
and New Publication Models in Computer Engineering. Associa-
tion for Computing Machinery, New York, NY, USA https://doi.
org/10.1145/2618137.2618138

40. Pham Q, Malik T, Foster I. 2013. Using provenance for repeata-
bility. In Proceedings of the 5th USENIX Workshop on the The-
ory and Practice of Provenance (TaPP ’13). USENIX Association,
USA, Article 2, 1–4.

41. Guo P (2012) Comput Sci Eng 14(4):32
42. Huq M, Apers P, Wombacher A (2013) in proceedings of the 16th

international conference on extending database technology. EDBT,
vol 2013. Association for Computing Machinery (ACM), United
States, pp 765–768 https://doi.org/10.1145/2452376.2452475

43. Murta L, Braganholo V, Chirigati F, Koop D, Freire J (2015)
Provenance and annotation of data and processes. In: Ludäscher B,
Plale B (eds) Provenance and Annotation of Data and Processes,
Springer, Cham, pp 71–83

44. Pimentel JF, Freire J, Murta L, Braganholo V (2019) ACM Comput
Surv. https://doi.org/10.1145/3311955

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

K

https://doi.org/10.1109/MCSE.2009.19
https://doi.org/10.1109/MCSE.2009.19
https://doi.org/10.1198/106186007X178663
https://doi.org/10.1198/106186007X178663
https://doi.org/10.1007/s11192-020-03587-2
https://doi.org/10.1126/science.aab2374
https://doi.org/10.1126/science.aab2374
https://doi.org/10.1126/science.1250475
https://doi.org/10.1126/science.1250475
https://science.sciencemag.org/content/343/6168/229
https://science.sciencemag.org/content/343/6168/229
https://doi.org/10.1093/joc/jqz052
https://doi.org/10.1093/joc/jqz052
https://doi.org/10.5281/zenodo.4870627
https://doi.org/10.5281/zenodo.4870627
https://arxiv.org/abs/2104.07651
https://arxiv.org/abs/2104.07651
http://arxiv.org/abs/1809.05676
https://doi.org/10.5281/zenodo.4697245
https://doi.org/10.1007/978-1-4842-3420-4_13
https://doi.org/10.1007/978-1-4842-3420-4_13
http://arxiv.org/abs/1807.05351
http://arxiv.org/abs/1807.05351
https://mlflow.org/
https://docs.wandb.ai/
https://dvc.org/
https://doi.org/10.1201/9781315373461-3
https://doi.org/10.1201/9781315373461-3
https://www.kubeflow.org/docs/about/kubeflow/
https://www.kubeflow.org/docs/about/kubeflow/
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1145/2618137.2618138
https://doi.org/10.1145/2618137.2618138
https://doi.org/10.1145/2452376.2452475
https://doi.org/10.1145/3311955

	PyPads
	Abstract
	Introduction
	Logging Requirements and Code-Injection
	PyPads: A community-Driven logging infrastructure for ML
	Mapping Files
	Performance Impact
	Compatibility and Log-Coverage

	Output and Formats

	Related Work
	Conclusion
	References

