
FACHBEITRAG

https://doi.org/10.1007/s13222-021-00391-x
Datenbank Spektrum (2021) 21:237–244

Feature Engineering Techniques and Spatio-Temporal Data Processing

Chris-Marian Forke1 · Marina Tropmann-Frick1

Received: 31 May 2021 / Accepted: 26 September 2021 / Published online: 20 October 2021
© The Author(s) 2021

Abstract
More and more applications nowadays use spatio-temporal data for different purposes. In order to be processed and used
efficiently, this unique type of data requires special handling. This paper summarizes methods and approaches for feature
selection of spatio-temporal data and machine learning algorithms for spatio-temporal data engineering. Furthermore, it
highlights relevant work in specific domains. The range of possible approaches for data processing is quite wide. However,
in order to use these approaches with the spatio-temporal data in a meaningful and practical way, individual data processing
steps need to be adapted. One of the most important steps is feature engineering.

Keywords Feature engineering · Feature selection · Spatio-temporal data

1 Introduction

These days, spatio-temporal data are widely used and com-
mon. Therefore, it is often required to process them using
machine learning algorithms. Since this is a complex task
due to the data’s unique structure with the focus on both,
time and space, the research in this area continues. In com-
parison, usually machine learning is based on loose feature
records which have no relation with each other. If they do,
then only in one dimension, such as time. This makes spa-
tio-temporal data especially interesting. In this work we
summarize the most common methods which are currently
applied in different domains. Based on categorization done
in [2] and [23], we indicate which methods are suitable for
which kind of data and how these methods work in general.

Before we can dive into the data processing part, it is
important to take the preprocessing steps into account, es-
pecially the feature engineering part. There are several steps
in the feature engineering process. One of them is feature
selection. This is considered in more detail in this paper.
It involves the selection of the most relevant features from
the total set, which can be used to train more efficient mod-
els than is the case with all features. The reason for this

� Marina Tropmann-Frick
marina.tropmann-frick@haw-hamburg.de

1 Hochschule für Angewandte Wissenschaften Hamburg,
Berliner Tor 7, 20099 Hamburg, Germany

might be that certain features are duplicated, irrelevant, or
otherwise confuse the machine learning method used.

Feature Selection is often associated with different
phases of the feature engineering process. A clear repre-
sentation of the process is therefore very important.

First, new features are extracted from the existing ones
during feature extraction. This step can also involve other
data sources. That happens in order to extract relevant de-
tails from the features and make them more recognizable. In
addition, enriching existing data with foreign data sources
can provide further information that cannot be detected by
an algorithm using existing data, such as whether a day is
a holiday for example.

The most important features are then selected in the next
step during feature selection. This means that existing fea-
tures are deleted if they are irrelevant. In other words, we
want to find the most meaningful subset of features that is
available in our dataset. Features may be dropped because
they are either redundant with other features, simply irrele-
vant to the result, never change and thus have no effect, are
duplicated, or strongly correlate with other features.

In Chapt. 2 we focus on the issues of feature selection
in general. Chapt. 3 deals with different forms of spatio-
temporal data occurrence. Also, a mapping to possible data
representations is shown for each of the forms. In Chapt. 4,
the corresponding machine learning methods are listed. We
indicate also here, when should which method be applied
for. Subsequently, in Chapt. 5, the most important data min-
ing tasks are explored and some examples are given, how
they can be implemented using which machine learning

K

https://doi.org/10.1007/s13222-021-00391-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-021-00391-x&domain=pdf
http://orcid.org/0000-0003-1623-5309


238 Datenbank Spektrum (2021) 21:237–244

methods. We conclude this paper with a summary and an
overview over future work.

2 Feature Selection

Feature selection can be performed in different ways.
Mainly, these methods can be divided into three groups:
filter methods, wrapper methods and embedded feature
selection methods. [3, 10].

Filter and wrapper methods evaluate all subsets of the
features. This allows the subset with the best score to be
selected. Filter methods do this by using special metrics that
evaluate individual features or compare multiple features
with each other.

Wrapper methods, on the other hand, achieve this by
training one model for each of the different subsets. Thus,
the subset whose model has achieved the best accuracy can
be selected. Embedded feature selection methods integrate
feature selection into the training process. Thus, they dy-
namically remove features that have little or no relevance
due to the trained weights.

2.1 Filter Methods

Filter methods [18] are the simplest of the three types, as
they use simple metrics to score each feature. Then the
highest scoring features can be selected and used to train
the model. This simplicity also makes these methods very
fast.

2.1.1 Univariate and Multivariate Filter Methods

Filter methods can be distinguished between univariate and
multivariate methods [12]. Univariate methods refer to in-
dividual features and evaluate each of them independently
of the others. This is used, for example, to find invariant
features or features that have no impact on the result.

Multivariate methods, on the other hand, look for correla-
tions between features. They can be used to find redundant,
duplicate, or correlated features.

2.1.2 Basic Filter Methods

Basic filtering methods include, for example, searching for
features that are always the same or almost always the same,
or finding duplicate features. Filtering out such features is
a rudimentary and very fast method that greatly simplifies
the entire feature engineering process.

2.1.3 Correlation Filter Methods

The correlation filter methods belong to the multivariate
methods. These are methods that detect and filter out corre-
lations between two features. If two features are correlated,
then it is sufficient to keep one of them, since they carry
the same information and can make the model unnecessar-
ily complex.

There are different ways of calculating correlations, de-
scribed in [1]. Pearson’s correlation coefficient is commonly
used, it calculates the linear correlation. Spearman’s and
Kendall’s rank correlation coefficients, on the other hand,
check whether the progression is monotonic, i.e. whether
the order is preserved.

2.1.4 Statistical and Ranking Filter Methods

The last type of filter methods contains functions that are
partially very similar to the correlation filter methods. This
includes the check whether features contain mutual infor-
mation [22], i.e. it is possible to infer from one to the other.
Differently than with the correlation filter methods this is
computed however in relation to the target value. Therefore,
it provides information about how much a feature reveals
directly about the label.

Another calculation that has the same goal is the chi-
square evaluation, as seen in [21]. However, it only applies
to categorical features.

A further method is the construction of decision trees
based on exactly one feature only. The different decision
trees are then compared and the features that provide higher
accuracy are ranked higher. For example [16] describes this
as well in a more general approach.

2.2 Wrapper Methods

The next method group is that of wrapper methods [3,
7]. In contrast to the filter methods, the different feature
subsets are evaluated here rather than features individually.
This takes into account that sometimes features have to be
combined to predict the label. To achieve this evaluation,
a model is trained with the feature subset in each individual
case and its loss is used as an evaluation for the corre-
sponding subset. This approach has the disadvantage that
it depends on the particular machine learning algorithm.
On the other hand, a correspondingly better result can be
achieved. However, since one model must be trained for
each subset, the computational effort increases enormously.

Such an approach consists of two to three components
that can be combined in an arbitrary way. On the one hand,
a search strategy is required that determines the feature
subsets to be tested, and on the other hand, a learning algo-
rithm is selected. In addition, a stop criterion is needed if

K



Datenbank Spektrum (2021) 21:237–244 239

not all combinations are to be tested. A stop criterion could
be, for example, that a certain number of features has been
reached or that the accuracy of the model no longer shows
any significant improvements.

2.2.1 Search Strategies

There are many different search strategies. [8] describes
many of them. Here is a short summary.

Forward and Backward Feature Selection are the sim-
plest search strategies. The first one starts with no features
at all and then adds the most promising ones. The latter
starts with all features and removes one at a time.

Since both have the problem that later an earlier step
may become unnecessary, there is Plus-L, Minus-R as an
alternative, where alternately L features are added and then
R features are removed. An extension of this is Sequential
Floating, where L and R are calculated dynamically.

Forward and Backward Feature Selection can also be
combined to the Bidirectional search strategy. Then both are
executed in parallel; however, Forward Feature Selection
does not add anything that Backward Feature Selection has
already sorted out, and vice versa.

Moreover, there is Exhaustive Feature Selection at which
all possible subsets are processed. This variant takes the
longest, but also finds an optimal solution. Furthermore, no
stop criterion is needed for this strategy, since the program
tests every possible subsets.

2.3 Embedded Feature SelectionMethods

Embedded feature selection methods do not select features
until the training process [3]. Like the wrapper methods,
these methods consider that features sometimes comple-
ment each other to predict the label. However, they are
very fast, similar to the filter methods.

The approach is to derive the relevance of the features
while training the model. The features that are classified
as less important are then removed accordingly. Depending
on the model, there are two approaches. In the case of
a decision tree, this can be done directly, otherwise the
relevance calculation takes place via regularization.

2.3.1 Regularization

The L1 regularization punishes features so that overfitting
does not occur. A regression coefficient can drop to 0, which
means that the feature can be ignored. In this case, it can
be removed from the model since it no longer has any
influence. This is also possible when combining L1- and
L2-regularization [27], but not when using L2-regulariza-
tion only, since the regression coefficients cannot become
0 then.

Fig. 1 Data instances and representations of different ST data types [23]

2.3.2 Decision Trees

In the case of decision trees, the relevance of a feature can
be derived by how much it is used to split branches. If
a feature is rarely used as a criterion, it is less important. In
addition, the purity of the distribution is important. If the
results still contain many records of different classes after
the split, the feature is also less important. Thus, the less
important features can then be removed [9].

3 Spatio-Temporal Data

Generally, spatio-temporal data (ST data) can be sepa-
rated into five categories, as proposed by [2] and extended
by [23]. Different data types are stored differently and rep-
resented differently again. These categories are considered
more closely below. Fig. 1 shows their relations.

Depending on the domain, we distinguish between con-
tinuous and discrete spatio-temporal fields. Continuous
fields have a value for every location at every time (such
as temperatures). Discrete fields only have values at certain
locations and certain times (e.g., crimes). They can be
recorded in their entirety while continuous fields cannot.

3.1 Event Data

Event data are records of events occurring at certain places
at certain times. Every discrete event is saved with its loca-
tion and time, a so-called point. Formally, this is represented
by a tuple (e; l; t) with e being the event itself, l being the
location and t the time. This results in a very unstructured
set. There are times with multiple events and times without
any events. Also, events can occur everywhere. An example
for a set of event data can be seen in Fig. 2.

We can explore this kind of data mostly when track-
ing something, e.g., crimes, accidents, etc. Generally, these
events are loose. Often however, there are connections be-

K



240 Datenbank Spektrum (2021) 21:237–244

Fig. 2 Example for a set of event data [23]. Three types of events are
shown here (e1, e2, e3), which happened at different locations (lx ) and
at different time points (ty )

tween these events. For example, some regions may have
a higher criminality than others do.

3.2 Trajectory Data

Trajectories are paths of objects. Objects can be anything,
like people riding bikes, or balloons. Trajectories can be
recorded e.g. by GPS.

Since they are continuous routes, they cannot be saved
with all the details, but merely with an approximation. This
can either be certain discrete points including the object,
where it is and at what time it is there for many points in
time. How this looks like can be seen in Fig. 3. Or this
can be a time series item which include the locations in
chronological order for each specific object. In the latter
case, they can be represented as sequences. Formally, such
a sequence is {(l1, t1),(l2, t2),...,(ln, tn)} with lx being the
location at step x and tx being the time at step x.

Fig. 3 Example for a set of trajectory data [23]. Two trajectories are
shown here, with all points specified by a location (lx ) and a time (ty )

3.3 Spatio-Temporal Point References

This kind of spatio-temporal data occurs when the domain
is a continuous spatio-temporal field. A good example for
this kind of data is the temperature. At all times, there is
a certain temperature at all locations. However, since the
temperature cannot constantly be measured at all locations,
point references are recorded. In the given example, this
might be done by weather balloons. They measure the tem-
perature at different locations at different times. An example
for such a measuring is shown in Fig. 4.

As a result, the data consists of temperatures for different
places with individual timestamps. Out of these maps that
look different at every moment, the continuous field can be
calculated using domain specific algorithms.

To store the data, either every measurement can be saved
as a point with its time and place. Then, the result is a set of
tuples exactly like those of event data (which was (e; l; t)
with e being the measurement, l being the location (di-
mension depends on use-case, e.g. 2-dimensional for lati-
tude and longitude) and t the time). Or trajectories can be
recorded which follow e.g. the route of the weather bal-
loon. These can then be represented as sequences or two-
dimensional matrices.

3.4 Raster Data

Raster data is similar to point reference data. The differ-
ence is that the locations of the measuring points are fixed.
Although the word “raster” might suggest otherwise, these
locations do not necessarily have to form a grid. Also, the
measuring interval does not need to be of a fixed length.
An example for raster data would be the measurement of
traffic using sensors at fixed locations. An exemplary record
of such a measurement can be seen in Fig. 5.

Since raster data is discrete, it can be stored as time se-
ries information, spatial maps or a raster. Time series are
stored for each location and can be represented by a se-
quence. Spatial maps are a collection of all observations at
all locations for each discrete timestamp. They can be rep-
resented as graphs or two-dimensional matrices. A spatio-
temporal raster contains a collection of spatial maps which
chronologically follow each other. It can be represented
as a two-dimensional matrix or a three-dimensional tensor.
A matrix for example would be of size n by m with n be-
ing the amount of timestamps and m being the amount of
measuring points. Every value vij in the matrix is then the
measurement at the ith time and jth location.

3.5 Videos

Since the pixels of a video can be seen as the locations
and the frames as the time, videos can also be considered

K



Datenbank Spektrum (2021) 21:237–244 241

Fig. 4 Example for a set of
point reference data [23]. In
this example for point reference
data, two timestamps are shown.
For each timestamp, there are
only values for the locations of
the small white points. Based
on them, the entire field can be
approximated

Fig. 5 Example for a set of raster data [23]. In this example for raster
data, the traffic density of different road intersections is depicted. In
this example, the location is pictured on the x-axis only, by the in-
tersection’s ID. This means that a lot of spatial information is only
retrievable with a map showing in which relation these IDs are. The
y-axis shows the temporal features of the data

as spatio-temporal data. They could also be seen as a very
structured kind of raster data.

Since there is only a certain number of pixels with a cer-
tain density, the data is discrete. It can be stored as spatial
maps (represented as graphs or two-dimensional matrices)
or a spatio-temporal raster (represented as a two-dimen-
sional matrix or a three-dimensional tensor).

4 Algorithms for Spatio-Temporal Data
Engineering

Having a spatio-temporal dataset with features described in
3, the next step is then Data Engineering – transformation
of the data into a form that a machine learning algorithm
can work with. The representations listed in Fig. 1 can be
a base for this transformation.

The further data preparation depends on the kind
of learning algorithm that the data is to be used for.
There are several algorithms which are commonly used
for spatio-temporal data. Most of them are some sort of
neural networks, such as Convolutional Neural Network

(CNN), Graph Convolutional Network (GraphCNN), Re-
current Neural Network (RNN), Long Short-Term Mem-
ory (LSTM) or Sequence to Sequence Transformation
(Seq2Seq).

The Feature Engineering step is usually a part of Data
Engineering. All the methods for feature selection we de-
scribed in 2 can be applied to spatio-temporal data. The
particular method depends on the selected machine learn-
ing algorithm and the desired complexity of the resulting
model.

4.1 CNN

CNNs are usually used for image classification or similar
tasks. They take a multidimensional cube of values as input.
With images, this can be the two dimensions of pixels and
a third dimension containing the red, green and blue values
of the corresponding pixel’s color.

This structure can be adopted also to spatio-temporal
data. For example, spatial maps and rasters can be used
as input. Both of them are a sort of two-dimensional map
which can be considered as an image. If they are equally
distributed, it works even better, no further preprocessing
needs to be performed. Otherwise, they need to be trans-
formed into a more homogenous form, e.g., by adding
empty spaces in between the existing spaces. This task can
sometimes increase the resulting model significantly. In this
case, it might be easier to use GraphCNNs instead of CNNs.

On spatio-temporal data, CNNs focus on the spatial part,
however, the temporal part can be included in different
ways. One would be to run the model for each time stamp
and include the time on a higher level. Another would be
to include the time as a new dimension in the input data.
Then, e.g. one spatial map for each timestamp can be put
together as one input record.

K



242 Datenbank Spektrum (2021) 21:237–244

4.2 GraphCNN

Basically, GraphCNNs work the same way CNNs do. How-
ever, they accept graphs as input. These do not need to
have the same topology. A GraphCNN dynamically applies
the operations to the graph’s nodes which lie next to each
other. As with CNNs, after one or multiple GraphCNN lay-
ers, a fully connected final layer can follow. This enables
classification for specific nodes or regression, etc. Or, as an
alternative, the embedded graph nodes can be considered
themselves and used to classify the entire graph.

As with CNNs, the spatial part of the data is focused
here. The temporal part can either be added by something
on a higher level, or it can be integrated into the data. For
example, a graph could contain different data for different
times, included in the information each node saves.

It is self-explanatory that this kind of machine learning
method is suitable for data represented by graphs. A good
example is a traffic-flow.

4.3 RNN

All so far mentioned methods are mainly based on the spa-
tial part of spatio-temporal data. RNNs and also LSTMs
consider the temporal part more closely. They are best
suited to sequence data such as time series.

Both, RNNs and LSTMs, can receive the spatial infor-
mation for each timestamp, one after another. This way,
they learn how the state changes over time and can predict
it’s state in the future. The basic difference between the
two methods is that RNNs consider the recent past while
LSTMs also consider the older past. [4] is an example for
an RNN approach and [6] for an LSTM approach.

4.4 Seq2Seq

A Seq2Seq model is a way to translate a series into a series
of another kind. It is widely used for language translation
but it can also be used for spatio-temporal data.

The idea is that the dependencies in the input are cap-
tured. In a time series, these relations are sometimes signifi-
cant. This is for example the case with the temperature. The
temperature at a certain time and place is usually similar to
the temperature at the same place a few minutes earlier or
later. [15] for example uses Seq2Seq.

4.5 Further methods

The methods described above are some of the most com-
mon ones. However, they are not the only ones used. For
example, simpler methods such as Restricted Boltzmann
Machines (RBM) are efficiently used for specific tasks, as
in [13]. Or another preprocessing step could be also to au-

toencode the data, as in [11]. And if one of these methods
is not sufficient, multiple ones can be combined.

5 Spatio-Temporal DataMining

All these mentioned machine learning algorithms have their
specific use and goals. Which one should be selected de-
pends on what is to be accomplished. The most relevant and
frequent tasks are related to classification or prediction.

5.1 Prediction

Predicting in the context of spatio-temporal data usually
means that a prediction for a certain point in time is made.
This is the most common task. Thus, there are many ap-
proaches on this task existing. They contain several of the
different machine learning methods in certain ways.

As an example, in the field of weather forecasting, pre-
dictions are based on the history of the weather in mul-
tiple areas. Since the temporal aspect is to be predicted
here based on time series, RNNs and LSTMs are a pop-
ular choice. They can receive the weather records of the
past days in order, and then produce the forecast for the
upcoming days. This is shown e.g. in [25]. There, LSTMs
are combined with Seq2Seq.

Another good example is traffic. In this case, the aim
is to predict, when and where accidents might occur. To
achieve this, there are many different approaches. One of
them is ConvLSTM, which is a combination of CNNs and
LSTMs. This approach is shown in [24].

5.2 Representation Learning

Since spatio-temporal data is often only a part of a bigger
pool of features, it sometimes needs to be represented in
a simpler or just in a different way. In this case, represen-
tation learning is used.

Mostly, the data is needed in a form which can be used
as simple features in a next step. Therefore, representation
learning extracts the essence of the input data and delivers
it in the desired form.

Basically, autoencoders are an example for an algorithm
achieving this goal. However, autoencoders usually already
expect a fixed amount of numerical features.

Seq2Seq also is another tool for representation learning
and is quite useful with time series. For example, a route
(trajectory) of an object could be represented as a time
series and then, using Seq2Seq, it could be mapped into
a form which allows easier comparison. Such a process has
been carried out in [14].

Other algorithms can also be used. For example, RNNs
or LSTMs can keep track on the total state of a dataset over

K



Datenbank Spektrum (2021) 21:237–244 243

the time, making it one record instead of one per recorded
timestamp.

5.3 Classification

Another relevant task is classification which is about choos-
ing into which category a set of data belongs. A well known
example for a classification task with spatio-temporal data
is the recognition of diseases indicated by certain brain ac-
tivities. For this task, e.g., fMRI recordings are used. They
can be classified by a wide range of machine learning meth-
ods, including LSTMs, CNNs or GraphCNNs.

For example, an fMRI scan can be modelled as a three-
dimensional raster. This can then be inserted into a CNN
which predicts whether the scan shows a specific illness or
not. This is explored in detail in [19].

5.4 Estimation and Inference

Sometimes, an estimation is needed, such as an arrival time
for a trip or a temperature at a place without a thermometer.
The first mentioned problem is an estimation and the second
one is an inference.

Estimations can for example be calculated from spatial
maps or trajectories. If we want to estimate an arrival time
of a trip, we can use multiple ways. If the trip is represented
as a spatial map, CNNs can be used. This is due to the
fact that CNNs can use a multidimensional cube of values
as input and a spatial map can be represented as one, as
a matrix to be concrete. If it is a trajectory, RNNs or LSTMs
are more appropriate, as they may run through every station
step by step, summing up the travel time. An example for
a recursive neural network estimating an arrival time is [26].

Inferences can be calculated in many situations. As men-
tioned before, a measurement can be estimated for a place
that no actual measured value exists for. This can also hap-
pen using different kinds of neural networks, such as CNNs
and RNNs. [5] shows an example for an air pollution infer-
ence which uses a system including an RNN.

5.5 Outlier Detection

As in all measured data, there are outliers in spatio-temporal
data. Most of the time it is crucially important to find and
analyse or extract the outliers. As with all other tasks, the
way this is done highly depends on the data’s domain.

Often, there are outliers in events, such as in traffic. Some
traffic jams occur regularly while others only occur once.
This may be due to an accident or a special event. In order
to find these outlier events, CNNs as well as LSTMs are
a common choice. [20] for example uses CNNs to accom-
plish this task.

In spatial maps for the weather data, e.g., there might
be extreme values, such as super high temperatures or fast
winds. These can also be analysed by methods such as
CNNs as shown in [17].

6 Conclusion

Feature Selection is driven by several reasons. First, the
most important reason is to make the model more accu-
rate by removing unnecessary distractions. In addition, the
whole process has the advantage that fewer features require
less computing power for training and especially for pre-
diction. This in turn increases the speed. And eventually,
the models are easier to interpret, because fewer variables
make it easier to understand what the individual variable is
responsible for.

We presented in this paper a summary of feature selec-
tion methods. Although the methods can be used broadly,
our focus has been more on spatio-temporal data. Therefore,
other sections of the paper are devoted precisely to the top-
ics of how to record the different kinds of spatio-temporal
data, what algorithms can be used to process them, and for
which types of analysis they are particularly well suited.

The presented work can serve as a roadmap for scientific
projects and projects with industry, which deal with spatio-
temporal data. Furthermore, we plan to systematically eval-
uate practical examples from our own projects and record
further recommendation possibilities for the spatio-tempo-
ral data engineering process.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Akoglu H (2018) User’s guide to correlation coefficients. Turk J
Emerg Med 18(3):91–93

2. Atluri G, Karpatne A, Kumar V (2018) Spatio-temporal data min-
ing: a survey of problems and methods. ACM Comput Surv. https://
doi.org/10.1145/3161602

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3161602
https://doi.org/10.1145/3161602


244 Datenbank Spektrum (2021) 21:237–244

3. Chandrashekar G, Sahin F (2014) A survey on feature selection
methods. Comput Electr Eng 40(1):16–28 (40th-year commemo-
rative issue)

4. Cheng L, Zang H, Ding T, Sun R, Wang M, Wei Z, Sun G (2018)
Ensemble recurrent neural network based probabilistic wind speed
forecasting approach. Energies 11(8):1958

5. Cheng W, Shen Y, Zhu Y, Huang L (2018) A neural attention model
for urban air quality inference: learning the weights of monitoring
stations. In: The Thirty-second AAAI Conference on Artificial In-
telligence, pp 2151–2158

6. Cui Z, Ke R, Pu Z, Wang Y (2018) Deep bidirectional and unidirec-
tional lstm recurrent neural network for network-wide traffic speed
prediction. arXiv preprint arXiv:1801.02143

7. El Aboudi N, Benhlima L (2016) Review on wrapper feature selec-
tion approaches. In: 2016 International Conference on Engineering
MIS (ICEMIS), pp 1–5

8. Feizi-Derakhshi M-R, Ghaemi M (2014) Classifying different fea-
ture selection algorithms based on the search strategies. In: Inter-
national conference on machine learning, electrical and mechanical
engineering, pp 17–21

9. Genuer R, Poggi J-M, Tuleau-Malot C (2010) Variable selection
using random forests. Pattern Recognit Lett 31(14):2225–2236

10. Ghavami P (2019) Big data analytics methods. De Gruyter, Boston
11. Huang H, Hu X, Zhao Y, Makkie M, Dong Q, Zhao S, Guo L, Liu T

(2018) Modeling task fmri data via deep convolutional autoencoder.
IEEE Trans Med Imaging 37(7):1551–1561

12. Jović A, Brkić K, Bogunović N (2015) A review of feature selection
methods with applications. In: 2015 38th International Convention
on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pp 1200–1205

13. Larochelle H, Bengio Y (2008) Classification using discriminative
restricted boltzmann machines. In: Proceedings of the 25th Interna-
tional Conference on Machine Learning ICML ’08. Association for
Computing Machinery, New York, NY, USA, pp 536–543

14. Li X, Zhao K, Cong G, Jensen CS, Wei W (2018) Deep repre-
sentation learning for trajectory similarity computation. In: 2018
IEEE 34th International Conference on Data Engineering (ICDE),
pp 617–628

15. Liao B, Zhang J, Cai M, Tang S, Gao Y, Wu C, Yang S, Zhu W,
Guo Y, Wu F (2018) Dest-resnet: a deep spatiotemporal residual

network for hotspot traffic speed prediction. In: Proceedings of the
26th ACM international conference on Multimedia, pp 1883–1891

16. Novaković J (2016) Toward optimal feature selection using rank-
ing methods and classification algorithms. Yugosl J Oper Res
21(1):119–135

17. Racah E, Beckham C, Maharaj T, Ebrahimi Kahou S, Pal C et
al (2016) Extremeweather: a large-scale climate dataset for semi-
supervised detection, localization, and understanding of extreme
weather events. arXiv preprint arXiv:1612.02095

18. Sánchez-Maroño N, Alonso-Betanzos A, Tombilla-Sanromán M
(2007) Filter methods for feature selection: a comparative study.
In: Proceedings of the 8th International Conference on Intelligent
Data Engineering and Automated Learning IDEAL’07. Springer,
Berlin, Heidelberg, pp 178–187

19. Sarraf S, Tofighi G (2016) Deep learning-based pipeline to recog-
nize alzheimer’s disease using fmri data. In: 2016 Future Technolo-
gies Conference (FTC), pp 816–820

20. Sun F, Dubey A, White J (2018) Dxnat – deep neural networks for
explaining non-recurring traffic congestion. arXiv:1802.00002

21. Tallarida RJ, Murray RB (1987) Chi-square test. In: Manual of
pharmacologic calculations. Springer, New York, pp 140–142

22. Vergara JR, Estévez PA (2014) A review of feature selection
methods based on mutual information. Neural Comput Appl
24(1):175–186

23. Wang S, Jiannong C, Yu PS (2019) Deep learning for spatio-tem-
poral data mining: a survey. CoRR, abs/1906.04928

24. Yuan Z, Zhou X, Yang T (2018) Hetero-ConvLSTM: a deep learn-
ing approach to traffic accident prediction on heterogeneous spatio-
temporal data. Association for Computing Machinery, New York,
NY, USA, pp 984–992

25. Zaytar A, El Amrani C (2016) Sequence to sequence weather fore-
casting with long short-term memory recurrent neural networks. Int
J Comput Appl 143:7–11

26. Zhang H, Hao W, Sun W, Baihua Z (2018) Deeptravel: a neural net-
work based travel time estimation model with auxiliary supervision,
pp 3655–3661

27. Zou H, Hastie T (2005) Regularization and variable selection via
the elastic net. J Royal Stat Soc Ser B 67(2):301–320

K


	Feature Engineering Techniques and Spatio-Temporal Data Processing
	Abstract
	Introduction
	Feature Selection
	Filter Methods
	Univariate and Multivariate Filter Methods
	Basic Filter Methods
	Correlation Filter Methods
	Statistical and Ranking Filter Methods

	Wrapper Methods
	Search Strategies

	Embedded Feature Selection Methods
	Regularization
	Decision Trees


	Spatio-Temporal Data
	Event Data
	Trajectory Data
	Spatio-Temporal Point References
	Raster Data
	Videos

	Algorithms for Spatio-Temporal Data Engineering
	CNN
	GraphCNN
	RNN
	Seq2Seq
	Further methods

	Spatio-Temporal Data Mining
	Prediction
	Representation Learning
	Classification
	Estimation and Inference
	Outlier Detection

	Conclusion
	References


