
Vol.:(0123456789)

KI - Künstliche Intelligenz
https://doi.org/10.1007/s13218-024-00844-x

TECHNICAL CONTRIBUTION

Learning Normative Behaviour Through Automated Theorem Proving

Emery A. Neufeld1 

Received: 19 December 2023 / Accepted: 20 March 2024
© The Author(s) 2024

Abstract
Reinforcement learning (RL) is a powerful tool for teaching agents goal-directed behaviour in stochastic environments,
and many proposed applications involve adopting societal roles which have ethical, legal, or social norms attached to them.
Though multiple approaches exist for teaching RL agents norm-compliant behaviour, there are limitations on what normative
systems they can accommodate. In this paper we analyse and improve the techniques proposed for use with the Normative
Supervisor (Neufeld, et al., 2021)—a module which uses conclusions gleaned from a defeasible deontic logic theorem prover
to restrict the behaviour of RL agents. First, we propose a supplementary technique we call violation counting to broaden
the range of normative systems we can learn from, thus covering normative conflicts and contrary-to-duty norms. Addition-
ally, we propose an algorithm for constructing a “normative filter”, a function that can be used to implement the addressed
techniques without requiring the theorem prover to be run at each step during training or operation, significantly decreasing
the overall computational overhead of using the normative supervisor. In order to demonstrate these contributions, we use a
computer game-based case study, and thereafter discuss remaining problems to be solved in the conclusion.

Keywords  Theorem proving · Defeasible deontic logic · Ethical reinforcement learning

1  Introduction

Reinforcement learning (RL) is a powerful tool for teach-
ing autonomous agents goal-directed behaviour in stochastic
environments, which has seen substantial advances over the
last decades. RL agents are consistently mastering tasks pre-
viously relegated to expert humans (e.g., the RL agent that
beat the world champion of Go [48], or the agent that plays
Starcraft II at the grandmaster level [52]), and the number of
application domains for RL agents has continued to expand.
Notably, RL is a popular choice for the implementation of
robots [29] and autonomous vehicles [46]. [50] emphasizes
the notion that technologies integrated in human commu-
nities must follow social and moral norms congruent with
those communities; as RL agents take up roles more deeply
integrated with human society, it becomes imperative that
they also can conform to the ethical, legal, and social norms
governing society. An autonomous vehicle that does not
obey traffic laws would be next to useless.

Constraining RL agents with norms is easier said than
done. Though implementing behaviour conforming to a sin-
gle norm in isolation might be a simple matter (compelling
an autonomous vehicle to travel no faster than 50 kph within
city limits, for example), when we shift our focus to entire
normative systems—which may contain obligations, prohibi-
tions, permissions, counts-as norms, and conflict-resolution
mechanisms—we start to encounter problems. For example,
how do we implement behaviour in an autonomous vehicle
that complies with all regional traffic laws and accompa-
nying social norms, some of which may conflict with or
modify each other? Implementing normative behaviour is
often more involved than laying out and conforming to a
collection of individual, non-interactive constraints. Some-
times, we will need to utilize more complex forms of norma-
tive reasoning.

Normative reasoning is the form of reasoning dedicated
to correctly drawing conclusions about norms, encompass-
ing the technical demands inherent in reasoning about, for
example, law and morality. Norms introduce nuances not
found in reasoning strictly dedicated to facts; thus, unique
tools have been developed to accommodate these difficul-
ties, largely in the field of deontic logic, a diverse area of
study that has yielded a plethora of specialized logics for

 *	 Emery A. Neufeld
	 emeric.neufeld@tuwien.ac.at

1	 Technical University of Vienna, Wien, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-024-00844-x&domain=pdf
http://orcid.org/0000-0001-5998-3273

	 KI - Künstliche Intelligenz

normative reasoning, along with (to a much lesser extent)
tools automating reasoning with these logics. These tools
allow us to automate reasoning about norms and the behav-
iour they should elicit, which in turn can be used to modify
the behaviour of autonomous agents such as RL agents. This
paper explores this strategy for eliciting normative behaviour
from RL agents, analysing and improving on the technique
introduced in [37], norm-guided reinforcement learning
(NGRL)—a technique that managed to mitigate some of the
disadvantages of the approach utilized in [35, 38]. However,
NGRL possesses several considerable shortcomings itself—
such as an inability to deal with contrary-to-duty (CTD)
obligations—which we will address thoroughly in Sect. 3.

1.1 � Related Work on Ethical RL

Aligning the behaviour of autonomous agents with human
norms is a problem that has been tackled from many angles;
RL in particular has been conjectured as a good candidate
for implementing behaviour in stochastic environments
which is constrained by norms (in contrast to non-learning-
based approaches like [19, 20]). There are already many
RL techniques aimed toward producing ethical behaviour.
These include two main approaches that have been used
for teaching RL agents “ethical” (more generally, norma-
tive) behaviour: training with human data and training with
reward engineering.

Using human demonstrations or feedback to create an
ethical utility function is proposed by [6, 39, 42, 54]. How-
ever, it may not be feasible to collect enough human data for
a given task, and no way has been proposed to verify that
this data does indeed depict ethical behaviour; in fact, [54]
assumes that most human behaviour is ethical. [5] critiques
this approach, noting that the subtleties of many legal sys-
tems cannot be represented by a utility function alone (this,
of course, also applies to the reward engineering approach
as well). In addition, an ethical utility function is not a trans-
parent (often cited as desirable for ethical AI systems [24])
decision-making mechanism. [5] notes pertinently that if
there is a problem with the ethical utility function, trying to
uncover what has gone wrong will be difficult if not impossi-
ble if we can only examine the policy. [39] offers some level
of transparency, in that it is clear when the agent switches
between a non-ethical and ethical policy, but the opacity of
the policy itself is not addressed.

The reward engineering approach entails assigning
rewards or punishments to the actions taken by an agent
in order to induce compliant behaviour. In developing a
reward framework for inducing compliant behaviour, there
are two main questions that need to be addressed: (1) which
state-action pairs should be assigned a reward or punish-
ment? This comes down to the question: how do we know
if an event is compliant or not? And (2) what should the

magnitudes of these rewards and punishments be? Much
of the literature—for example [1, 9, 31, 43–45]—relies to
some degree on the manual creation of a reward function.
In [1, 9, 31], it is not made clear how we can create this
reward function systematically or automatically; [31] and
[1] simply assign rewards or punishments to what they deem
praiseworthy or transgressive events, and [9] does not tell us
how the choice-worthiness function they propose for a given
ethical theory should be constructed. [43–45], which use
multi-objective RL (MORL) over the agent’s primary objec-
tive and an ethical objective, do provide us with a direct link
from specified moral values to a reward function, but their
conception of values and norms is somewhat primitive, and
is insufficient for modelling more complex forms of norma-
tive reasoning; additionally they assume the existence of
what they call an ethical policy (where no violations occur
[45]). In [43], norms are conceived of only as non-interact-
ing tuples containing a condition, a deontic modality, the
action to which the operator applies, and a penalty.

To some degree, [27] sits outside these two main
approaches, and offers an approach (expanded on in e.g.
[26, 28]) where norms are represented as linear temporal
logic (LTL) formulas; they use the methods proposed in [8]
to train an agent that satisfies these formulas with maximal
probability. It is acknowledged that norms might come into
conflict in this framework (something not considered by the
above approaches), and these conflicts are dealt with sys-
tematically. However, this technique is specifically defined
for model-based RL, where the MDP the agent operates in is
already known. It is known that there are limitations to LTL
as a language for representing norms (see [13, 36]), and to
get around some of these, this technique specifically employs
what is called “implicit representation” of norms in [36].
However, among these limitations remain an inability to rep-
resent strong permission naturally, cope with obligations/
permissions that are conditional on other obligations/per-
missions, and account for counts-as (or constitutive) norms.

[35] also veers away from these two main approaches, and
introduces a normative supervisor utilizing defeasible deon-
tic logic (DDL) for checking the compliance of a trained
(model-free) RL agent’s actions in real time, removing those
that don’t comply from its arsenal; this proved to be as effec-
tive as the approach in [39], and accommodates a much
wider array of normative systems [38]. Since the normative
supervisor is decoupled from the agent, though, the agent
cannot incorporate the norms it is subject to into its plan-
ning, and cannot learn to, e.g., avoid situations where com-
pliance is not possible. In addition, the behaviour produced
while running the normative supervisor is no longer optimal.
This was remedied to some degree in [37], which borrows
the model-free MORL approach from [44, 45] and uses the
normative supervisor to build a reward function. However,
[37] was incapable of dealing with some normative systems,

KI - Künstliche Intelligenz	

such as those with contrary-to-duty obligations (obligations
triggered when another obligation is violated). It was also
more generally incapable of determining between two non-
compliant actions which was more compliant with the sys-
tem as a whole. Generally, in the literature on ethical RL,
there is a shortage of discussion on how to cope with situa-
tions where compliance is not possible; this capability was
demonstrated in [35, 38] (as well as in [27]), but this did
not carry over to the norm-guided RL (NGRL) presented
in [37], as we will demonstrate in Sect. 3.4. We will further
argue that the notion of norm violation implicitly espoused
by [35, 37, 38] limits what violations can be detected by the
normative supervisor.

1.2 � Contributions

In this paper, we revisit and offer more extensive analysis
of the normative supervisor, employing a more compre-
hensive definition of normative system violation. We fur-
thermore propose an algorithm that counts the number of
violations that occur for a state-action pair s = (s, a) , and
we augment NGRL with what we call violation counting,
which allows us to cope with scenarios where compliance
is not possible (such as when a contrary-to-duty obligation
is triggered). Finally, we propose an algorithm for construct-
ing a “normative filter” which can be used to replace the
continual running of the normative supervisor, allowing us
to use techniques such as NGRL without calling a theorem
prover at every step during training or operation; we will
show that using this normative filter dramatically improves
training time. Throughout the paper, we make use of a case
study, the “Travelling Merchant” (introduced in [36]), to
demonstrate the inadequacy of the notion of norm violation
implicitly espoused by [35, 37, 38], how regular NGRL fails
when faced with contrary-to-duty obligations, how violation
counting remedies this issue, and how this technique man-
ages trade-offs between immediate and delayed violations
more generally.

In the section immediately following, we will give a brief
overview of multi-objective RL, the basic building-blocks of
normative systems, and defeasible deontic logic; we will also
offer a discussion on compliance and violation, and establish
some concepts and notation which we will make use of in later
sections. Finally, we introduce the basic mechanics of our case
study. In Section 3, we look at the normative supervisor, pre-
senting an overview of its architecture, and the techniques that
it can be used to implement. We offer detailed critical analysis
of these techniques, including the use of our case study to dem-
onstrate inadequacies. In Section 4, we offer a solution to these
problems, by redefining the employed concept of compliance
and introducing violation counting. In Section 5 we introduce
the normative filter and provide an algorithm for constructing
it. In Section 6, we evaluate the techniques presented using

our case study. Finally, in Section 7 is a conclusion and brief
discussion of remaining issues to be solved in future work.

2 � Background

In this section we will discuss the background needed in order
to understand the rest of the paper. First, we will review the
basics of multi-objective reinforcement learning (MORL).
Then, we will discuss normative reasoning with defeasible
deontic logic (DDL) and normative system violation, as well
as our case study.

2.1 � Multi‑Objective Reinforcement Learning

The underlying environment of a multi-objective reinforce-
ment learning problem is formalized as a multi-objective
Markov decision process (MOMDP). We define a specific
type of MOMDP below, where each state is associated with
a set of labels:

Definition 1  (MOMDP) A labelled MOMDP is a tuple

where S is a set of states, A is a function A ∶ S → 2Act from
states to sets of possible actions (where Act is the set of
all actions available to the agent), L ∶ S → 2AP (where AP
is some set of atomic propositions) is a labelling function,
P ∶ S × Act × S → [0, 1] is a probability function that gives
the probability P(s, a, s�) of transitioning from state s to state
s′ after performing action a, and R = (R1, ...,Rn)

T is a vector
of reward functions Ri ∶ S × Act → ℝ.

Single-objective MDPs are simply MDPs for which R is
instead a scalar function R ∶ S × Act → ℝ.

Reinforcement learning finds a policy � ∶ S → Act which
designates optimal behaviour; this optimality is determined
w.r.t. a vector of value functions V� = (V�

1
, ...,V�

n
)T defined as:

which represents the expected cumulative value from
state s if policy � is followed. Specifically, if � generates
a trace (s0,�(s0)), (s1,�(s1)), ... , V�

i
(s) is the expected value

of the expression
∑∞

t=0
� trt+j , where rt+j = Ri(st+j,�(st+j)) ,

conditional on the input state s being the initial state sj . In
the above function, � ∈ [0, 1) is a discount factor (so that
rewards in the future do not have as much weight as more
immediate rewards).

Generally, for an agent with one objective and therefore
one scalar value function V� , our goal is to find an optimal

⟨S,A, L,P,R⟩

(1)V�

i
(s) = �

[
∞∑

t=0

� trt+j|sj = s

]

	 KI - Künstliche Intelligenz

policy �∗ from the set of all policies Π ; this is the policy
such that:

However, multiple objectives induce a more complex set of
semi-optimal policies, where one policy might maximize
rewards from Ri but not Rj , for instance. We then turn to
the notion of Pareto dominance. A policy strictly domi-
nates another if it results in better outcomes for all objec-
tives. However, in some cases, like in the case of competing
objectives, there may be no such policy. Then we look at
whether one policy weakly dominates another; that is, the
policy results in improvements for some objective(s), but not
necessarily all. If we remove from Π all strictly dominated
policies, the only policies left form the Pareto front (the
set of all dominant or incomparable policies). The task of
MORL is to find policies in this Pareto front.

Similar to the value function, we can define a vector of
Q-functions for each objective, Q� = (Q�

1
, ...,Q�

n
)T , where:

In single-objective RL, the goal of model-free reinforce-
ment learning—reinforcement learning where the underly-
ing MDP is not known—is to learn the Q-function for the
optimal policy �∗ , such that

In Q-learning [53] and related techniques we attempt to
learn an optimal Q-function by applying the following rule
to update the Q-function during learning (over a transition
(s, a, s�)):

where � is the learning rate, � is the discount factor, and s′
is the state observed when the agent transitions from s with
action a.

However, with multiple Q-functions, we must learn
each Qi individually and strategically combine them
in order ascertain the “optimal” action. [12] presents a
MORL method where some objectives can be prior-
itized over others; [51] describes what they call a “naive
approach” to it. This approach, thresholded lexicographic
Q-learning (TLQL), is tailored to problems where there is
a single objective that must be maximized overall, while
all other objectives don’t need to be maximized, but rather
must satisfy a threshold. With this technique, we will have
a vector of Q-functions Q = (Q1, ...,Qn)

T , along with a vec-
tor of thresholds C = (C1, ...Cn)

T . Each Ci is a value that we

V�∗

(s) = max
�∈Π

V�(s)

Q�

i
(s, a) = �

[
∞∑

t=0

� trt+j|sj = s, aj = a

]

�∗(s) ∈ argmax
a∈A(s)

Q(s, a) and V�∗

(s) = max
a∈A(s)

Q(s, a)

Q(s, a) ← (1 − �)Q(s, a) + �(R(s, a) + � max
a�∈A(s�)

Q(s�, a�))

aim to keep Qi(s, a) at or above, except the last threshold:
Cn = +∞ . Moreover, we assume that the objective repre-
sented by Qi(s, a) is of higher priority than the objective
represented by Qj(s, a) if i < j.

Here, we will work with CQ-values instead of Q-values.
A CQ-value is:

Then our policy is �(s) ∈ TLQ(s) , where TLQ is given by
Algorithm 1.
Algorithm 1   TLQ(s)

input : s, �C
output: optimal
begin

optimal ← A(s);
for i = 1; i ≤ n; i++ do

acti ← argmaxa∈optimal min(Qi(s, a), Ci);
optimal ← acti;

end
return optimal;

end

2.2 � Normative Reasoning

We will consider two kinds of norms in this paper: regula-
tive norms and constitutive norms. Regulative norms are
obligations, prohibitions, or permissions; in other words,
they define what is necessarily the case (in the case of
obligations and prohibitions) or possible (as with permis-
sions) in an ideal world. Regulative norms are usually con-
ditional (e.g., “when the light is red, you are obligated to
stop”). Conditional obligations are referred to informally
as O(p|q) in this paper (with F(p|q) and P(p|q) standing in
for prohibitions and permissions respectively).

A constitutive (or counts-as) norm takes the form “in
context C, X counts as Y” [47] (which we represent with
the shorthand C(X, Y|C)) for some property or event X and
Y. In a normative system, constitutive norms facilitate the
construction of what Searle calls institutional facts from
brute facts or other institutional facts [47]. Brute facts are
facts that hold whether or not human institutions (e.g., lan-
guage, morality) are in place; institutional facts only make
sense in the context of human institutions, for example the
statement that killing counts as immoral.

With these two types of norms, we can define our sim-
ple conception of a normative system:

Definition 2  (Normative System) A normative system is a
tuple: N = ⟨C,R,�⟩ where C is a set of constitutive norms,
R is a set of regulative norms, and � is a conflict resolution
mechanism.

CQi(s, a) = min(Qi(s, a),Ci)

KI - Künstliche Intelligenz	

In the above definition, what we call the conflict resolu-
tion mechanism is a means to resolve normative conflict; it
can be, for example, an ordering over prescriptive norms
(obligations or prohibitions), or a map from these norms
to real numbers. We will discuss one such mechanism
momentarily.

It is important to note that the various norms in a nor-
mative system may interact with each other and with the
conflict resolution mechanism, so even if every regulative
norm in a normative system remains individually (osten-
sibly) unviolated, the normative system may be violated.
Consider an example where we have a regulative norm “vio-
lating patient privacy is prohibited” and a constitutive norm
“accessing file X counts as violating patient privacy”. Now
suppose we take the regulative norm on its own and assume
the fact “file X has been accessed”. Strictly speaking, this
fact does not violate the prohibition; the prohibition refers to
violating patient privacy, while the fact refers to accessing
a file. It is not until we consider the constitutive norm that
we can derive the institutional fact “patient privacy has been
violated”, and know that the prohibition has been violated.
It is necessary, then, to have a logic for normative reasoning
that can handle this interplay. We introduce one below.

2.2.1 � DDL Syntax

Propositional defeasible logic [32, 33, 40, 41] is an effi-
cient framework for non-monotonic reasoning, and can be
extended with modal operators (e.g. deontic operators, such
as obligation). In this section we review the core definitions
of the defeasible deontic logic (DDL) presented in [4] and
later explored on in [14–18], using as its base deontic modal-
ity, obligation O.

Let AP be a set of proposi t ional a toms,
Lit = AP ∪ {¬p | p ∈ AP} be a set of corresponding liter-
als, and OLit = {O(l)|l ∈ Lit} be a set of modal literals. Then
we can define rules:

Definition 3  (Rules [18]) Let r be a label designating a rule:

where A(r) = {a1, ..., an} (a set of literals ∈ 2Lit∪OLit ) is the
antecedent, N(r) (a single literal ∈ Lit ) is the consequent,
↪∗∈ {→∗,⇒∗,⇝∗} is a generic rule symbol, and ∗∈ {C,O}
gives the mode of each rule.

Rules with the subscript C are constitutive rules, and
rules subscripted by O are regulative rules (in which the
consequent of the rule is derived in the scope of the deon-
tic operator O, for obligation). Strict rules ( →∗ ) are rules
where the consequent strictly follows from the antecedent
without exception; that is, a rule that always holds can be

r ∶ A(r) ↪∗ N(r)

formalized as a strict rule (e.g., sparrow →C bird ). Defea-
sible rules ( ⇒∗ ) are rules where the consequent usually
follows from the antecedent, unless it is refuted by a con-
flicting rule or a defeater. An example of a defeasible rule
would be a default assumption like bird ⇒C fly . Defeaters
( ⇝∗ ) are rules that can prevent a conclusion from being
reached by a defeasible rule; for example we might have a
rule like penguin ⇝C ¬fly . Regulative defeaters can used
to encode permissive rules. DDL is furthermore equipped
with a superiority relation > to resolve conflicts between
rules; given two conflicting rules r1 and r2 , r1 > r2 indicates
that r1 defeats r2 (i.e., if they conflict but are both applica-
ble, only r1 is applied).

From the above, we can define a defeasible theory:

Definition 4  (Defeasible Deontic Theory [14]) A defeasible
deontic theory D can be defined by the tuple ⟨F,RO,RC,>⟩ ,
where F is a set of facts (i.e., literals l and modal literals
O(l)), RO is a set of regulative rules, RC is a set of constitu-
tive rules, and > is a superiority relation over rules.

We can relate this definition to the above definition of a
normative system N = ⟨R, C,�⟩ . The overlap between R
and RO , and C and RC , is clear. Similarly, we can see that
> is an example of a conflict resolution mechanism � . For
this reason, we can think of a defeasible deontic theory as a
collection of facts plus a formally defined normative system.

2.2.2 � Deduction in DDL

Defeasible proofs are characterized by proof tags. A proof
tag is a label applied to a literal and together they constitute
a conclusion derived in the proof; there are several types
of conclusions we can derive from a defeasible theory. The
proof tags are: +Δ∗ (definitely provable conclusion), −Δ∗
(definitely refuted conclusion), +�∗ (defeasibly provable con-
clusion), and −�∗ (defeasibly refuted conclusion). For fac-
tual conclusions, ∗∶= C and for deontic conclusions, ∗∶= O .
When we can derive +�Op , for example, we have proved
that the obligation of p holds defeasibly; +�O¬p means the
prohibition of p ( ¬p is obligatory) holds defeasibly, while
−�O¬p means that p is permissible (it is not the case that p
is forbidden).

D ⊢ +Δ∗p holds if p is a fact or derivable from only facts
and strict rules. Conversely, D ⊢ −Δ∗p holds if p is neither
a fact nor derivable from only strict rules and facts. We will,
however, mainly deal with defeasible conclusions.

Let R[p] denote the set of rules with p in the consequent,
and for ∗∈ {C,O} , R∗

sd
 the set of strict and defeasible rules.

Definition 5  [Defeasible Provability [32]] Given a defeasible
theory D, if D ⊢ +𝜕∗p , either D ⊢ +Δ∗p or:

	 KI - Künstliche Intelligenz

1.	 ∃r ∈ R∗
sd
[p] s.t. for all ai ∈ A(r) (or O(ai) ∈ A(r) ),

D ⊢ +𝜕Cai (or D ⊢ +𝜕Oai ), and
2.	 D ⊢ −Δ∗¬p , and
3.	 ∀r� ∈ R∗[¬p] , either:

1.	 ∃ai ∈ A(r�) (or O(ai) ∈ A(r�) ) s . t . D ⊢ −𝜕Cai
( D ⊢ −𝜕Oai ), or

2.	 ∃r�� ∈ R∗
sd
[p] s.t. ∀ai ∈ A(r��) (or O(ai) ∈ A(r��) ),

D ⊢ +𝜕Cai (or D ⊢ +𝜕Oai ) and r′′ > r′.

Conversely, D ⊢ −𝜕∗p if ¬p is defeasibly provable, or an
exhaustive search for a constructive proof (where the proofs
are constructed as presented in Definition 5) for the literal
fails.

Whenever we have a defeasible theory (a set of facts plus
a formalized normative system) we can use these conditions
to derive conclusions, e.g., obligations +�Op or prohibitions
+�O¬p.

SPINdle. DDL is one of the few deontic logics with a
working theorem prover. In particular, SPINdle [30] is an
open source theorem prover for defeasible logic; it also
accommodates modal defeasible logics, including defeasi-
ble deontic logic. This theorem prover generates conclusions
from the defeasible theory, with each literal occurring in
the theory being assigned a status as definitely provable or
refutable, and defeasibly provable or refutable.

2.2.3 � Compliance and Violation

We will now discuss the specific paradigm in which
we will be working, where we have a normative system
N = ⟨C,R,�⟩ and a state-action pair s = (s, a) , for which we
can construct a defeasible theory Th(s,N) = ⟨Fs,R

O,RC,>⟩ .
In this defeasible theory, RO contains the regulative norms
in R , RC contains the constitutive norms in C , and > is a
conflict resolution mechanism � . Fs contains L(s) (the labels
associated with state s), ¬p for all p ∈ AP ⧵ L(s) , and the
action proposition a ∶= “action a is performed”.

Ideally, s complies with N  ; that is, s does not incur any
violations of N  . Violations, informally, occur when some-
thing ought to be the case but is not the case [21, 49] and
thus, in a simple conception of violation, the violation condi-
tion of an obligation O(p) is the case where O(p) ∧ ¬p is true
[25, 34], and we can call ¬p a violation1.

In our case, given a state-action pair s = (s, a) , a vio-
lation of N is going to be the negation of a literal lit
in Th(s,N) . We call the set of violations of N for s :
viol(s,N) = {lit | lit is a violation of N} . In DDL, we can
formally define this set as follows:

Definition 6  (Violation of Normative Systems) Given a state-
action pair s = (s, a) , a violation of N is a literal ¬lit such
that Th(s,N) ⊢ +𝜕Olit, −𝜕Clit and the set of violations of
N for s is:

What we are saying with this definition is that a violation
of N occurs when we can prove that lit is obligatory, but we
cannot prove that lit is the case; it is specifically the pres-
ence of an obligation in a given context, coexisting with the
absence of a (brute or institutional) fact reflecting the con-
tent of this obligation. Thus, if you ought not spend money,
spending money is a violation. If you ought to buy milk, not
buying milk is a violation. Based on the characterization
of violation presented in, for example, [25, 34], a formal
definition of a violation condition in DDL must include the
derivation of an obligation of lit (that is, +�Olit ) and a failure
to derive lit (that is, −�Clit ), hence the definition we have
given above.

Note that Th(s,N) ⊢ +𝜕C¬lit implies Th(s,N) ⊢ −𝜕Clit
[18], so the above definition will also include cases where
Th(s,N) ⊢ +𝜕Olit, +�C¬lit ; that is, it includes the case where
lit is obligatory and we can explicitly prove ¬lit.

When we reason about norms, we often need to also rea-
son about violations. We may come across cases of nor-
mative deadlock, where we have a state s such that for all
possible actions a, |viol(s = (s, a),N)| > 0 . In these cases,
we might want to manage what ought to happen when the
inevitable violation occurs. For example, consider the case
where we have an obligation not to kill, O(¬kill|⊤) , but also
an obligation to, if one kills, kill gently O(gentle|kill) [10].
This second obligation is called a contrary-to-duty (CTD)
obligation, an obligation (e.g. O(b|¬a) ) triggered when
another obligation (e.g. O(a|⊤) ) is violated.

Based on the given notion of violation, we can define a
binary compliance function over state-action pairs s:

(2)viol(s,N) = {¬lit | Th(s,N) ⊢ +𝜕Olit, −𝜕Clit}

(3)complN(s) =

{
1 viol(s,N) = �

0 otherwise

1  Note that this is a limited notion of violation that is by no means
ubiquitous in the deontic logic literature. For example, Anderson
introduced a reduction from deontic logic to alethic modal logic in

[3], where a violation is a propositional constant and prohibitions
are defined as propositions that necessarily lead to a violation. This
approach is reflected in, e.g., [7], and allows for the explicit represen-
tation and reasoning about violations. However, we will below pro-
vide a concrete, formal characterization of violation for DDL which
allows us to detect a violation not only when we can prove that the
violation is true, but also when we cannot prove that the fulfillment
isn’t true. This relies on the usage of conclusions of the form −�Cp ,
which cannot be used to trigger a DDL rule whose consequent is, for
example, a propositional constant representing the violation.

Footnote 1 (continued)

KI - Künstliche Intelligenz	

 Finally, we can expand our field of view from the com-
pliance of single state-action pairs to traces generated by
specific policies and define an Expected Non-Compliance
Count (ENCC):

s0, s1, ... where st = (st,�(st)) is a trace of state-action pairs
generated by following policy � , and � ∈ [0, 1) is a discount
factor; this function gives an expected count of violations
occurring over the course of following � , prioritizing viola-
tions occurring in the immediate.

2.3 � Case Study: The Pacifist Merchant

Throughout this paper, we will be utilizing a case study to
illustrate the effectiveness of various techniques. We have
chosen a simple game which allows us to witness the con-
trast between optimal unconstrained behaviour and optimal
normative behaviour via routes taken through a map. We
will employ the “Travelling Merchant” environment—first
used in [36]—which entails the RL agent, a merchant, tra-
versing a map and collecting resources to sell at a market on
the other side of the map. These resources are wood (which
can be extracted from trees) and ore (which can be extracted
from rocks); in order to collect a resource, the agent must
take the actions extract and pickup in a cell where a resource
is situated. The agent receives a reward each time it extracts
and picks up an object, as well as when it unloads its
resources at the market. There are “dangerous” areas on the
map where the agent will be attacked by bandits, and then
the agent has three choices: it can fight (taking action fight
and ending the attack), negotiate (giving up its inventory by
using unload, ending the attack), or try to escape (which will
often result in failure, and the attack continuing). The agent
is rewarded based on how many resources it extracts and
picks up, and how many items it arrives at the market with.
The agent’s movements are restricted in such a way that
mandates it continually move towards its goal (each move
must bring it closer to the market), and states are labelled
with what kind of cell the agent is in (e.g., at_danger ), its
immediate surroundings (e.g., north_tree ), whether or not
it is being attacked (attacked), and what it has in its inven-
tory (e.g. has_ore ). A state can be given the labels attacked,
{at, north, south, east,west}_{tree,wood, rock, ore, danger,

home,market} , and has_{wood, ore} . In Fig. 1, we can see
the optimal path for the agent.

We will be imposing a specific normative system
on this RL agent, designated in [36] as “pacifist”. In
this normative system, the agent (the “pacifist mer-
chant”) is forbidden from entering the dangerous areas
( O(at_danger|⊤) , formalized as obl ∶⇒O ¬at_danger ),

(4)ENCC(�) = �

[
∞∑

t=0

� t(1 − complN(st))|s0 ∈ S

]

but when it is in danger and being attacked, it is obli-
gated to negotiate ( O(negotiate|at_danger, attacked)
o r ctd ∶ at_danger, attacked ⇒O negotiate  ) , w h e r e
unloading one’s inventory counts as negotiating
(C(unload, negotiate |attacked) or ctsas ∶ attacked,
unload →C negotiate).

In the environment presented in Fig. 1, the correct
behaviour for the pacifist merchant is to unload when it is
forced to enter the first dangerous area, and avoid the sec-
ond dangerous area altogether (because it is not necessary
to pass through it, even though it is more advantageous
to do so).

3 � The Normative Supervisor

The problem of constraining RL agents is not a new one—
there is ample literature on constraining RL agents with Lin-
ear Temporal Logic (LTL) specifications representing, e.g.,
safety constraints (see for example [2, 11, 22, 23]). How-
ever, it has been shown that these methods are on their own
insufficient for implementing normative behaviour [36]. An
alternative to these methods was presented in [35]; the nor-
mative supervisor presented there is an external module that
can be attached to an RL agent in order to curb its behaviour
according to a given normative system N  , which we will
describe below, adding additional terminology and criti-
cal analysis not explored in [35, 37, 38], which were more
focused on system architecture and experimental results.

3.1 � Architecture

The normative supervisor is composed primarily of (front-
end and back-end) translator modules and a reasoner module
(see Fig. 2), which we will describe in more detail below.

Fig. 1   Optimal behaviour for the merchant. Dangerous areas are
red, and resources are green. (E) indicates that the agent extracted a
resource, (P) that the agent picked up an extracted resource, and (F)
that the agent fought bandits

	 KI - Künstliche Intelligenz

3.1.1 � Translators

The translators work together to produce for each state s
Th(s,N) = ⟨Fs,R

O,RC,>⟩ ; the front end translator translates
simple statements about the environment into literals to be
absorbed into the set of facts Fs (which, unlike Fs in Th(s,N) ,
does not specify which action is taken). Generally, we can
assume that Fs = L(s) , the labels applied to the state s.

Meanwhile, the back-end translator translates regulative
and constitutive norms into DDL rules. Generally, the norm
O(p|q) is translated as: r1 ∶ q ⇒O p ∈ RO . Similarly, F(p|q)
will be formalized as r2 ∶ q ⇒O ¬p ∈ RO . As for (strong)
permissions, we utilize defeaters and can simply translate the
conditional permission P(p|q) as r3 ∶ q ⇝O p ∈ RO

s
 . For the

case of normative conflicts, we can simply add an ordered
pair to the superiority relation > of Th(s,N) . For example,
if we have r4 ∶ q ⇒O p and r5 ∶ q ⇒O ¬p , where r4 takes
priority over r5 , we would add (r4, r5) ∈>.

Constitutive norms C(x, y|c) referring to state proper-
ties are translated simply as x, c →C y , but due to the way
the reasoner was configured in [35, 38], constitutive norms
referring to actions must be handled differently. We will dis-
cuss this below.

Finally, we draw attention to non-concurrence rules
– these were not discussed in [35, 38] but are included in
the implementation; these are basically rules of the form
C(a,¬a�|⊤) constructed to enforce the fact that the RL agent
can only take one action at a time (that is, if a is obligatory,
all other actions a′ are forbidden). These are automatically
included in Th(s,N).

3.1.2 � Reasoner

The reasoner is at the core of the normative supervisor,
and uses a couple of algorithms to compute sets of what
we will call normatively optimal actions for the agent. The
first, called ParseCompliant (Algorithm 1 in [38]) (1) returns
a single action a if Th(s,N) ⊢ +𝜕Oa , or (2) removes each
action a from A(s) such that Th(s,N) ⊢ +𝜕O¬a to form a

set of compliant actions AC(s).2 If AC(s) is empty, a second
algorithm is run, this one called LesserEvil (Algorithm 2
in [38]) which (1) counts the number of applicable rules
in Th(s,N) which directly conflict with a for each a ∈ A(s)
and (2) returns the actions a which result in the fewest such
conflicts as a set ANC(s) . With the output of these algorithms,
we can offer a more explicit characterization of normatively
optimal actions.

Definition 7  (Normatively Optimal Actions) AN(s) is the set
of normatively optimal actions in state s, defined as:

where AC(s) is the set of actions that comply with N in state
s, and ANC(s) is the set of actions minimally non-compliant
with N .

A Simple Notion of Violation. The notion of compliance
implicitly employed here is encapsulated by taking an action
which is not forbidden. By reconstructing what actions are
excluded based on ParseCompliant, we can get the following
formal characterization of AC(s):

Violations, then, occur when we take an action (represented
as an action proposition) which is explicitly forbidden by an
applicable regulative rule in Th(s,N).

This definition of AC(s) requires that we prove that a is
forbidden before we can exclude it from the set of compli-
ant actions; in order to do this, we need to be able to propa-
gate prohibitions over facts related by constitutive norms.
Because of this, we have to translate constitutive norms over
actions a bit strangely. For example, if we have a norm say-
ing that breaking traffic laws is forbidden, and another that
says that jaywalking counts as breaking traffic laws, we need

(5)AN(s) =

{
AC(s) AC(s) ≠ �

ANC(s) otherwise

AC(s) = {a ∈ A(s) | Th(s,N) ⊬ +𝜕O¬a}

Fig. 2   The basic architecture of
the normative supervisor. Here,
the norm base is a knowledge
base containing all norms
associated with the normative
system N

2  This process can be reduced to the second step, simply removing
actions a such that Th(s,N) ⊢ +𝜕O¬a if we take into account the non-
concurrence rules.

KI - Künstliche Intelligenz	

to be able to explicitly derive that jaywalking is forbidden. In
[35, 37, 38] this is done by encoding each constitutive norm
over actions in the case study used as a prohibition trig-
gered by another prohibition. That is, instead of translating
the constitutive norm to jaywalking →C break_law – from
which we cannot derive +�O¬jaywalking—we would have,
along with the regulative norm ⇒O ¬break_law , another rule
O(¬break_law) ⇒O ¬jaywalk.

Unfortunately, this conception of violation and the
accommodations made for it severely limit the expressive
range of the normative systems that can be implemented
with the normative supervisor, thereby limiting the effective-
ness of the normative supervisor for certain applications. We
will discuss these issues in more detail in Sect. 3.4.1.

3.2 � Online Compliance Checking

In order to elicit compliant behaviour from an RL agent,
the algorithms ParseCompliant and LesserEvil can be used
together each time an (already-trained) RL agent enters
a new state, and the agent’s action function A(s) can be
replaced with AN(s) . Thus, when the agent chooses the
action with the highest Q-value, it is in fact choosing from
the list of normatively optimal actions. This method for
correcting the actions of an RL agent is called online com-
pliance checking (OCC) in [37] to contrast the technique
presented there, called norm-guided RL (NGRL), which we
will discuss momentarily.

OCC has proved effective in curbing RL agent behav-
iour to conform to a wide variety normative systems. For
instance, it was demonstrated in [36] that OCC could easily
elicit the correct behaviour for the pacifist merchant.

However, as a technique, OCC is not perfect, and in the
next subsection we will motivate the use of NGRL over (or
in addition to) OCC.

3.2.1 � Limitations of Online Compliance Checking

OCC with the normative supervisor of [35, 38] performs
about as well as the agent in [39] when administered the
same experiments, where the agent is tasked with play-
ing the game Pac-Man while under the “moral” constraint
forbidding the player-character from eating ghosts. Never-
theless, in both [39] and [35, 38] violations still occurred,
however infrequently. In [38] it is shown that all of these
violations in spite of the normative supervisor occur in states
of normative deadlock. It is also notable that in the smaller,
simpler environment in [37], the agent’s performance at
the simplified Pac-Man game was badly impacted by the
use of the OCC; the percentage of games won and average
scores plummeted. These two problems are linked; because
the normative supervisor is completely decoupled from
the agent when used for OCC, the agent does not take the

constraints derivable from N into account while learning
optimal behaviour.

To clarify, consider this example presented in [37]:
a self-driving car has planned a route, and the normative
supervisor is attached to ensure the car does not break any
local regulations. The self-driving car eventually comes to
a private road, which it is prohibited from passing through;
the normative supervisor forces the car to turn around and
reroute. If the applicable norms had been incorporated into
the agent’s plan from the start, it could have reached its
destination much more efficiently. Here, we can extend the
example: consider the case where the road leading to the
private road is one-way; then, upon coming to the private
road, the supervisor must decide whether to proceed or ille-
gally reverse, violating a regulation either way. Thus, the
decoupling of the normative supervisor and the policy has
the potential to both damage performance and cause norma-
tive deadlock unnecessarily.

It was due to these issues that norm-guided reinforcement
learning (NGRL) was introduced in [37].

3.3 � Norm‑Guided Reinforcement Learning

NGRL is an approach to implementing normatively com-
pliant behaviour which largely overcomes the difficulties
discussed above in our critique of OCC.

The basic approach is this: given an agent with an objec-
tive x (and an associated reward function Rx(s, a) ), we define
a second reward function that assigns punishments when the
agent violates a normative system N  . We call this second
reward function a non-compliance function:

Definition 8  (Non-Compliance Function [37]) A non-com-
pliance function for the normative system N is a function
of the form:

where p ∈ ℝ
−.

p from Definition 8 is called the penalty, assigned each
time the action taken by the agent is not in AC(s) (which for
now means that the action taken is explicitly forbidden).
This automated derivation of conclusions from Th(s,N)
solves the first question of the reward engineering approach
to teaching normative behaviour, allowing us to dynamically
determine the compliance of an action in a given state and,
in the case of non-compliance, assign a punishment.

Now, if we have an agent meant to learn objective x with
the reward function Rx , it will do so over M = ⟨S,A,Rx,P⟩ .
Then, if we have a normative system N we want to subject

(6)RN,p(s, a) =

{
p a ∉ AC(s)

0 otherwise

	 KI - Künstliche Intelligenz

the agent to while it pursues objective x, we can build an
MOMDP we will call a compliance MDP:

Definition 9  (Compliance MDP [37]) Let M = ⟨S,A,Rx,P⟩
be a single-objective MDP. Then we can define an associated
compliance MDP by introducing a non-compliance function
RN,p(s, a) to form the MOMDP:

NGRL entails finding a policy that is, first and foremost,
maximally compliant, but also optimal with respect to the
primary objective. Here, the term maximal compliance is a
term we substitute for the terminology ethical policy from
[37, 44]. We adapt their definitions below:

Definition 10  (Maximally Compliant Policy [44]) Let Π be
the set of all policies over the compliance MDP MN,p . A
policy �∗ ∈ Π is maximally compliant iff it is optimal with
respect to the value function V�

N,p
 corresponding to RN,p .

That is, �∗ is maximally compliant for MN,p iff for all s:

Like in [44], we define within this set of maximally com-
pliant policies those that are optimal with respect to the
reward function Rx.

Definition 11  (Optimal Maximally Compliant Policy [44])
Let ΠN be the set of all maximally compliant policies for
MN,p . Then �∗ ∈ ΠN is optimal maximally compliant for
MN,p iff for all s:

There are several ways we can find an optimal maximally
compliant policy; in Sect. 2.1 we introduced TLQL, which
is what we will adapt for use with compliance MDPs here.

Thus, for QN,p , we must choose a threshold CN,p . We
choose 0; [37] proved that if a maximally compliant policy
exists, setting CN,p = 0 ensures we learn an optimal maxi-
mally-compliant policy.3 Meanwhile, we want to maximize
the objective x, so we choose Cx = +∞ . With these param-
eters, we can compute an optimal maximally compliant
policy.

(7)MN,p = ⟨S,A, (Rx,RN,p)
T ,P⟩

(8)V�∗

N,p
(s) = max

�∈Π
V�

N,p
(s)

(9)V�∗

x
(s) = max

�∈ΠN

V�

x
(s)

3.3.1 � The Magnitude of p

In the preceding exposition, we have referenced RN,p(s, a)
without specifying a penalty p. [37] proves the following
useful theorem:

Theorem 1  If a policy � is maximally compliant for the
compliance MDP MN,p for some constant p ∈ ℝ

− , it is
maximally compliant for the compliance MDP MN,q for
any q ∈ ℝ

−.

Thus, the value of p is irrelevant, so for the remainder of
this discussion we will only deal with the non-compliance
function RN ∶= RN,−1 . This answers the second main ques-
tion we identified for the reward engineering approach.

3.4 � Shortcomings of NRGL

In [37], NGRL is shown to remedy the issues we just
reviewed in Sect. 3.2.1; their experiments show that NGRL,
when used with OCC (that is, NGRL is used to train the
agent and OCC is used at operation time), the number of
scenarios in which violations were inevitable decreased, and
the performance of the agent with respect to its primary
objective improved substantially. However, it is notable that
NGRL as an individual technique fails to capture certain
nuances of normative reasoning, and the expensive process
of running OCC at operation time to compensate may not
be feasible in all cases. We will discuss the shortcomings of
NGRL on its own in more detail below. [37] identifies a cou-
ple of potential weaknesses of NGRL, but we will focus on
one in particular—its inability to handle normative deadlock
in general, and contrary-to-duty obligations in particular.

Consider this simple case we adapt from [37] where we
have a normative system N = ⟨C,R,�⟩ containing a con-
trary-to-duty obligation, where R = {O(b|¬a),O(a|⊤)} , a
and b being action propositions. In DDL these norms can be
translated as: r1 ∶ ⇒O a and r2 ∶ ¬a ⇒O b . Now, suppose
that the agent has two actions available to it in a given state
s: they are represented by the action propositions b and c.
Now, if the agent could take the action represented by a, it
would not receive a penalty from the non-compliance func-
tion for violating r1 ; however, that is not possible. If the
agent takes the action represented by b, it will be punished,
because r1 along with the non-concurrence rules in Th(s,N)
will allow us to derive +�O¬b , signaling a violation of the
above normative system which will trigger a penalty. If the
agent takes the action represented by c, the result will be
identical. However, choosing b obeys the CTD obligation
in the above normative system, and so ideally, we would
incentivize the agent to choose this action over c; if we were
using OCC, the LesserEvil algorithm would take care of

3  Note that because 0 is the maximum value of QN,p , CQN,p = QN,p.

KI - Künstliche Intelligenz	

this case, but the non-compliance function does not allow
for this nuance.

To verify and illustrate this issue, we trained the Trav-
elling Merchant using NGRL with the pacifist normative
system (recall, this is the normative system containing the
primary obligation O(at_danger|⊤) and the contrary-to-duty
obligation O(negotiate|at_danger, attacked) ). We see the
learned behaviour in Fig. 3.

We can see that the agent takes a path identical to the
correct path (see Fig. 4), except for the point at which it
enters the dangerous area. The NGRL agent fights instead
of negotiating; as we predicted above, the non-compliant
action fight is punished just as much as the action unload
(both actions in that state have identical QN -values), and
as a result, the contrary-to-duty obligation is not observed
(since fight is the more advantageous action for the agent).

Based on the example above, we might find it appropri-
ate to assign graded penalties to violations of a normative
system, depending on how much of it is violated; however,
this re-introduces the problem of scaling the magnitude of
rewards, and we are once again left to attempt to find weights
that achieve the behaviour we desire. This is probably a rea-
sonable measure for simple cases, but as soon as we consider
more complex normative systems or environments, it can be
difficult to predict how rewards with different magnitudes
could affect the behaviour of the agent.

An additional shortcoming of NGRL is that it lacks
transparency, when compared to OCC. In [35, 38] an event

recorder is demonstrated which can be configured to run
alongside OCC without additional computational cost.
Though we can in theory check the compliance of any given
state-action pair with the normative supervisor (and this is
indeed done during training), when the agent is actually
operating in the environment, it does so by selecting actions
based on its Q-function, which retains none of the infor-
mation from the original normative system (besides how
likely we are to incur violations from a given point). If we
do encounter an issue with an (ostensibly non-compliant)
action a committed in a state s—which we would first have
to somehow detect—one approach we can take is to evalu-
ate Th(s,N) for s = (s, a) with the normative supervisor. If
no violations occur, we can assume that the issue is either
with what means we used to detect the violation, or with the
normative system itself; either the system or the automated
implementation is too permissive. Then, we must fix our
implementation and retrain the agent from scratch. However,
if we encounter violations, we are left to wonder why the
agent learned to select a non-compliant action.

Finally, running the normative supervisor at each step
during training can incur substantial computational cost.
Though a single run is inexpensive (in [37] it is noted that
the evaluation of the non-compliance function can be com-
pleted in linear time with respect to the size of Th(s,N) ),
in applications that require thousands or even millions of
episodes of training, this can be prohibitively expensive. We
will discuss a possible remedy for this in Sect. 5.

3.4.1 � An Incomplete Notion of Violation

There is an additional problem that proliferates both OCC
and NGRL which was not discussed at all in [35, 37, 38].
Since the condition for excluding actions a from AC(s) is
the derivation of Th(s,N) ⊢ +𝜕O¬a , the rules in our nor-
mative system must either only reference actions a ∈ Act
(recall that Act is the agent’s action set), or allow us to derive
new (concrete) obligations from given abstract obligations.
The former disallows constitutive norms over actions which
define more abstract actions (e.g., walk →C move ); for the
latter, we must be able to derive +�O¬a for every action a
that results in a violation (e.g., we need to be able to derive
+�O¬walk when move is forbidden).

In [35, 37, 38], “strategy rules” essentially express consti-
tutive norms over actions as prohibitions triggered by other
prohibitions, so that from the prohibition of some institu-
tional fact we can derive the prohibition of the related brute
facts (that is, the actions a of A(s)). So if we have F(b|⊤) and
C(a, b|⊤) for actions a and b (where a ∈ A(s) ), the regula-
tive norm will be represented as ⇒O ¬b and the constitutive
norm will be translated to O(¬b) ⇒O ¬a ; if a counts as b,

Fig. 3   The pacifist merchant’s path after training with NGRL but
without OCC. Note that in running this experiment we employed the
alternative definition of A

C
(s) we will introduce in Sect. 4.1, since the

above definition of A
C
(s) cannot easily accommodate this normative

system (see Sect. 3.4.1)

Fig. 4   The pacifist merchant’s path after training with NGRL aug-
mented with violation counting. Note that (U) indicates that the agent
unloaded its inventory

	 KI - Künstliche Intelligenz

the prohibition of b requires the prohibition of a. But what if
our regulative norm is an obligation instead of a prohibition?

Consider the pacifist merchant; in particular, we will
look at a slightly modified version where the rule obl
(the primary obligation to stay out of the dangerous area)
is removed, and we have an additional constitutive norm
C(sing, negotiate|⊤) . Recall that we also have a norm that
says O(negotiate| at_danger, attacked) , and another that says
C(unload, negotiate|attacked); thus, when the agent is in a
dangerous area and is attacked, it is required to negotiate.
It can do so by unloading its inventory. However, because
of the additional constitutive norm C(sing, negotiate|⊤) ,
unloading is not the only action it can take to fulfill the obli-
gation to negotiate anymore. Rather, with the obligation of
negotiate the agent is being compelled to unload or sing.

We cannot translate these constitutive norms over
actions in a way similar to “strategy rules”, though.
c1 ∶ O(negotiate), attacked ⇒O unload is not a good transla-
tion of C(unload, negotiate|attacked), because the obligation
of negotiate does not simply trigger an obligation of unload.
The problem becomes clear if we translate the other con-
stitutive norm the same way ( c2 ∶ O(negotiate) ⇒O sing )
and consider the non-concurrence rules (recall, these are
the rules asserting that if one action is obligatory, no other
actions can be taken). If c1 is triggered, unload is obligatory
and by non-concurrence sing is forbidden. At the same time,
c2 can be triggered and so sing is obligatory and by non-
concurrence unload is forbidden. We don’t have the means to
resolve this conflict—indeed, we shouldn’t have to, because
there shouldn’t be a conflict at all here.

We cannot translate this normative system in such a way
that we can derive +�Ounload and +�Osing . We might con-
sider removing the non-concurrence rules, but those are the
only means we have for deriving e.g. +�O¬fight (which we
would need if we are to exclude fight from AC(s) ) from the
above norms. There may be a generalizable way to translate
constitutive norms over actions in cases like this, but the fact
that this implicitly given concept of violation forces us to
look for non-intuitive and indirect translations for the norms
in our normative system suggests that we should take a step
back, and reframe the problem with a more conceptually-
sound foundation. We do this in the next section.

4 � Solution: Violations and Counting Them

In this section, we will introduce solutions to the main issues
we identified with NGRL in the last section; that is, we will
utilize the explicit, formal characterization of violation given
in Sect. 2.2.3 and with it employ a new definition of AC(s)
(as well as a formal definition for ANC(s) ). We will then
reframe the non-compliance function RN to accommodate
our new definition of AC(s) , and introduce a technique we

will call violation counting, which we will use to augment
NGRL in such a way that accommodates dealing with nor-
mative deadlock and contrary-to-duty obligations.

4.1 � Redefining Compliance

Before introducing any new techniques, it is important that
we address the issues put forward in 3.4.1, which are caused
by a fundamental oversight in the normative supervisor’s
architecture—the lack of a comprehensive notion of viola-
tion to be utilized in the construction of AN(s) . To remedy
this we return to our formal definitions for violation-related
concepts from Sect. 2.2.3 and redefine AC(s) and ANC(s).

If we conceive of AC(s) as the set of actions for which
there is an absence of violations (as defined in Definition 6),
the following definition arises:

In the same vein, we can also provide a formal definition
of ANC(s):

Thus, we can compute both AC(s) and ANC(s) from viol(s,N) .
Given Th(s,N) , the computation of |viol(s,N)| is a simple
matter, demonstrated in Algorithm 2.
Algorithm 2   ViolationCount

input : Th(s,N)
output: |viol(s,N)|
reasoner ← SPINdle.Reasoner;
|viol(s,N)| ← 0;
conclusions ←
reasoner.generateConclusions(Th(s,N));

for lit ∈ literals(Th(s,N)) do
if conclusions.has(+∂Olit) ∧
conclusions.has(−∂C lit) then

|viol(s,N)|++;
end

end
return |viol(s,N)|

Our new characterization of violation allows us to
translate all constitutive norms C(x, y|c) to x, c →C y
4 (regardless of whether they reference actions or not)
and solves the problems presented in Sect. 3.4.1. To
demonstrate, if the merchant is being attacked while in
danger, we can prove +�Onegotiate from the rule ctd;
then, if we have the two constitutive norms translated to
unload, attacked →C negotiate and sing →C negotiate , if

(10)
AC(s) = {a ∈ A(s) | viol(s,N) = �}

= {a ∈ A(s) | Th(s,N) ⊬ +𝜕Olit,−𝜕Clit}

(11)ANC(s) = argmin
a∈A(s)

|viol(s,N)|

4  Similarly, we can simply formalize non-concurrence rules a
a →C ¬a� for a� ∈ Act ⧵ {a}.

KI - Künstliche Intelligenz	

actions unload or sing are taken, we will be able to prove
+ΔCnegotiate which implies that +�Cnegotiate , so neither
action will be excluded from AC(s) . If we re-introduce the
rule obl ∶⇒O ¬at_danger , at_danger violates obl no mat-
ter what action is taken; thus, AC(s) will be empty. How-
ever, because sing and unload do not result in a violation
of ctd as well as obl, ANC(s) = {sing, unload}.

This conception of maximal compliance is much more
flexible than the characterization implicitly adopted by
[35, 37, 38]. Fortunately, for NGRL we can employ our
more comprehensive notion of violation without any addi-
tional computational cost (this will be discussed in more
detail at the end of Sect. 4.2); moreover, we will find that
we can leverage the output of Algorithm 2 to augment
NGRL with violation counting, granting the technique the
ability to cope with normative deadlock.

4.2 � NGRL with Violation Counting

Now that we have a comprehensive definition of what it
means for an action to be compliant, we will reframe the
non-compliance function (Definition 8). Recall the defini-
tion of a non-compliance function:

where p ∈ ℝ
− is the penalty. Now that we are defining mem-

bership in AC(s) with the notion of violation presented in
Definition 6, the non-compliance function is equivalent to:

Once again, we will abbreviate to RN in practise.
Essentially, this definition of RN,p still entails that p is

assigned to state-action pairs s = (s, a) such that a ∉ AC(s) .
However, if we consider our new definition of AC(s) , these
are precisely those actions for which there are no viola-
tions of N according to Definition 6.

With this revised non-compliance function, we can
establish a link between ENCC—the expected non-compli-
ance count for a policy � described in Eq. 4—and maximal
compliance (Definition 10). In fact, maximally compliant
policies minimize ENCC:

Lemma 1  Let Π be the set of all policies over the compliance
MDP MN  . Then if �∗ is maximally-compliant:

RN,p(s, a) =

{
p a ∉ AC(s)

0 otherwise

(12)
RN,p(s, a) =

{
p viol(s,N) ≠ �

0 otherwise

= p ⋅ (1 − complN(s, a))

ENCC(�∗) = min
�∈Π

ENCC(�)

Proof  Suppose �∗ is maximally compliant, then we know
V�∗

N
(s) = max�∈Π V�

N
(s) . At each step st = (st,�(st)) in a trace

generated by a policy � , the reward awarded to the agent
by RN is equal to −(1 − compl(st,�(st))) (see Eq. 12); then
according to Eq. 1 we have the equivalence:

Then by the linearity of conditional expectation this equa-
tion becomes:

Or:

Since this equation holds for all s ∈ S , we can say that

So we get the equivalence:

	� ◻

Now, recall that in Sect. 3.4, when we reviewed the
shortcomings of NGRL, we demonstrated that it cannot
cope with contrary-to-duty obligations or reasoning about
normative deadlock. To remedy this, we now introduce
violation counting functions.

�

[
∞∑

t=0

−� t(1 − complN(st+i,�
∗(st+i)))|si = s

]

= max
�∈Π

�

[
∞∑

t=0

−� t(1 − complN(st+i,�(st+i)))|si = s

]

− �

[
∞∑

t=0

� t(1 − complN(st+i,�
∗(st+i)))|si = s

]

= max
�∈Π

−�

[
∞∑

t=0

� t(1 − compl(st+i,�(st+i)))|si = s

]

= −min
�∈Π

�

[
∞∑

t=0

� t(1 − complN(st+i,�(st+i)))|si = s

]

�

[
∞∑

t=0

� t(1 − complN(st+i,�
∗(st+i)))|si = s

]

= min
�∈Π

�

[
∞∑

t=0

� t(1 − complN(st+i,�(st+i)))|si = s

]

�

[
∞∑

t=0

� t(1 − complN(st+i,�
∗(st+i)))|si ∈ S

]

= min
�∈Π

�

[
∞∑

t=0

� t(1 − complN(st+i,�(st+i)))|si ∈ S

]

ENCC(�∗) = min
�∈Π

ENCC(�)

	 KI - Künstliche Intelligenz

Definition 12  (Violation Counting Function) A violation
counting function for a normative system N is a function
of the form:

where s = (s, a).

In other words, a violation counting function is a function
over state-action pairs to the natural numbers, which outputs
the number of violations associated with state-action pair
s = (s, a) with respect to normative system N  . In practise,
we can update VCN every time we update QN with values
from RN  ; both RN(s, a) and VCN(s, a) can be computed from
the output of Algorithm 2.

It is notable that AN(s) (as defined from the AC(s) of
Eq. 10 and the ANC(s) of Eq. 11) contains precisely those
actions which minimize VCN in the state s.

Proposition 1  For a normative system N  , we have:

Proof  If the set AC(s) is non-empty, AN(s) = AC(s) and the
a ∈ AN(s) are those a ∈ A(s) such that for s = (s, a) ,
|viol(s,N)| = 0 , according to Eq. 10 and Definition 6. Then
argmin
a∈A(s)

VCN(s, a) are precisely those actions such that

|viol(s,N)| = 0 , and AN(s) = argmin
a∈A(s)

VCN(s, a).

If AC(s) is empty, AN(s) = ANC(s) , which in turn is equal
to:

by definition (see Definition 12). So according to Defini-
tion 7,

	� ◻

The introduction of the violation counting function into
NGRL allows us to in a way mimic the results of using OCC
without being forced to use the normative supervisor at runt-
ime; since OCC allows the agent only to select actions from
AN(s) , picking actions that minimize VCN will have the same
effect.

Now in order to elicit behaviour aligned with N as much
as possible, we will craft a new policy function based on
TLQ(s) (see Algorithm 1). Given the normative Q-function
QN  , the primary Q-function Qx , and the violation count-
ing function VCN  , we construct the following policy (Algo-
rithm 3) for our agent, which is essentially an augmentation

(13)VCN(s, a) = |viol(s,N)|

(14)AN(s) = argmin
a∈A(s)

VCN(s, a)

argmin
a∈A(s)

|viol(s,N)| = argmin
a∈A(s)

VCN(s, a)

AN(s) = argmin
a∈A(s)

VCN(s, a)

of the thresholded lexicographic Q-learning policy [51]
(Algorithm 1) approach used in [37] with VCN  .

Algorithm 3   Policy(s)

input : s
output: a
begin

Anorm(s) ← argmaxa∈A(s) QN (s, a);
Aviol(s) ← argmina∈Anorm(s) V CN (s, a);
Aopt(s) ← argmaxa∈Aviol(s) Qx(s, a);
a ← random.choice(Aopt(s));
return a;

end

It is notable that we choose actions that prioritize maxi-
mizing QN  ; it is only after we have selected those actions
which maximize the normative objective that we choose
from among them actions that are normatively optimal
according to Definition 7 and the redefinitions of AC(s) and
ANC(s) outlined in Sect. 4.1. As a result, they might not be
normatively optimal with respect to all actions in A(s). In
order to explain this, we need to prove a couple of things.

Firstly, it is clear that this policy, which prioritizes maxi-
mizing QN  , is maximally compliant:

Lemma 2  The Policy defined by Algorithm 3 is maximally
compliant.

Proof  Policy(s) ∈ argmax
a∈A(s)

QN(s, a) and so

So by Definition 10, Policy is maximally compliant. 	� ◻

Since we have a maximally compliant policy, we can refer
back to Lemma 1, and make a statement about the ENCC
of the policy.

Proposition 2  The Policy from Algorithm 3 minimizes
expected ENCC.

Proof  Lemma 2 shows that Policy is maximally compliant,
and Lemma 1 tells us that it has minimal ENCC. 	� ◻

Proposition 2 shows why Policy prioritizes maximizing
QN over choosing only actions from AN(s) . Though ideally
we will always want to choose actions from AN(s) (which is
argmin
a∈A(s)

VCN(s, a) according Proposition 1), policies that

choose actions from argmax
a∈A(s)

 QN(s, a) minimize the expected

count of violations (ENCC) that will occur over the whole
trace generated by the policy. This has the effect of prioritiz-
ing the overall normative objective over immediate maximal
compliance and can minimize violations in the long term. In

VPolicy(s) = max
a∈A(s)

QN(s, a) = max
�∈Π

V�

N
(s)

KI - Künstliche Intelligenz	

other words, if we take only actions from AN(s) we may end
up choosing an action that is compliant in the immediate,
but results in more violations later on. By using a policy that
prioritizes minimizing the ENCC, we can choose actions
which minimize violations in the long term, and by further
minimizing VCN  , we can then exclude the actions which
result in the most violations in normative deadlock scenar-
ios. We will see an example of these functionalities at work
in Sect. 6.1.

Finally, we note that the adoption of our new definition of
violation and the addition of the violation counting function
to NGRL does not incur any extra computational cost. DDL
conclusions can be computed in linear time with respect to
the size of the theory [18], and its theorem prover SPINdle
is run only once in Algorithm 2; since both RN(s, a) and
VCN(s, a) can be computed directly from the output of Algo-
rithm 2, NGRL with violation counting allows us to deal
with normative deadlock without requiring additional com-
putations from the theorem prover.

4.2.1 � A Reporting Module

We noted in Sect. 3.4 that NGRL has another prominent
shortcoming, aside from its inability to deal with normative
deadlock; it is not a transparent means of developing norma-
tive behaviour (reflecting the criticisms in [5] of the notion
of an “ethical utility function”). We noted briefly in Sect. 3.4
that when using OCC, we can employ an event recorder
functionality—creating “violation reports” whenever a vio-
lation occurs [38]—with no additional computational cost.5
These violations reports consist of a formal representation
of the environment and the normative system at the time of
the violation, along with a list of possible actions and a list
of minimally non-compliant actions.

For NGRL with violation counting, we cannot get
this information at run time without using the normative
supervisor in the operation phase. However, we can con-
figure a reporting module that generates one of these vio-
lation reports whenever an action a is chosen such that
VCN(s, a) > 0 ; that is, when violations occur, we can reac-
tivate the normative supervisor and run it only in that state,
cycling through all possible actions and getting a violation
count for each of them; this could be accompanied by a for-
mal representation of Th(s,N) for each action a in state s.
This is one way we could maintain some transparency in the
framework while avoiding running the normative supervisor
at each time step at operation time. This does not remedy
all the problems mentioned in Sect. 3.4, but it does allow us

the means to detect and record violations (and the conditions
under which they occured).

5 � Constructing a Normative Filter

A persistent issue affecting all techniques utilizing the nor-
mative supervisor remains—computational overhead. Run-
ning a theorem prover for every state transition is taxing, and
the additional computational cost piles up for applications
that require a large number of training episodes or have an
extended operation time.

This degree of computational overhead is unnecessary—
some of these queries to the theorem prover are bound to
be redundant, so one way to mitigate this steep computa-
tional overhead would be to make sure we never generate
conclusions from Th(s�,N) when we already have generated
conclusions from Th(s,N) , where Th(s,N) = Th(s�,N) . And
perhaps the simplest way to do this is to compute the number
of violations up front. Shielding—see [2, 23] for examples—
involves utilizing an abstraction of the environment and LTL
safety specification to synthesize up front a shield, which
restricts an RL agent’s actions in such a way that it never
takes an action that may lead (up to a certain probability)
to an unsafe state. Inspired by this technique (as well as the
synthesis technique of [36]) we propose a method for con-
structing a normative filter up front, through which we can
filter actions or rewards and thus perform OCC, NGRL, and
NGRL with violation counting, without requiring that we
continually run a theorem prover.

Since all we care about in the environment is what labels
L(s) are assigned to a given state s, rng(L) ( ⊆ 2AP ) gives us
something of a model of the environment (or at least, what
of it is relevant to us). We can define equivalence classes for
states [s] = {s�|s� ∈ S s.t. L(s�) = L(s)} ∈ [S] , then, and run
Algorithm 2, ViolationCount, on Th(s,N) for each [s] ∈ [S]
and a ∈ Act . We can then use the output to define a func-
tion filterN ∶ 2AP × Act → ℕ which maps subsets of AP and
actions to the natural numbers.

Now, to avoid having to compute [S], we could in the-
ory just run ViolationCount on the theory Th(Γ ∪ {a},N)
for each Γ ∈ 2AP (where Th(Γ ∪ {a},N) is the theory
Th(Γ ∪ {a},N) = ⟨Γ ∪ {¬p�p ∈ AP⧵Γ} ∪ {a},RO,RC,>⟩
for regulative rules RO , constitutive rules RC , and supe-
riority relation >). However, 2AP may be prohibitively
large, and it very well may be the case that there are many
Γ ∈ 2AP that do not constitute the labels for any state. In
addition, it is possible that some of the atoms in Γ are not
at all referenced in RO ∪ RC of Th(Γ ∪ {a},N) , and there-
fore do not impact the conclusions that can be gleaned from
Th(s,N) . It therefore makes sense to consider only subsets
of APN = AP ∩ atoms(RO ∪ RC) , where atoms(R) is the set
of all atoms occurring in the set of rules R. This still will in

5  These violation reports are generated from the data processed in
the LesserEvil algorithm, which in turn is generated from data from
SPINdle’s inference logger.

	 KI - Künstliche Intelligenz

many cases constitute an overestimation of which labels we
need to consider, and if this set is still prohibitively large, we
could find a way to reduce it further by removing Γ such that
Γ ≠ L(s) for all s. For the sake of simplicity, we will forego
this further reduction and look only at 2APN in our outline
of Algorithm 4.

Algorithm 4   ConstructFilter

input : APN , Act, RO, RC , >
output: filterN : 2AP ×Act → N
filterN ← ∅;
for Γ ∈ 2APN do

for a ∈ Act do
Th(Γ ∪ {a},N) ← 〈Γ ∪ {¬p|p ∈
AP \ Γ} ∪ {a}, RO, RC , >〉;

viol ← V iolationCount(Th(Γ ∪ {a},N));
filterN .add((Γ, a), viol);

end
end
return filterN

It is easy to see that for any s ∈ S , filterN(Γ, a) = VCN(s, a)
if L(s) = Γ . That means, because of what we have proved in
Proposition 1, we can use filterN to compute AN(s) , and
therefore we can use it to perform OCC without having to
query the theorem prover. Likewise, complN can be com-
puted from filterN  , so we can likewise perform NGRL (with
or without violation counting) without having to query the
theorem prover. Thus, by constructing the normative filter,
we enable our agent to use all the techniques that employ the
normative supervisor without the significant computational
overhead they would normally incur.

Computing the filter is, of course, very computation-
ally expensive itself—but Algorithm 4 only needs to be
run once, before training. We will discuss the comparative
performance of employing NGRL with the filter and the
supervisor in the next section.

6 � Final Evaluation

In order to demonstrate the improvements born of adding
violation counting to NGRL, along with training using the
normative filter, we will now return to the pacifist norma-
tive system for the Travelling Merchant as presented in 2.3.

6.1 � NGRL with Violation Counting

In Sect. 3.4, we saw how NGRL on its own fails to pro-
duce the correct behaviour from the agent. The agent avoids
unnecessary violations, but when a violation does occur,
it does not obey the contrary-to-duty obligation, choosing
to fight (the more advantageous action) rather than unload.

When we run NGRL with violation counting, however,
we get exactly the correct behaviour, shown in Fig. 4.

To clarify, though in the state s where at_danger
is true QN(s, fight) = QN(s, unload) (as both actions
result in a violation), it is going to be the case that
VCN(s, fight) > VCN(s, unload) , so the action unload is
taken.

As a final consideration, in order to demonstrate the
advantages of minimizing ENCC, we will consider one more
case, where we have changed the environment. Instead of
having only two dangerous areas, we have four; in this envi-
ronment, when the agent is given the choice to enter the
second dangerous area, it can either do so (and that is the last
violation that will happen), or it can choose not to, and end
up forced to pass through two additional dangerous areas. In
this environment, choosing to violate the normative system
unnecessarily results in fewer violations in the long term, so
ideally, the agent would choose that path.

We can see in Fig. 5 that the agent we train with NGRL
with violation counting does indeed follow this path, while
observing the CTD obligation whenever a violation is
incurred.

6.2 � The Normative Filter

The above experiments can also be run using the normative
filter we introduced in Sect. 5 (constructed with an imple-
mentation of Algorithm 4). The construction of the filter
was completed in 484 ms—not an unsubstantial computation
time, but again, it only needs to be run once, before training.

It turns out that the improvement in training time is dra-
matic, however. Below, we provide a table comparing train-
ing time using the supervisor with training using the filter.

Table 1 clearly demonstrates the drastic decrease in train-
ing time; on average, using the filter reduced training time by
99.54%. Considering that even at only 500 training episodes,
the difference in training time is 729.28 ms, the 484 ms it
took to construct the filter is seems a very minor cost. This
confirms that the use of the normative filter constitutes a
significant improvement in training time, when compared
to NGRL using the normative supervisor.

Fig. 5   The pacifist agent voluntarily violating a norm in order to
avoid future violations

KI - Künstliche Intelligenz	

7 � Conclusion

In this paper, we have reviewed, analysed, and revised the
normative supervisor presented in [35, 37, 38]. These papers
mostly focus on experimental results, and address the archi-
tecture of the normative supervisor through the lens of case
studies; to complement and improve the existing work, we
have based our analysis and augmentations on a formal char-
acterization of normative system violation.

We began by introducing a formal definition of “nor-
matively optimal actions"—the subset of an agent’s avail-
able actions that the normative supervisor is designed to
compute. Normatively optimal actions are actions which
comply with a normative system, if such actions exist; we
extracted a formal (but flawed) characterization of compliant
actions from the algorithm from [38] used to compute them,
from which we extrapolate an implicitly given definition of
violation. After motivating the introduction of NGRL, we
provided the basic definitions and results related to this tech-
nique, before expanding on the discussion of the technique’s
limitations from [37]. Finally, we revisit the definition of
violation we inferred and discuss how it fails to accommo-
date some normative systems.

Earlier, we had presented another definition of norma-
tive system violation, more comprehensive and conceptu-
ally faithful than the implicit definition we found; we thus
adopt this presentation of compliant actions instead. We then
provided an algorithm for computing the number of viola-
tions of a normative system for a given state-action pair,
and returned to NGRL, adding an additional component, a
violation counting function—which, together with the non-
compliance function fundamental to computing the policy
in NGRL (that is, a non-compliance function that accommo-
dates our new definition of violation), can be computed from
the algorithm we provided. This violation counting function
can be leveraged to overcome one of the main shortcom-
ings of NGRL—its inability to cope with normative dead-
lock scenarios (in particular, contrary-to-duty obligations).
We then specified a policy utilizing the violation counting
function and the learned Q-functions corresponding to the
agent’s normative and primary objectives. We proved that

this policy minimizes the expected total number of viola-
tions (discounted) that occur in a trace generated by the
policy, while also sorting out actions that are not norma-
tively optimal. As a final improvement—conscious of the
significant computational overhead the above techniques
incur—we introduced the idea of a normative filter, which
allows us to compute ahead of time the means to perform
OCC, NGRL, and NGRL with violation counting, without
having to query the theorem prover at all following the run
of the algorithm.

Finally, we have demonstrated the effectiveness of this
approach with a simple case study, which shows violation
counting resulting in the observance of a contrary-to-duty
obligation (where NGRL alone could not), and furthermore
showed that the agent could strategically violate its norma-
tive system in order to avoid additional violations later on.
We also demonstrated the dramatic decrease in training time
that comes with the use of the normative filter, in place of
the supervisor.

As for future work, we plan to investigate how to manage
the trade-off between the agent’s primary objective and its
normative objective. There may be times when fulfilling the
primary objective is crucial, and must be pursued in spite
of (albeit while minimizing) violations; currently, our tech-
nique does not allow for this. In order to accomplish this,
we will need to even more closely entwine tools for norma-
tive reasoning with the reinforcement learning framework. It
may also be possible to expand the approach with weighted
violations, so that we can deal with indirect conflicts that
cannot be solved with DDL’s superiority relation (such
as practical dilemmas where it is impossible to fulfill two
norms, one being higher priority than the other, simultane-
ously, though they do not directly conflict). Additionally, we
hope to explore possibilities for including temporal reason-
ing within the framework; temporal obligations constitute
a crucial and challenging subfield of normative reasoning,
and the normative supervisor, which strictly employs DDL,
cannot accomodate them.

Acknowledgements  This work was supported by the WWTF project
TAIGER (ICT22-023).

Funding  Open access funding provided by TU Wien (TUW).

Data availability  The code for the experiments can be found here:
https://​github.​com/​lexer​ee/​norma​tive-​player-​chara​cters.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not

Table 1   Training time with the supervisor and filter

Number of
episodes

with Supervisor
(ms)

with Filter (ms) % decrease

500 732.62 3.34 99.54
1000 1508.54 6.87 99.54
1500 2258.94 10.40 99.53
2000 3028.99 14.14 99.53
2500 3793.61 17.42 99.54
3000 4541.65 20.85 99.54

https://github.com/lexeree/normative-player-characters

	 KI - Künstliche Intelligenz

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Abel D, MacGlashan J, Littman ML (2016) Reinforcement learn-
ing as a framework for ethical decision making. In: AAAI Work-
shop: AI, Ethics, and Society, vol 16

	 2.	 Alshiekh M, Bloem R, Ehlers R, Könighofer B, Niekum S, Topcu
U (2018) Safe reinforcement learning via shielding. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol 32

	 3.	 Anderson AR (1958) A reduction of deontic logic to alethic modal
logic. Mind 67(265):100–103

	 4.	 Antoniou G, Billington D, Governatori G, Maher M (2001) Rep-
resentation results for defeasible logic. ACM Trans Comput Log
2:255–287

	 5.	 Arnold T, Kasenberg D, Scheutz M (2017) Value alignment or
misalignment - what will keep systems accountable? In: The
Workshops of the The Thirty-First AAAI Conference on Artificial
Intelligence, AAAI Press, AAAI Technical Report, vol WS-17

	 6.	 Balakrishnan A, Bouneffouf D, Mattei N, Rossi F (2019) Incor-
porating behavioral constraints in online ai systems. Proceedings
of the AAAI Conference on Artificial Intelligence 33:3–11

	 7.	 Castro PF, Maibaum TS (2009) Deontic action logic, atomic
boolean algebras and fault-tolerance. J Appl Log 7(4):441–466

	 8.	 Ding XCD, Smith SL, Belta C, Rus D (2011) Ltl control in uncer-
tain environments with probabilistic satisfaction guarantees. IFAC
Proceedings Volumes 44(1):3515–3520

	 9.	 Ecoffet A, Lehman J (2021) Reinforcement learning under moral
uncertainty. In: International Conference on Machine Learning,
PMLR, pp 2926–2936

	10.	 Forrester JW (1984) Gentle murder, or the adverbial samaritan. J
Philos 81(4):193–197

	11.	 Fu J (2014) Topcu U (2014) Probably approximately correct MDP
learning and control with temporal logic constraints. In: Fox D,
Kavraki LE, Kurniawati H (eds) Robotics: Science and Systems
X. University of California, Berkeley, USA, July, pp 12–16

	12.	 Gábor Z, Kalmár Z, Szepesvári C (1998) Multi-criteria reinforce-
ment learning. Proceedings of the Fifteenth International Confer-
ence on Machine Learning. 98:197–205

	13.	 Governatori G (2015) Thou shalt is not you will. In: Proceedings
of the 15th International Conference on Artificial Intelligence and
Law, pp 63–68

	14.	 Governatori G (2018) Practical normative reasoning with defea-
sible deontic logic. In: Reasoning Web International Summer
School, Springer, pp 1–25

	15.	 Governatori G, Rotolo A (2006) Logic of violations: A gentzen
system for reasoning with contrary-to-duty obligations. Australas
J Log 4:193–215

	16.	 Governatori G, Maher M, Antoniou G, Billington D (2004)
Argumentation semantics for defeasible logic. J Log Comput
14:675–702

	17.	 Governatori G, Rotolo A, Calardo E (2012) Possible world seman-
tics for defeasible deontic logic. In: DEON

	18.	 Governatori G, Olivieri F, Rotolo A, Scannapieco S (2013)
Computing strong and weak permissions in defeasible logic.
Journal of Phil Logic 42(6):799–829. https://​doi.​org/​10.​1007/​
s10992-​013-​9295-1

	19.	 Grandi U, Lorini E, Parker T, Alami R (2022) Logic-based ethical
planning. In: International Conference of the Italian Association
for Artificial Intelligence, Springer, pp 198–211

	20.	 Grandi U, Lorini E, Parker T (2023) Moral planning agents with ltl
values. In: 32nd International Joint Conference on Artificial Intel-
ligence (IJCAI 2023), International Joint Conferences on Artificial
Intelligence Organization, pp 418–426

	21.	 Hansen J (2013) Imperative logic and its problems. Handbook of
deontic logic and normative systems 1:136–191

	22.	 Hasanbeig M, Abate A, Kroening D (2020) Cautious reinforce-
ment learning with logical constraints. In: Proceedings of the 19th
International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020,
pp 483–491

	23.	 Jansen N, Könighofer B, Junges S, Serban A, Bloem R (2020)
Safe Reinforcement Learning Using Probabilistic Shields (Invited
Paper). In: 31st International Conference on Concurrency Theory
(CONCUR 2020), Leibniz International Proceedings in Informat-
ics (LIPIcs), vol 171, pp 3:1–3:16

	24.	 Jobin A, Ienca M, Vayena E (2019) The global landscape of ai
ethics guidelines. Nature Machine Intelligence 1(9):389–399

	25.	 Jones AJ, Pörn I (1985) Ideality, sub-ideality and deontic logic.
Synthese pp 275–290

	26.	 Kasenberg D, Scheutz M (2018a) Inverse norm conflict resolu-
tion. In: Proceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society, pp 178–183

	27.	 Kasenberg D, Scheutz M (2018b) Norm conflict resolution in
stochastic domains. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol 32

	28.	 Kasenberg D, Thielstrom R, Scheutz M (2020) Generating expla-
nations for temporal logic planner decisions. Proceedings of the
International Conference on Automated Planning and Scheduling
30:449–458

	29.	 Kober J, Bagnell JA, Peters J (2013) Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research
32(11):1238–1274

	30.	 Lam HP, Governatori G (2009) The making of spindle. Interna-
tional Workshop on Rules and Rule Markup Languages for the
Semantic Web, Springer, LNCS 5858:315–32. https://​doi.​org/​10.​
1007/​978-3-​642-​04985-9_​29

	31.	 Li J, Meneguzzi F, Fagundes M, Logan B (2015) Reinforcement
learning of normative monitoring intensities. In: International
Workshop on Coordination, Organizations, Institutions, and
Norms in Agent Systems, Springer, pp 209–223

	32.	 Maher MJ (2001) Propositional defeasible logic has linear com-
plexity. Theory Pract Logic Program 1(6):691–711

	33.	 Maher MJ, Rock A, Antoniou G, Billington D, Miller T (2001)
Efficient defeasible reasoning systems. Int J Artif Intell Tools
10(04):483–501

	34.	 McNamara P (2006) Deontic logic. In: Handbook of the History
of Logic, vol 7, Elsevier, pp 197–288

	35.	 Neufeld E, Bartocci E, Ciabattoni A, Governatori G (2021) A nor-
mative supervisor for reinforcement learning agents. Proceedings
of CADE 2021:565–576

	36.	 Neufeld E, Bartocci E, Ciabattoni A (2022a) On normative rein-
forcement learning via safe reinforcement learning. In: PRIMA
2022

	37.	 Neufeld EA (2022) Reinforcement learning guided by provable
normative compliance. Proceedings of ICAART 2022:444–453

	38.	 Neufeld EA, Bartocci E, Ciabattoni A, Governatori G (2022b)
Enforcing ethical goals over reinforcement-learning policies. Jour-
nal of Ethics and Information Technology

	39.	 Noothigattu R, Bouneffouf D, Mattei N, Chandra R, Madan P,
Varshney KR, Campbell M, Singh M, Rossi F (2019) Teaching
ai agents ethical values using reinforcement learning and policy
orchestration. IBM J Res Dev 63(4/5):2–1

	40.	 Nute D (1993) Defeasible logic. In: Handbook of Logic in
Artificial Intelligence and Logic Programming: Volume 3:

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1007/s10992-013-9295-1
https://doi.org/10.1007/978-3-642-04985-9_29
https://doi.org/10.1007/978-3-642-04985-9_29

KI - Künstliche Intelligenz	

Nonmonotonic Reasoning and Uncertain Reasoning, vol 3, Oxford
University Press

	41.	 Nute D (2001) Defeasible logic. In: International Conference on
Applications of Prolog, Springer, pp 151–169

	42.	 Riedl MO, Harrison B (2016) Using stories to teach human values
to artificial agents. In: AI, Ethics, and Society, Papers from the
2016 AAAI Workshop, AAAI Press, AAAI Technical Report, vol
WS-16-02

	43.	 Rodriguez-Soto M, Lopez-Sanchez M, Rodriguez-Aguilar JA
(2020) A structural solution to sequential moral dilemmas. In:
Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pp 1152–1160

	44.	 Rodriguez-Soto M, Lopez-Sanchez M, Rodriguez-Aguilar JA
(2021) Multi-objective reinforcement learning for designing ethi-
cal environments. In: Proceedings of the 30th International Joint
Conference on Artificial Intelligence, pp 1–7

	45.	 Rodriguez-Soto M, Serramia M, Lopez-Sanchez M, Rodriguez-
Aguilar JA (2022) Instilling moral value alignment by means
of multi-objective reinforcement learning. Ethics Inf Technol
24(1):1–17

	46.	 Sallab AE, Abdou M, Perot E (2017) Yogamani S (2017) Deep
reinforcement learning framework for autonomous driving. Elec-
tronic Imaging 19:70–76

	47.	 Searle JR (1969) Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press, Cambridge, England

	48.	 Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang
A, Guez A, Hubert T, Baker L, Lai M, Bolton A et al (2017)

Mastering the game of go without human knowledge. nature
550(7676):354–359

	49.	 Smith T (1993) Violation of norms. In: Proceedings of the 4th
international conference on Artificial intelligence and law, pp
60–65

	50.	 The IEEE Global Initiative on Ethics of Autonomous and Intel-
ligent Systems (2019) IEEE standard review - Ethically aligned
design: A vision for prioritizing human wellbeing with artificial
intelligence and autonomous systems, 1st edn. IEEE

	51.	 Vamplew P, Dazeley R, Berry A, Issabekov R, Dekker E (2011)
Empirical evaluation methods for multiobjective reinforcement
learning algorithms. Mach Learn 84(1):51–80

	52.	 Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A,
Chung J, Choi DH, Powell R, Ewalds T, Georgiev P et al (2019)
Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature 575(7782):350–354

	53.	 Watkins CJCH (1989) Learning from delayed rewards. PhD the-
sis, King’s College, Cambridge, UK, http://​www.​cs.​rhul.​ac.​uk/​
~chrisw/​new_​thesis.​pdf

	54.	 Wu YH, Lin SD (2018) A low-cost ethics shaping approach for
designing reinforcement learning agents. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol 32

http://www.cs.rhul.ac.uk/%7echrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/%7echrisw/new_thesis.pdf

	Learning Normative Behaviour Through Automated Theorem Proving
	Abstract
	1 Introduction
	1.1 Related Work on Ethical RL
	1.2 Contributions

	2 Background
	2.1 Multi-Objective Reinforcement Learning
	2.2 Normative Reasoning
	2.2.1 DDL Syntax
	2.2.2 Deduction in DDL
	2.2.3 Compliance and Violation

	2.3 Case Study: The Pacifist Merchant

	3 The Normative Supervisor
	3.1 Architecture
	3.1.1 Translators
	3.1.2 Reasoner

	3.2 Online Compliance Checking
	3.2.1 Limitations of Online Compliance Checking

	3.3 Norm-Guided Reinforcement Learning
	3.3.1 The Magnitude of p

	3.4 Shortcomings of NRGL
	3.4.1 An Incomplete Notion of Violation

	4 Solution: Violations and Counting Them
	4.1 Redefining Compliance
	4.2 NGRL with Violation Counting
	4.2.1 A Reporting Module

	5 Constructing a Normative Filter
	6 Final Evaluation
	6.1 NGRL with Violation Counting
	6.2 The Normative Filter

	7 Conclusion
	Acknowledgements
	References

