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Abstract
Reinforcement learning (RL) is a powerful tool for teaching agents goal-directed behaviour in stochastic environments, 
and many proposed applications involve adopting societal roles which have ethical, legal, or social norms attached to them. 
Though multiple approaches exist for teaching RL agents norm-compliant behaviour, there are limitations on what normative 
systems they can accommodate. In this paper we analyse and improve the techniques proposed for use with the Normative 
Supervisor (Neufeld, et al., 2021)—a module which uses conclusions gleaned from a defeasible deontic logic theorem prover 
to restrict the behaviour of RL agents. First, we propose a supplementary technique we call violation counting to broaden 
the range of normative systems we can learn from, thus covering normative conflicts and contrary-to-duty norms. Addition-
ally, we propose an algorithm for constructing a “normative filter”, a function that can be used to implement the addressed 
techniques without requiring the theorem prover to be run at each step during training or operation, significantly decreasing 
the overall computational overhead of using the normative supervisor. In order to demonstrate these contributions, we use a 
computer game-based case study, and thereafter discuss remaining problems to be solved in the conclusion.

Keywords Theorem proving · Defeasible deontic logic · Ethical reinforcement learning

1 Introduction

Reinforcement learning (RL) is a powerful tool for teach-
ing autonomous agents goal-directed behaviour in stochastic 
environments, which has seen substantial advances over the 
last decades. RL agents are consistently mastering tasks pre-
viously relegated to expert humans (e.g., the RL agent that 
beat the world champion of Go [48], or the agent that plays 
Starcraft II at the grandmaster level [52]), and the number of 
application domains for RL agents has continued to expand. 
Notably, RL is a popular choice for the implementation of 
robots [29] and autonomous vehicles [46]. [50] emphasizes 
the notion that technologies integrated in human commu-
nities must follow social and moral norms congruent with 
those communities; as RL agents take up roles more deeply 
integrated with human society, it becomes imperative that 
they also can conform to the ethical, legal, and social norms 
governing society. An autonomous vehicle that does not 
obey traffic laws would be next to useless.

Constraining RL agents with norms is easier said than 
done. Though implementing behaviour conforming to a sin-
gle norm in isolation might be a simple matter (compelling 
an autonomous vehicle to travel no faster than 50 kph within 
city limits, for example), when we shift our focus to entire 
normative systems—which may contain obligations, prohibi-
tions, permissions, counts-as norms, and conflict-resolution 
mechanisms—we start to encounter problems. For example, 
how do we implement behaviour in an autonomous vehicle 
that complies with all regional traffic laws and accompa-
nying social norms, some of which may conflict with or 
modify each other? Implementing normative behaviour is 
often more involved than laying out and conforming to a 
collection of individual, non-interactive constraints. Some-
times, we will need to utilize more complex forms of norma-
tive reasoning.

Normative reasoning is the form of reasoning dedicated 
to correctly drawing conclusions about norms, encompass-
ing the technical demands inherent in reasoning about, for 
example, law and morality. Norms introduce nuances not 
found in reasoning strictly dedicated to facts; thus, unique 
tools have been developed to accommodate these difficul-
ties, largely in the field of deontic logic, a diverse area of 
study that has yielded a plethora of specialized logics for 
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normative reasoning, along with (to a much lesser extent) 
tools automating reasoning with these logics. These tools 
allow us to automate reasoning about norms and the behav-
iour they should elicit, which in turn can be used to modify 
the behaviour of autonomous agents such as RL agents. This 
paper explores this strategy for eliciting normative behaviour 
from RL agents, analysing and improving on the technique 
introduced in [37], norm-guided reinforcement learning 
(NGRL)—a technique that managed to mitigate some of the 
disadvantages of the approach utilized in [35, 38]. However, 
NGRL possesses several considerable shortcomings itself—
such as an inability to deal with contrary-to-duty (CTD) 
obligations—which we will address thoroughly in Sect. 3.

1.1  Related Work on Ethical RL

Aligning the behaviour of autonomous agents with human 
norms is a problem that has been tackled from many angles; 
RL in particular has been conjectured as a good candidate 
for implementing behaviour in stochastic environments 
which is constrained by norms (in contrast to non-learning-
based approaches like [19, 20]). There are already many 
RL techniques aimed toward producing ethical behaviour. 
These include two main approaches that have been used 
for teaching RL agents “ethical” (more generally, norma-
tive) behaviour: training with human data and training with 
reward engineering.

Using human demonstrations or feedback to create an 
ethical utility function is proposed by [6, 39, 42, 54]. How-
ever, it may not be feasible to collect enough human data for 
a given task, and no way has been proposed to verify that 
this data does indeed depict ethical behaviour; in fact, [54] 
assumes that most human behaviour is ethical. [5] critiques 
this approach, noting that the subtleties of many legal sys-
tems cannot be represented by a utility function alone (this, 
of course, also applies to the reward engineering approach 
as well). In addition, an ethical utility function is not a trans-
parent (often cited as desirable for ethical AI systems [24]) 
decision-making mechanism. [5] notes pertinently that if 
there is a problem with the ethical utility function, trying to 
uncover what has gone wrong will be difficult if not impossi-
ble if we can only examine the policy. [39] offers some level 
of transparency, in that it is clear when the agent switches 
between a non-ethical and ethical policy, but the opacity of 
the policy itself is not addressed.

The reward engineering approach entails assigning 
rewards or punishments to the actions taken by an agent 
in order to induce compliant behaviour. In developing a 
reward framework for inducing compliant behaviour, there 
are two main questions that need to be addressed: (1) which 
state-action pairs should be assigned a reward or punish-
ment? This comes down to the question: how do we know 
if an event is compliant or not? And (2) what should the 

magnitudes of these rewards and punishments be? Much 
of the literature—for example [1, 9, 31, 43–45]—relies to 
some degree on the manual creation of a reward function. 
In [1, 9, 31], it is not made clear how we can create this 
reward function systematically or automatically; [31] and 
[1] simply assign rewards or punishments to what they deem 
praiseworthy or transgressive events, and [9] does not tell us 
how the choice-worthiness function they propose for a given 
ethical theory should be constructed. [43–45], which use 
multi-objective RL (MORL) over the agent’s primary objec-
tive and an ethical objective, do provide us with a direct link 
from specified moral values to a reward function, but their 
conception of values and norms is somewhat primitive, and 
is insufficient for modelling more complex forms of norma-
tive reasoning; additionally they assume the existence of 
what they call an ethical policy (where no violations occur 
[45]). In [43], norms are conceived of only as non-interact-
ing tuples containing a condition, a deontic modality, the 
action to which the operator applies, and a penalty.

To some degree, [27] sits outside these two main 
approaches, and offers an approach (expanded on in e.g. 
[26, 28]) where norms are represented as linear temporal 
logic (LTL) formulas; they use the methods proposed in [8] 
to train an agent that satisfies these formulas with maximal 
probability. It is acknowledged that norms might come into 
conflict in this framework (something not considered by the 
above approaches), and these conflicts are dealt with sys-
tematically. However, this technique is specifically defined 
for model-based RL, where the MDP the agent operates in is 
already known. It is known that there are limitations to LTL 
as a language for representing norms (see [13, 36]), and to 
get around some of these, this technique specifically employs 
what is called “implicit representation” of norms in [36]. 
However, among these limitations remain an inability to rep-
resent strong permission naturally, cope with obligations/
permissions that are conditional on other obligations/per-
missions, and account for counts-as (or constitutive) norms.

[35] also veers away from these two main approaches, and 
introduces a normative supervisor utilizing defeasible deon-
tic logic (DDL) for checking the compliance of a trained 
(model-free) RL agent’s actions in real time, removing those 
that don’t comply from its arsenal; this proved to be as effec-
tive as the approach in [39], and accommodates a much 
wider array of normative systems [38]. Since the normative 
supervisor is decoupled from the agent, though, the agent 
cannot incorporate the norms it is subject to into its plan-
ning, and cannot learn to, e.g., avoid situations where com-
pliance is not possible. In addition, the behaviour produced 
while running the normative supervisor is no longer optimal. 
This was remedied to some degree in [37], which borrows 
the model-free MORL approach from [44, 45] and uses the 
normative supervisor to build a reward function. However, 
[37] was incapable of dealing with some normative systems, 
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such as those with contrary-to-duty obligations (obligations 
triggered when another obligation is violated). It was also 
more generally incapable of determining between two non-
compliant actions which was more compliant with the sys-
tem as a whole. Generally, in the literature on ethical RL, 
there is a shortage of discussion on how to cope with situa-
tions where compliance is not possible; this capability was 
demonstrated in [35, 38] (as well as in [27]), but this did 
not carry over to the norm-guided RL (NGRL) presented 
in [37], as we will demonstrate in Sect. 3.4. We will further 
argue that the notion of norm violation implicitly espoused 
by [35, 37, 38] limits what violations can be detected by the 
normative supervisor.

1.2  Contributions

In this paper, we revisit and offer more extensive analysis 
of the normative supervisor, employing a more compre-
hensive definition of normative system violation. We fur-
thermore propose an algorithm that counts the number of 
violations that occur for a state-action pair s = (s, a) , and 
we augment NGRL with what we call violation counting, 
which allows us to cope with scenarios where compliance 
is not possible (such as when a contrary-to-duty obligation 
is triggered). Finally, we propose an algorithm for construct-
ing a “normative filter” which can be used to replace the 
continual running of the normative supervisor, allowing us 
to use techniques such as NGRL without calling a theorem 
prover at every step during training or operation; we will 
show that using this normative filter dramatically improves 
training time. Throughout the paper, we make use of a case 
study, the “Travelling Merchant” (introduced in [36]), to 
demonstrate the inadequacy of the notion of norm violation 
implicitly espoused by [35, 37, 38], how regular NGRL fails 
when faced with contrary-to-duty obligations, how violation 
counting remedies this issue, and how this technique man-
ages trade-offs between immediate and delayed violations 
more generally.

In the section immediately following, we will give a brief 
overview of multi-objective RL, the basic building-blocks of 
normative systems, and defeasible deontic logic; we will also 
offer a discussion on compliance and violation, and establish 
some concepts and notation which we will make use of in later 
sections. Finally, we introduce the basic mechanics of our case 
study. In Section 3, we look at the normative supervisor, pre-
senting an overview of its architecture, and the techniques that 
it can be used to implement. We offer detailed critical analysis 
of these techniques, including the use of our case study to dem-
onstrate inadequacies. In Section 4, we offer a solution to these 
problems, by redefining the employed concept of compliance 
and introducing violation counting. In Section 5 we introduce 
the normative filter and provide an algorithm for constructing 
it. In Section 6, we evaluate the techniques presented using 

our case study. Finally, in Section 7 is a conclusion and brief 
discussion of remaining issues to be solved in future work.

2  Background

In this section we will discuss the background needed in order 
to understand the rest of the paper. First, we will review the 
basics of multi-objective reinforcement learning (MORL). 
Then, we will discuss normative reasoning with defeasible 
deontic logic (DDL) and normative system violation, as well 
as our case study.

2.1  Multi‑Objective Reinforcement Learning

The underlying environment of a multi-objective reinforce-
ment learning problem is formalized as a multi-objective 
Markov decision process (MOMDP). We define a specific 
type of MOMDP below, where each state is associated with 
a set of labels:

Definition 1 (MOMDP) A labelled MOMDP is a tuple

where S is a set of states, A is a function A ∶ S → 2Act from 
states to sets of possible actions (where Act is the set of 
all actions available to the agent), L ∶ S → 2AP (where AP 
is some set of atomic propositions) is a labelling function, 
P ∶ S × Act × S → [0, 1] is a probability function that gives 
the probability P(s, a, s�) of transitioning from state s to state 
s′ after performing action a, and R = (R1, ...,Rn)

T is a vector 
of reward functions Ri ∶ S × Act → ℝ.

Single-objective MDPs are simply MDPs for which R is 
instead a scalar function R ∶ S × Act → ℝ.

Reinforcement learning finds a policy � ∶ S → Act which 
designates optimal behaviour; this optimality is determined 
w.r.t. a vector of value functions V� = (V�

1
, ...,V�

n
)T defined as:

which represents the expected cumulative value from 
state s if policy � is followed. Specifically, if � generates 
a trace (s0,�(s0)), (s1,�(s1)), ... , V�

i
(s) is the expected value 

of the expression 
∑∞

t=0
� trt+j , where rt+j = Ri(st+j,�(st+j)) , 

conditional on the input state s being the initial state sj . In 
the above function, � ∈ [0, 1) is a discount factor (so that 
rewards in the future do not have as much weight as more 
immediate rewards).

Generally, for an agent with one objective and therefore 
one scalar value function V� , our goal is to find an optimal 

⟨S,A, L,P,R⟩

(1)V�

i
(s) = �

[
∞∑

t=0

� trt+j|sj = s

]



 KI - Künstliche Intelligenz

policy �∗ from the set of all policies Π ; this is the policy 
such that:

However, multiple objectives induce a more complex set of 
semi-optimal policies, where one policy might maximize 
rewards from Ri but not Rj , for instance. We then turn to 
the notion of Pareto dominance. A policy strictly domi-
nates another if it results in better outcomes for all objec-
tives. However, in some cases, like in the case of competing 
objectives, there may be no such policy. Then we look at 
whether one policy weakly dominates another; that is, the 
policy results in improvements for some objective(s), but not 
necessarily all. If we remove from Π all strictly dominated 
policies, the only policies left form the Pareto front (the 
set of all dominant or incomparable policies). The task of 
MORL is to find policies in this Pareto front.

Similar to the value function, we can define a vector of 
Q-functions for each objective, Q� = (Q�

1
, ...,Q�

n
)T , where:

In single-objective RL, the goal of model-free reinforce-
ment learning—reinforcement learning where the underly-
ing MDP is not known—is to learn the Q-function for the 
optimal policy �∗ , such that

In Q-learning [53] and related techniques we attempt to 
learn an optimal Q-function by applying the following rule 
to update the Q-function during learning (over a transition 
(s, a, s�)):

where � is the learning rate, � is the discount factor, and s′ 
is the state observed when the agent transitions from s with 
action a.

However, with multiple Q-functions, we must learn 
each Qi individually and strategically combine them 
in order ascertain the “optimal” action. [12] presents a 
MORL method where some objectives can be prior-
itized over others; [51] describes what they call a “naive 
approach” to it. This approach, thresholded lexicographic 
Q-learning (TLQL), is tailored to problems where there is 
a single objective that must be maximized overall, while 
all other objectives don’t need to be maximized, but rather 
must satisfy a threshold. With this technique, we will have 
a vector of Q-functions Q = (Q1, ...,Qn)

T , along with a vec-
tor of thresholds C = (C1, ...Cn)

T . Each Ci is a value that we 

V�∗

(s) = max
�∈Π

V�(s)

Q�

i
(s, a) = �

[
∞∑

t=0

� trt+j|sj = s, aj = a

]

�∗(s) ∈ argmax
a∈A(s)

Q(s, a) and V�∗

(s) = max
a∈A(s)

Q(s, a)

Q(s, a) ← (1 − �)Q(s, a) + �(R(s, a) + � max
a�∈A(s�)

Q(s�, a�))

aim to keep Qi(s, a) at or above, except the last threshold: 
Cn = +∞ . Moreover, we assume that the objective repre-
sented by Qi(s, a) is of higher priority than the objective 
represented by Qj(s, a) if i < j.

Here, we will work with CQ-values instead of Q-values. 
A CQ-value is:

Then our policy is �(s) ∈ TLQ(s) , where TLQ is given by 
Algorithm 1.
Algorithm 1  TLQ(s)

input : s, �C
output: optimal
begin

optimal ← A(s);
for i = 1; i ≤ n; i++ do

acti ← argmaxa∈optimal min(Qi(s, a), Ci);
optimal ← acti;

end
return optimal;

end

2.2  Normative Reasoning

We will consider two kinds of norms in this paper: regula-
tive norms and constitutive norms. Regulative norms are 
obligations, prohibitions, or permissions; in other words, 
they define what is necessarily the case (in the case of 
obligations and prohibitions) or possible (as with permis-
sions) in an ideal world. Regulative norms are usually con-
ditional (e.g., “when the light is red, you are obligated to 
stop”). Conditional obligations are referred to informally 
as O(p|q) in this paper (with F(p|q) and P(p|q) standing in 
for prohibitions and permissions respectively).

A constitutive (or counts-as) norm takes the form “in 
context C, X counts as Y” [47] (which we represent with 
the shorthand C(X, Y|C)) for some property or event X and 
Y. In a normative system, constitutive norms facilitate the 
construction of what Searle calls institutional facts from 
brute facts or other institutional facts [47]. Brute facts are 
facts that hold whether or not human institutions (e.g., lan-
guage, morality) are in place; institutional facts only make 
sense in the context of human institutions, for example the 
statement that killing counts as immoral.

With these two types of norms, we can define our sim-
ple conception of a normative system:

Definition 2 (Normative System) A normative system is a 
tuple: N = ⟨C,R,�⟩ where C is a set of constitutive norms, 
R is a set of regulative norms, and � is a conflict resolution 
mechanism.

CQi(s, a) = min(Qi(s, a),Ci)
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In the above definition, what we call the conflict resolu-
tion mechanism is a means to resolve normative conflict; it 
can be, for example, an ordering over prescriptive norms 
(obligations or prohibitions), or a map from these norms 
to real numbers. We will discuss one such mechanism 
momentarily.

It is important to note that the various norms in a nor-
mative system may interact with each other and with the 
conflict resolution mechanism, so even if every regulative 
norm in a normative system remains individually (osten-
sibly) unviolated, the normative system may be violated. 
Consider an example where we have a regulative norm “vio-
lating patient privacy is prohibited” and a constitutive norm 
“accessing file X counts as violating patient privacy”. Now 
suppose we take the regulative norm on its own and assume 
the fact “file X has been accessed”. Strictly speaking, this 
fact does not violate the prohibition; the prohibition refers to 
violating patient privacy, while the fact refers to accessing 
a file. It is not until we consider the constitutive norm that 
we can derive the institutional fact “patient privacy has been 
violated”, and know that the prohibition has been violated. 
It is necessary, then, to have a logic for normative reasoning 
that can handle this interplay. We introduce one below.

2.2.1  DDL Syntax

Propositional defeasible logic [32, 33, 40, 41] is an effi-
cient framework for non-monotonic reasoning, and can be 
extended with modal operators (e.g. deontic operators, such 
as obligation). In this section we review the core definitions 
of the defeasible deontic logic (DDL) presented in [4] and 
later explored on in [14–18], using as its base deontic modal-
ity, obligation O.

Let  AP  be  a  set  of  proposi t ional  a toms, 
Lit = AP ∪ {¬p | p ∈ AP} be a set of corresponding liter-
als, and OLit = {O(l)|l ∈ Lit} be a set of modal literals. Then 
we can define rules:

Definition 3 (Rules [18]) Let r be a label designating a rule:

where A(r) = {a1, ..., an} (a set of literals ∈ 2Lit∪OLit ) is the 
antecedent, N(r) (a single literal ∈ Lit ) is the consequent, 
↪∗∈ {→∗,⇒∗,⇝∗} is a generic rule symbol, and ∗∈ {C,O} 
gives the mode of each rule.

Rules with the subscript C are constitutive rules, and 
rules subscripted by O are regulative rules (in which the 
consequent of the rule is derived in the scope of the deon-
tic operator O, for obligation). Strict rules ( →∗ ) are rules 
where the consequent strictly follows from the antecedent 
without exception; that is, a rule that always holds can be 

r ∶ A(r) ↪∗ N(r)

formalized as a strict rule (e.g., sparrow →C bird ). Defea-
sible rules ( ⇒∗ ) are rules where the consequent usually 
follows from the antecedent, unless it is refuted by a con-
flicting rule or a defeater. An example of a defeasible rule 
would be a default assumption like bird ⇒C fly . Defeaters 
( ⇝∗ ) are rules that can prevent a conclusion from being 
reached by a defeasible rule; for example we might have a 
rule like penguin ⇝C ¬fly . Regulative defeaters can used 
to encode permissive rules. DDL is furthermore equipped 
with a superiority relation > to resolve conflicts between 
rules; given two conflicting rules r1 and r2 , r1 > r2 indicates 
that r1 defeats r2 (i.e., if they conflict but are both applica-
ble, only r1 is applied).

From the above, we can define a defeasible theory:

Definition 4 (Defeasible Deontic Theory [14]) A defeasible 
deontic theory D can be defined by the tuple ⟨F,RO,RC,>⟩ , 
where F is a set of facts (i.e., literals l and modal literals 
O(l)), RO is a set of regulative rules, RC is a set of constitu-
tive rules, and > is a superiority relation over rules.

We can relate this definition to the above definition of a 
normative system N = ⟨R, C,�⟩ . The overlap between R 
and RO , and C and RC , is clear. Similarly, we can see that 
> is an example of a conflict resolution mechanism � . For 
this reason, we can think of a defeasible deontic theory as a 
collection of facts plus a formally defined normative system.

2.2.2  Deduction in DDL

Defeasible proofs are characterized by proof tags. A proof 
tag is a label applied to a literal and together they constitute 
a conclusion derived in the proof; there are several types 
of conclusions we can derive from a defeasible theory. The 
proof tags are: +Δ∗ (definitely provable conclusion), −Δ∗ 
(definitely refuted conclusion), +�∗ (defeasibly provable con-
clusion), and −�∗ (defeasibly refuted conclusion). For fac-
tual conclusions, ∗∶= C and for deontic conclusions, ∗∶= O . 
When we can derive +�Op , for example, we have proved 
that the obligation of p holds defeasibly; +�O¬p means the 
prohibition of p ( ¬p is obligatory) holds defeasibly, while 
−�O¬p means that p is permissible (it is not the case that p 
is forbidden).

D ⊢ +Δ∗p holds if p is a fact or derivable from only facts 
and strict rules. Conversely, D ⊢ −Δ∗p holds if p is neither 
a fact nor derivable from only strict rules and facts. We will, 
however, mainly deal with defeasible conclusions.

Let R[p] denote the set of rules with p in the consequent, 
and for ∗∈ {C,O} , R∗

sd
 the set of strict and defeasible rules.

Definition 5 [Defeasible Provability [32]] Given a defeasible 
theory D, if D ⊢ +𝜕∗p , either D ⊢ +Δ∗p or: 
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1. ∃r ∈ R∗
sd
[p] s.t. for all ai ∈ A(r) (or O(ai) ∈ A(r) ), 

D ⊢ +𝜕Cai (or D ⊢ +𝜕Oai ), and
2. D ⊢ −Δ∗¬p , and
3. ∀r� ∈ R∗[¬p] , either: 

1. ∃ai ∈ A(r�) (or O(ai) ∈ A(r�) )  s . t .  D ⊢ −𝜕Cai 
( D ⊢ −𝜕Oai ), or

2. ∃r�� ∈ R∗
sd
[p] s.t. ∀ai ∈ A(r��) (or O(ai) ∈ A(r��) ), 

D ⊢ +𝜕Cai (or D ⊢ +𝜕Oai ) and r′′ > r′.

Conversely, D ⊢ −𝜕∗p if ¬p is defeasibly provable, or an 
exhaustive search for a constructive proof (where the proofs 
are constructed as presented in Definition 5) for the literal 
fails.

Whenever we have a defeasible theory (a set of facts plus 
a formalized normative system) we can use these conditions 
to derive conclusions, e.g., obligations +�Op or prohibitions 
+�O¬p.

SPINdle. DDL is one of the few deontic logics with a 
working theorem prover. In particular, SPINdle [30] is an 
open source theorem prover for defeasible logic; it also 
accommodates modal defeasible logics, including defeasi-
ble deontic logic. This theorem prover generates conclusions 
from the defeasible theory, with each literal occurring in 
the theory being assigned a status as definitely provable or 
refutable, and defeasibly provable or refutable.

2.2.3  Compliance and Violation

We will now discuss the specific paradigm in which 
we will be working, where we have a normative system 
N = ⟨C,R,�⟩ and a state-action pair s = (s, a) , for which we 
can construct a defeasible theory Th(s,N) = ⟨Fs,R

O,RC,>⟩ . 
In this defeasible theory, RO contains the regulative norms 
in R , RC contains the constitutive norms in C , and > is a 
conflict resolution mechanism � . Fs contains L(s) (the labels 
associated with state s), ¬p for all p ∈ AP ⧵ L(s) , and the 
action proposition a ∶= “action a is performed”.

Ideally, s complies with N  ; that is, s does not incur any 
violations of N  . Violations, informally, occur when some-
thing ought to be the case but is not the case [21, 49] and 
thus, in a simple conception of violation, the violation condi-
tion of an obligation O(p) is the case where O(p) ∧ ¬p is true 
[25, 34], and we can call ¬p a violation1.

In our case, given a state-action pair s = (s, a) , a vio-
lation of N  is going to be the negation of a literal lit 
in Th(s,N) . We call the set of violations of N  for s : 
viol(s,N) = {lit | lit is a violation of N} . In DDL, we can 
formally define this set as follows:

Definition 6 (Violation of Normative Systems) Given a state-
action pair s = (s, a) , a violation of N  is a literal ¬lit such 
that Th(s,N) ⊢ +𝜕Olit, −𝜕Clit and the set of violations of 
N  for s is:

What we are saying with this definition is that a violation 
of N  occurs when we can prove that lit is obligatory, but we 
cannot prove that lit is the case; it is specifically the pres-
ence of an obligation in a given context, coexisting with the 
absence of a (brute or institutional) fact reflecting the con-
tent of this obligation. Thus, if you ought not spend money, 
spending money is a violation. If you ought to buy milk, not 
buying milk is a violation. Based on the characterization 
of violation presented in, for example, [25, 34], a formal 
definition of a violation condition in DDL must include the 
derivation of an obligation of lit (that is, +�Olit ) and a failure 
to derive lit (that is, −�Clit ), hence the definition we have 
given above.

Note that Th(s,N) ⊢ +𝜕C¬lit implies Th(s,N) ⊢ −𝜕Clit 
[18], so the above definition will also include cases where 
Th(s,N) ⊢ +𝜕Olit, +�C¬lit ; that is, it includes the case where 
lit is obligatory and we can explicitly prove ¬lit.

When we reason about norms, we often need to also rea-
son about violations. We may come across cases of nor-
mative deadlock, where we have a state s such that for all 
possible actions a, |viol(s = (s, a),N)| > 0 . In these cases, 
we might want to manage what ought to happen when the 
inevitable violation occurs. For example, consider the case 
where we have an obligation not to kill, O(¬kill|⊤) , but also 
an obligation to, if one kills, kill gently O(gentle|kill) [10]. 
This second obligation is called a contrary-to-duty (CTD) 
obligation, an obligation (e.g. O(b|¬a) ) triggered when 
another obligation (e.g. O(a|⊤) ) is violated.

Based on the given notion of violation, we can define a 
binary compliance function over state-action pairs s:

(2)viol(s,N) = {¬lit | Th(s,N) ⊢ +𝜕Olit, −𝜕Clit}

(3)complN(s) =

{
1 viol(s,N) = �

0 otherwise

1 Note that this is a limited notion of violation that is by no means 
ubiquitous in the deontic logic literature. For example, Anderson 
introduced a reduction from deontic logic to alethic modal logic in 

[3], where a violation is a propositional constant and prohibitions 
are defined as propositions that necessarily lead to a violation. This 
approach is reflected in, e.g., [7], and allows for the explicit represen-
tation and reasoning about violations. However, we will below pro-
vide a concrete, formal characterization of violation for DDL which 
allows us to detect a violation not only when we can prove that the 
violation is true, but also when we cannot prove that the fulfillment 
isn’t true. This relies on the usage of conclusions of the form −�Cp , 
which cannot be used to trigger a DDL rule whose consequent is, for 
example, a propositional constant representing the violation.

Footnote 1 (continued)
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 Finally, we can expand our field of view from the com-
pliance of single state-action pairs to traces generated by 
specific policies and define an Expected Non-Compliance 
Count (ENCC):

s0, s1, ... where st = (st,�(st)) is a trace of state-action pairs 
generated by following policy � , and � ∈ [0, 1) is a discount 
factor; this function gives an expected count of violations 
occurring over the course of following � , prioritizing viola-
tions occurring in the immediate.

2.3  Case Study: The Pacifist Merchant

Throughout this paper, we will be utilizing a case study to 
illustrate the effectiveness of various techniques. We have 
chosen a simple game which allows us to witness the con-
trast between optimal unconstrained behaviour and optimal 
normative behaviour via routes taken through a map. We 
will employ the “Travelling Merchant” environment—first 
used in [36]—which entails the RL agent, a merchant, tra-
versing a map and collecting resources to sell at a market on 
the other side of the map. These resources are wood (which 
can be extracted from trees) and ore (which can be extracted 
from rocks); in order to collect a resource, the agent must 
take the actions extract and pickup in a cell where a resource 
is situated. The agent receives a reward each time it extracts 
and picks up an object, as well as when it unloads its 
resources at the market. There are “dangerous” areas on the 
map where the agent will be attacked by bandits, and then 
the agent has three choices: it can fight (taking action fight 
and ending the attack), negotiate (giving up its inventory by 
using unload, ending the attack), or try to escape (which will 
often result in failure, and the attack continuing). The agent 
is rewarded based on how many resources it extracts and 
picks up, and how many items it arrives at the market with. 
The agent’s movements are restricted in such a way that 
mandates it continually move towards its goal (each move 
must bring it closer to the market), and states are labelled 
with what kind of cell the agent is in (e.g., at_danger ), its 
immediate surroundings (e.g., north_tree ), whether or not 
it is being attacked (attacked), and what it has in its inven-
tory (e.g. has_ore ). A state can be given the labels attacked, 
{at, north, south, east,west}_{tree,wood, rock, ore, danger,

home,market} , and has_{wood, ore} . In Fig. 1, we can see 
the optimal path for the agent.

We will be imposing a specific normative system 
on this RL agent, designated in [36] as “pacifist”. In 
this normative system, the agent (the “pacifist mer-
chant”) is forbidden from entering the dangerous areas 
( O(at_danger|⊤) , formalized as obl ∶⇒O ¬at_danger ), 

(4)ENCC(�) = �

[
∞∑

t=0

� t(1 − complN(st))|s0 ∈ S

]

but when it is in danger and being attacked, it is obli-
gated to negotiate ( O(negotiate|at_danger, attacked) 
o r  ctd ∶ at_danger, attacked ⇒O negotiate  ) ,  w h e r e 
unloading one’s inventory counts as negotiating 
(C(unload,   negotiate |attacked) or ctsas ∶ attacked, 
unload →C negotiate).

In the environment presented in Fig.  1, the correct 
behaviour for the pacifist merchant is to unload when it is 
forced to enter the first dangerous area, and avoid the sec-
ond dangerous area altogether (because it is not necessary 
to pass through it, even though it is more advantageous 
to do so).

3  The Normative Supervisor

The problem of constraining RL agents is not a new one—
there is ample literature on constraining RL agents with Lin-
ear Temporal Logic (LTL) specifications representing, e.g., 
safety constraints (see for example [2, 11, 22, 23]). How-
ever, it has been shown that these methods are on their own 
insufficient for implementing normative behaviour [36]. An 
alternative to these methods was presented in [35]; the nor-
mative supervisor presented there is an external module that 
can be attached to an RL agent in order to curb its behaviour 
according to a given normative system N  , which we will 
describe below, adding additional terminology and criti-
cal analysis not explored in [35, 37, 38], which were more 
focused on system architecture and experimental results.

3.1  Architecture

The normative supervisor is composed primarily of (front-
end and back-end) translator modules and a reasoner module 
(see Fig. 2), which we will describe in more detail below.

Fig. 1  Optimal behaviour for the merchant. Dangerous areas are 
red, and resources are green. (E) indicates that the agent extracted a 
resource, (P) that the agent picked up an extracted resource, and (F) 
that the agent fought bandits
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3.1.1  Translators

The translators work together to produce for each state s 
Th(s,N) = ⟨Fs,R

O,RC,>⟩ ; the front end translator translates 
simple statements about the environment into literals to be 
absorbed into the set of facts Fs (which, unlike Fs in Th(s,N) , 
does not specify which action is taken). Generally, we can 
assume that Fs = L(s) , the labels applied to the state s.

Meanwhile, the back-end translator translates regulative 
and constitutive norms into DDL rules. Generally, the norm 
O(p|q) is translated as: r1 ∶ q ⇒O p ∈ RO . Similarly, F(p|q) 
will be formalized as r2 ∶ q ⇒O ¬p ∈ RO . As for (strong) 
permissions, we utilize defeaters and can simply translate the 
conditional permission P(p|q) as r3 ∶ q ⇝O p ∈ RO

s
 . For the 

case of normative conflicts, we can simply add an ordered 
pair to the superiority relation > of Th(s,N) . For example, 
if we have r4 ∶ q ⇒O p and r5 ∶ q ⇒O ¬p , where r4 takes 
priority over r5 , we would add (r4, r5) ∈>.

Constitutive norms C(x, y|c) referring to state proper-
ties are translated simply as x, c →C y , but due to the way 
the reasoner was configured in [35, 38], constitutive norms 
referring to actions must be handled differently. We will dis-
cuss this below.

Finally, we draw attention to non-concurrence rules 
– these were not discussed in [35, 38] but are included in 
the implementation; these are basically rules of the form 
C(a,¬a�|⊤) constructed to enforce the fact that the RL agent 
can only take one action at a time (that is, if a is obligatory, 
all other actions a′ are forbidden). These are automatically 
included in Th(s,N).

3.1.2  Reasoner

The reasoner is at the core of the normative supervisor, 
and uses a couple of algorithms to compute sets of what 
we will call normatively optimal actions for the agent. The 
first, called ParseCompliant (Algorithm 1 in [38]) (1) returns 
a single action a if Th(s,N) ⊢ +𝜕Oa , or (2) removes each 
action a from A(s) such that Th(s,N) ⊢ +𝜕O¬a to form a 

set of compliant actions AC(s).2 If AC(s) is empty, a second 
algorithm is run, this one called LesserEvil (Algorithm 2 
in [38]) which (1) counts the number of applicable rules 
in Th(s,N) which directly conflict with a for each a ∈ A(s) 
and (2) returns the actions a which result in the fewest such 
conflicts as a set ANC(s) . With the output of these algorithms, 
we can offer a more explicit characterization of normatively 
optimal actions.

Definition 7 (Normatively Optimal Actions) AN(s) is the set 
of normatively optimal actions in state s, defined as:

where AC(s) is the set of actions that comply with N  in state 
s, and ANC(s) is the set of actions minimally non-compliant 
with N .

A Simple Notion of Violation. The notion of compliance 
implicitly employed here is encapsulated by taking an action 
which is not forbidden. By reconstructing what actions are 
excluded based on ParseCompliant, we can get the following 
formal characterization of AC(s):

Violations, then, occur when we take an action (represented 
as an action proposition) which is explicitly forbidden by an 
applicable regulative rule in Th(s,N).

This definition of AC(s) requires that we prove that a is 
forbidden before we can exclude it from the set of compli-
ant actions; in order to do this, we need to be able to propa-
gate prohibitions over facts related by constitutive norms. 
Because of this, we have to translate constitutive norms over 
actions a bit strangely. For example, if we have a norm say-
ing that breaking traffic laws is forbidden, and another that 
says that jaywalking counts as breaking traffic laws, we need 

(5)AN(s) =

{
AC(s) AC(s) ≠ �

ANC(s) otherwise

AC(s) = {a ∈ A(s) | Th(s,N) ⊬ +𝜕O¬a}

Fig. 2  The basic architecture of 
the normative supervisor. Here, 
the norm base is a knowledge 
base containing all norms 
associated with the normative 
system N

2 This process can be reduced to the second step, simply removing 
actions a such that Th(s,N) ⊢ +𝜕O¬a if we take into account the non-
concurrence rules.
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to be able to explicitly derive that jaywalking is forbidden. In 
[35, 37, 38] this is done by encoding each constitutive norm 
over actions in the case study used as a prohibition trig-
gered by another prohibition. That is, instead of translating 
the constitutive norm to jaywalking →C break_law – from 
which we cannot derive +�O¬jaywalking—we would have, 
along with the regulative norm ⇒O ¬break_law , another rule 
O(¬break_law) ⇒O ¬jaywalk.

Unfortunately, this conception of violation and the 
accommodations made for it severely limit the expressive 
range of the normative systems that can be implemented 
with the normative supervisor, thereby limiting the effective-
ness of the normative supervisor for certain applications. We 
will discuss these issues in more detail in Sect. 3.4.1.

3.2  Online Compliance Checking

In order to elicit compliant behaviour from an RL agent, 
the algorithms ParseCompliant and LesserEvil can be used 
together each time an (already-trained) RL agent enters 
a new state, and the agent’s action function A(s) can be 
replaced with AN(s) . Thus, when the agent chooses the 
action with the highest Q-value, it is in fact choosing from 
the list of normatively optimal actions. This method for 
correcting the actions of an RL agent is called online com-
pliance checking (OCC) in [37] to contrast the technique 
presented there, called norm-guided RL (NGRL), which we 
will discuss momentarily.

OCC has proved effective in curbing RL agent behav-
iour to conform to a wide variety normative systems. For 
instance, it was demonstrated in [36] that OCC could easily 
elicit the correct behaviour for the pacifist merchant.

However, as a technique, OCC is not perfect, and in the 
next subsection we will motivate the use of NGRL over (or 
in addition to) OCC.

3.2.1  Limitations of Online Compliance Checking

OCC with the normative supervisor of [35, 38] performs 
about as well as the agent in [39] when administered the 
same experiments, where the agent is tasked with play-
ing the game Pac-Man while under the “moral” constraint 
forbidding the player-character from eating ghosts. Never-
theless, in both [39] and [35, 38] violations still occurred, 
however infrequently. In [38] it is shown that all of these 
violations in spite of the normative supervisor occur in states 
of normative deadlock. It is also notable that in the smaller, 
simpler environment in [37], the agent’s performance at 
the simplified Pac-Man game was badly impacted by the 
use of the OCC; the percentage of games won and average 
scores plummeted. These two problems are linked; because 
the normative supervisor is completely decoupled from 
the agent when used for OCC, the agent does not take the 

constraints derivable from N  into account while learning 
optimal behaviour.

To clarify, consider this example presented in [37]: 
a self-driving car has planned a route, and the normative 
supervisor is attached to ensure the car does not break any 
local regulations. The self-driving car eventually comes to 
a private road, which it is prohibited from passing through; 
the normative supervisor forces the car to turn around and 
reroute. If the applicable norms had been incorporated into 
the agent’s plan from the start, it could have reached its 
destination much more efficiently. Here, we can extend the 
example: consider the case where the road leading to the 
private road is one-way; then, upon coming to the private 
road, the supervisor must decide whether to proceed or ille-
gally reverse, violating a regulation either way. Thus, the 
decoupling of the normative supervisor and the policy has 
the potential to both damage performance and cause norma-
tive deadlock unnecessarily.

It was due to these issues that norm-guided reinforcement 
learning (NGRL) was introduced in [37].

3.3  Norm‑Guided Reinforcement Learning

NGRL is an approach to implementing normatively com-
pliant behaviour which largely overcomes the difficulties 
discussed above in our critique of OCC.

The basic approach is this: given an agent with an objec-
tive x (and an associated reward function Rx(s, a) ), we define 
a second reward function that assigns punishments when the 
agent violates a normative system N  . We call this second 
reward function a non-compliance function:

Definition 8 (Non-Compliance Function [37]) A non-com-
pliance function for the normative system N  is a function 
of the form:

where p ∈ ℝ
−.

p from Definition 8 is called the penalty, assigned each 
time the action taken by the agent is not in AC(s) (which for 
now means that the action taken is explicitly forbidden). 
This automated derivation of conclusions from Th(s,N) 
solves the first question of the reward engineering approach 
to teaching normative behaviour, allowing us to dynamically 
determine the compliance of an action in a given state and, 
in the case of non-compliance, assign a punishment.

Now, if we have an agent meant to learn objective x with 
the reward function Rx , it will do so over M = ⟨S,A,Rx,P⟩ . 
Then, if we have a normative system N  we want to subject 

(6)RN,p(s, a) =

{
p a ∉ AC(s)

0 otherwise
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the agent to while it pursues objective x, we can build an 
MOMDP we will call a compliance MDP:

Definition 9 (Compliance MDP [37]) Let M = ⟨S,A,Rx,P⟩ 
be a single-objective MDP. Then we can define an associated 
compliance MDP by introducing a non-compliance function 
RN,p(s, a) to form the MOMDP:

NGRL entails finding a policy that is, first and foremost, 
maximally compliant, but also optimal with respect to the 
primary objective. Here, the term maximal compliance is a 
term we substitute for the terminology ethical policy from 
[37, 44]. We adapt their definitions below:

Definition 10 (Maximally Compliant Policy [44]) Let Π be 
the set of all policies over the compliance MDP MN,p . A 
policy �∗ ∈ Π is maximally compliant iff it is optimal with 
respect to the value function V�

N,p
 corresponding to RN,p . 

That is, �∗ is maximally compliant for MN,p iff for all s:

Like in [44], we define within this set of maximally com-
pliant policies those that are optimal with respect to the 
reward function Rx.

Definition 11 (Optimal Maximally Compliant Policy [44]) 
Let ΠN  be the set of all maximally compliant policies for 
MN,p . Then �∗ ∈ ΠN  is optimal maximally compliant for 
MN,p iff for all s:

There are several ways we can find an optimal maximally 
compliant policy; in Sect. 2.1 we introduced TLQL, which 
is what we will adapt for use with compliance MDPs here.

Thus, for QN,p , we must choose a threshold CN,p . We 
choose 0; [37] proved that if a maximally compliant policy 
exists, setting CN,p = 0 ensures we learn an optimal maxi-
mally-compliant policy.3 Meanwhile, we want to maximize 
the objective x, so we choose Cx = +∞ . With these param-
eters, we can compute an optimal maximally compliant 
policy.

(7)MN,p = ⟨S,A, (Rx,RN,p)
T ,P⟩

(8)V�∗

N,p
(s) = max

�∈Π
V�

N,p
(s)

(9)V�∗

x
(s) = max

�∈ΠN

V�

x
(s)

3.3.1  The Magnitude of p

In the preceding exposition, we have referenced RN,p(s, a) 
without specifying a penalty p. [37] proves the following 
useful theorem:

Theorem 1 If a policy � is maximally compliant for the 
compliance MDP MN,p for some constant p ∈ ℝ

− , it is 
maximally compliant for the compliance MDP MN,q for 
any q ∈ ℝ

−.

Thus, the value of p is irrelevant, so for the remainder of 
this discussion we will only deal with the non-compliance 
function RN ∶= RN,−1 . This answers the second main ques-
tion we identified for the reward engineering approach.

3.4  Shortcomings of NRGL

In [37], NGRL is shown to remedy the issues we just 
reviewed in Sect. 3.2.1; their experiments show that NGRL, 
when used with OCC (that is, NGRL is used to train the 
agent and OCC is used at operation time), the number of 
scenarios in which violations were inevitable decreased, and 
the performance of the agent with respect to its primary 
objective improved substantially. However, it is notable that 
NGRL as an individual technique fails to capture certain 
nuances of normative reasoning, and the expensive process 
of running OCC at operation time to compensate may not 
be feasible in all cases. We will discuss the shortcomings of 
NGRL on its own in more detail below. [37] identifies a cou-
ple of potential weaknesses of NGRL, but we will focus on 
one in particular—its inability to handle normative deadlock 
in general, and contrary-to-duty obligations in particular.

Consider this simple case we adapt from [37] where we 
have a normative system N = ⟨C,R,�⟩ containing a con-
trary-to-duty obligation, where R = {O(b|¬a),O(a|⊤)} , a 
and b being action propositions. In DDL these norms can be 
translated as: r1 ∶ ⇒O a and r2 ∶ ¬a ⇒O b . Now, suppose 
that the agent has two actions available to it in a given state 
s: they are represented by the action propositions b and c. 
Now, if the agent could take the action represented by a, it 
would not receive a penalty from the non-compliance func-
tion for violating r1 ; however, that is not possible. If the 
agent takes the action represented by b, it will be punished, 
because r1 along with the non-concurrence rules in Th(s,N) 
will allow us to derive +�O¬b , signaling a violation of the 
above normative system which will trigger a penalty. If the 
agent takes the action represented by c, the result will be 
identical. However, choosing b obeys the CTD obligation 
in the above normative system, and so ideally, we would 
incentivize the agent to choose this action over c; if we were 
using OCC, the LesserEvil algorithm would take care of 

3 Note that because 0 is the maximum value of QN,p , CQN,p = QN,p.
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this case, but the non-compliance function does not allow 
for this nuance.

To verify and illustrate this issue, we trained the Trav-
elling Merchant using NGRL with the pacifist normative 
system (recall, this is the normative system containing the 
primary obligation O(at_danger|⊤) and the contrary-to-duty 
obligation O(negotiate|at_danger, attacked) ). We see the 
learned behaviour in Fig. 3.

We can see that the agent takes a path identical to the 
correct path (see Fig. 4), except for the point at which it 
enters the dangerous area. The NGRL agent fights instead 
of negotiating; as we predicted above, the non-compliant 
action fight is punished just as much as the action unload 
(both actions in that state have identical QN -values), and 
as a result, the contrary-to-duty obligation is not observed 
(since fight is the more advantageous action for the agent).

Based on the example above, we might find it appropri-
ate to assign graded penalties to violations of a normative 
system, depending on how much of it is violated; however, 
this re-introduces the problem of scaling the magnitude of 
rewards, and we are once again left to attempt to find weights 
that achieve the behaviour we desire. This is probably a rea-
sonable measure for simple cases, but as soon as we consider 
more complex normative systems or environments, it can be 
difficult to predict how rewards with different magnitudes 
could affect the behaviour of the agent.

An additional shortcoming of NGRL is that it lacks 
transparency, when compared to OCC. In [35, 38] an event 

recorder is demonstrated which can be configured to run 
alongside OCC without additional computational cost. 
Though we can in theory check the compliance of any given 
state-action pair with the normative supervisor (and this is 
indeed done during training), when the agent is actually 
operating in the environment, it does so by selecting actions 
based on its Q-function, which retains none of the infor-
mation from the original normative system (besides how 
likely we are to incur violations from a given point). If we 
do encounter an issue with an (ostensibly non-compliant) 
action a committed in a state s—which we would first have 
to somehow detect—one approach we can take is to evalu-
ate Th(s,N) for s = (s, a) with the normative supervisor. If 
no violations occur, we can assume that the issue is either 
with what means we used to detect the violation, or with the 
normative system itself; either the system or the automated 
implementation is too permissive. Then, we must fix our 
implementation and retrain the agent from scratch. However, 
if we encounter violations, we are left to wonder why the 
agent learned to select a non-compliant action.

Finally, running the normative supervisor at each step 
during training can incur substantial computational cost. 
Though a single run is inexpensive (in [37] it is noted that 
the evaluation of the non-compliance function can be com-
pleted in linear time with respect to the size of Th(s,N) ), 
in applications that require thousands or even millions of 
episodes of training, this can be prohibitively expensive. We 
will discuss a possible remedy for this in Sect. 5.

3.4.1  An Incomplete Notion of Violation

There is an additional problem that proliferates both OCC 
and NGRL which was not discussed at all in [35, 37, 38]. 
Since the condition for excluding actions a from AC(s) is 
the derivation of Th(s,N) ⊢ +𝜕O¬a , the rules in our nor-
mative system must either only reference actions a ∈ Act 
(recall that Act is the agent’s action set), or allow us to derive 
new (concrete) obligations from given abstract obligations. 
The former disallows constitutive norms over actions which 
define more abstract actions (e.g., walk →C move ); for the 
latter, we must be able to derive +�O¬a for every action a 
that results in a violation (e.g., we need to be able to derive 
+�O¬walk when move is forbidden).

In [35, 37, 38], “strategy rules” essentially express consti-
tutive norms over actions as prohibitions triggered by other 
prohibitions, so that from the prohibition of some institu-
tional fact we can derive the prohibition of the related brute 
facts (that is, the actions a of A(s)). So if we have F(b|⊤) and 
C(a, b|⊤) for actions a and b (where a ∈ A(s) ), the regula-
tive norm will be represented as ⇒O ¬b and the constitutive 
norm will be translated to O(¬b) ⇒O ¬a ; if a counts as b, 

Fig. 3  The pacifist merchant’s path after training with NGRL but 
without OCC. Note that in running this experiment we employed the 
alternative definition of A

C
(s) we will introduce in Sect. 4.1, since the 

above definition of A
C
(s) cannot easily accommodate this normative 

system (see Sect. 3.4.1)

Fig. 4  The pacifist merchant’s path after training with NGRL aug-
mented with violation counting. Note that (U) indicates that the agent 
unloaded its inventory
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the prohibition of b requires the prohibition of a. But what if 
our regulative norm is an obligation instead of a prohibition?

Consider the pacifist merchant; in particular, we will 
look at a slightly modified version where the rule obl 
(the primary obligation to stay out of the dangerous area) 
is removed, and we have an additional constitutive norm 
C(sing, negotiate|⊤) . Recall that we also have a norm that 
says O(negotiate| at_danger, attacked) , and another that says 
C(unload, negotiate|attacked); thus, when the agent is in a 
dangerous area and is attacked, it is required to negotiate. 
It can do so by unloading its inventory. However, because 
of the additional constitutive norm C(sing, negotiate|⊤) , 
unloading is not the only action it can take to fulfill the obli-
gation to negotiate anymore. Rather, with the obligation of 
negotiate the agent is being compelled to unload or sing.

We cannot translate these constitutive norms over 
actions in a way similar to “strategy rules”, though. 
c1 ∶ O(negotiate), attacked ⇒O unload is not a good transla-
tion of C(unload, negotiate|attacked), because the obligation 
of negotiate does not simply trigger an obligation of unload. 
The problem becomes clear if we translate the other con-
stitutive norm the same way ( c2 ∶ O(negotiate) ⇒O sing ) 
and consider the non-concurrence rules (recall, these are 
the rules asserting that if one action is obligatory, no other 
actions can be taken). If c1 is triggered, unload is obligatory 
and by non-concurrence sing is forbidden. At the same time, 
c2 can be triggered and so sing is obligatory and by non-
concurrence unload is forbidden. We don’t have the means to 
resolve this conflict—indeed, we shouldn’t have to, because 
there shouldn’t be a conflict at all here.

We cannot translate this normative system in such a way 
that we can derive +�Ounload and +�Osing . We might con-
sider removing the non-concurrence rules, but those are the 
only means we have for deriving e.g. +�O¬fight (which we 
would need if we are to exclude fight from AC(s) ) from the 
above norms. There may be a generalizable way to translate 
constitutive norms over actions in cases like this, but the fact 
that this implicitly given concept of violation forces us to 
look for non-intuitive and indirect translations for the norms 
in our normative system suggests that we should take a step 
back, and reframe the problem with a more conceptually-
sound foundation. We do this in the next section.

4  Solution: Violations and Counting Them

In this section, we will introduce solutions to the main issues 
we identified with NGRL in the last section; that is, we will 
utilize the explicit, formal characterization of violation given 
in Sect. 2.2.3 and with it employ a new definition of AC(s) 
(as well as a formal definition for ANC(s) ). We will then 
reframe the non-compliance function RN  to accommodate 
our new definition of AC(s) , and introduce a technique we 

will call violation counting, which we will use to augment 
NGRL in such a way that accommodates dealing with nor-
mative deadlock and contrary-to-duty obligations.

4.1  Redefining Compliance

Before introducing any new techniques, it is important that 
we address the issues put forward in 3.4.1, which are caused 
by a fundamental oversight in the normative supervisor’s 
architecture—the lack of a comprehensive notion of viola-
tion to be utilized in the construction of AN(s) . To remedy 
this we return to our formal definitions for violation-related 
concepts from Sect. 2.2.3 and redefine AC(s) and ANC(s).

If we conceive of AC(s) as the set of actions for which 
there is an absence of violations (as defined in Definition 6), 
the following definition arises:

In the same vein, we can also provide a formal definition 
of ANC(s):

Thus, we can compute both AC(s) and ANC(s) from viol(s,N) . 
Given Th(s,N) , the computation of |viol(s,N)| is a simple 
matter, demonstrated in Algorithm 2. 
Algorithm 2  ViolationCount

input : Th(s,N )
output: |viol(s,N )|
reasoner ← SPINdle.Reasoner;
|viol(s,N )| ← 0;
conclusions ←
reasoner.generateConclusions(Th(s,N ));

for lit ∈ literals(Th(s,N )) do
if conclusions.has(+∂Olit) ∧
conclusions.has(−∂C lit) then

|viol(s,N )|++;
end

end
return |viol(s,N )|

Our new characterization of violation allows us to 
translate all constitutive norms C(x,  y|c) to x, c →C y
4 (regardless of whether they reference actions or not) 
and solves the problems presented in Sect.  3.4.1. To 
demonstrate, if the merchant is being attacked while in 
danger, we can prove +�Onegotiate from the rule ctd; 
then, if we have the two constitutive norms translated to 
unload, attacked →C negotiate and sing →C negotiate , if 

(10)
AC(s) = {a ∈ A(s) | viol(s,N) = �}

= {a ∈ A(s) | Th(s,N) ⊬ +𝜕Olit,−𝜕Clit}

(11)ANC(s) = argmin
a∈A(s)

|viol(s,N)|

4 Similarly, we can simply formalize non-concurrence rules a 
a →C ¬a� for a� ∈ Act ⧵ {a}.
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actions unload or sing are taken, we will be able to prove 
+ΔCnegotiate which implies that +�Cnegotiate , so neither 
action will be excluded from AC(s) . If we re-introduce the 
rule obl ∶⇒O ¬at_danger , at_danger violates obl no mat-
ter what action is taken; thus, AC(s) will be empty. How-
ever, because sing and unload do not result in a violation 
of ctd as well as obl, ANC(s) = {sing, unload}.

This conception of maximal compliance is much more 
flexible than the characterization implicitly adopted by 
[35, 37, 38]. Fortunately, for NGRL we can employ our 
more comprehensive notion of violation without any addi-
tional computational cost (this will be discussed in more 
detail at the end of Sect. 4.2); moreover, we will find that 
we can leverage the output of Algorithm 2 to augment 
NGRL with violation counting, granting the technique the 
ability to cope with normative deadlock.

4.2  NGRL with Violation Counting

Now that we have a comprehensive definition of what it 
means for an action to be compliant, we will reframe the 
non-compliance function (Definition 8). Recall the defini-
tion of a non-compliance function:

where p ∈ ℝ
− is the penalty. Now that we are defining mem-

bership in AC(s) with the notion of violation presented in 
Definition 6, the non-compliance function is equivalent to:

Once again, we will abbreviate to RN  in practise.
Essentially, this definition of RN,p still entails that p is 

assigned to state-action pairs s = (s, a) such that a ∉ AC(s) . 
However, if we consider our new definition of AC(s) , these 
are precisely those actions for which there are no viola-
tions of N  according to Definition 6.

With this revised non-compliance function, we can 
establish a link between ENCC—the expected non-compli-
ance count for a policy � described in Eq. 4—and maximal 
compliance (Definition 10). In fact, maximally compliant 
policies minimize ENCC:

Lemma 1 Let Π be the set of all policies over the compliance 
MDP MN  . Then if �∗ is maximally-compliant:

RN,p(s, a) =

{
p a ∉ AC(s)

0 otherwise

(12)
RN,p(s, a) =

{
p viol(s,N) ≠ �

0 otherwise

= p ⋅ (1 − complN(s, a))

ENCC(�∗) = min
�∈Π

ENCC(�)

Proof Suppose �∗ is maximally compliant, then we know 
V�∗

N
(s) = max�∈Π V�

N
(s) . At each step st = (st,�(st)) in a trace 

generated by a policy � , the reward awarded to the agent 
by RN  is equal to −(1 − compl(st,�(st))) (see Eq. 12); then 
according to Eq. 1 we have the equivalence:

Then by the linearity of conditional expectation this equa-
tion becomes:

Or:

Since this equation holds for all s ∈ S , we can say that

So we get the equivalence:

  ◻

Now, recall that in Sect. 3.4, when we reviewed the 
shortcomings of NGRL, we demonstrated that it cannot 
cope with contrary-to-duty obligations or reasoning about 
normative deadlock. To remedy this, we now introduce 
violation counting functions.

�

[
∞∑

t=0

−� t(1 − complN(st+i,�
∗(st+i)))|si = s

]

= max
�∈Π

�

[
∞∑

t=0

−� t(1 − complN(st+i,�(st+i)))|si = s

]

− �

[
∞∑

t=0

� t(1 − complN(st+i,�
∗(st+i)))|si = s

]

= max
�∈Π

−�

[
∞∑

t=0

� t(1 − compl(st+i,�(st+i)))|si = s

]

= −min
�∈Π

�

[
∞∑

t=0

� t(1 − complN(st+i,�(st+i)))|si = s

]

�

[
∞∑

t=0

� t(1 − complN(st+i,�
∗(st+i)))|si = s

]

= min
�∈Π

�

[
∞∑

t=0

� t(1 − complN(st+i,�(st+i)))|si = s

]

�

[
∞∑

t=0

� t(1 − complN(st+i,�
∗(st+i)))|si ∈ S

]

= min
�∈Π

�

[
∞∑

t=0

� t(1 − complN(st+i,�(st+i)))|si ∈ S

]

ENCC(�∗) = min
�∈Π

ENCC(�)
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Definition 12 (Violation Counting Function) A violation 
counting function for a normative system N  is a function 
of the form:

where s = (s, a).

In other words, a violation counting function is a function 
over state-action pairs to the natural numbers, which outputs 
the number of violations associated with state-action pair 
s = (s, a) with respect to normative system N  . In practise, 
we can update VCN  every time we update QN  with values 
from RN  ; both RN(s, a) and VCN(s, a) can be computed from 
the output of Algorithm 2.

It is notable that AN(s) (as defined from the AC(s) of 
Eq. 10 and the ANC(s) of Eq. 11) contains precisely those 
actions which minimize VCN  in the state s.

Proposition 1 For a normative system N  , we have:

Proof If the set AC(s) is non-empty, AN(s) = AC(s) and the 
a ∈ AN(s) are those a ∈ A(s) such that for s = (s, a) , 
|viol(s,N)| = 0 , according to Eq. 10 and Definition 6. Then 
argmin
a∈A(s)

VCN(s, a) are precisely those actions such that 

|viol(s,N)| = 0 , and AN(s) = argmin
a∈A(s)

VCN(s, a).

If AC(s) is empty, AN(s) = ANC(s) , which in turn is equal 
to:

by definition (see Definition 12). So according to Defini-
tion 7,

  ◻

The introduction of the violation counting function into 
NGRL allows us to in a way mimic the results of using OCC 
without being forced to use the normative supervisor at runt-
ime; since OCC allows the agent only to select actions from 
AN(s) , picking actions that minimize VCN  will have the same 
effect.

Now in order to elicit behaviour aligned with N  as much 
as possible, we will craft a new policy function based on 
TLQ(s) (see Algorithm 1). Given the normative Q-function 
QN  , the primary Q-function Qx , and the violation count-
ing function VCN  , we construct the following policy (Algo-
rithm 3) for our agent, which is essentially an augmentation 

(13)VCN(s, a) = |viol(s,N)|

(14)AN(s) = argmin
a∈A(s)

VCN(s, a)

argmin
a∈A(s)

|viol(s,N)| = argmin
a∈A(s)

VCN(s, a)

AN(s) = argmin
a∈A(s)

VCN(s, a)

of the thresholded lexicographic Q-learning policy [51] 
(Algorithm 1) approach used in [37] with VCN  . 

Algorithm 3  Policy(s)

input : s
output: a
begin

Anorm(s) ← argmaxa∈A(s) QN (s, a);
Aviol(s) ← argmina∈Anorm(s) V CN (s, a);
Aopt(s) ← argmaxa∈Aviol(s) Qx(s, a);
a ← random.choice(Aopt(s));
return a;

end

It is notable that we choose actions that prioritize maxi-
mizing QN  ; it is only after we have selected those actions 
which maximize the normative objective that we choose 
from among them actions that are normatively optimal 
according to Definition 7 and the redefinitions of AC(s) and 
ANC(s) outlined in Sect. 4.1. As a result, they might not be 
normatively optimal with respect to all actions in A(s). In 
order to explain this, we need to prove a couple of things.

Firstly, it is clear that this policy, which prioritizes maxi-
mizing QN  , is maximally compliant:

Lemma 2 The Policy defined by Algorithm 3 is maximally 
compliant.

Proof Policy(s) ∈ argmax
a∈A(s)

QN(s, a) and so

So by Definition 10, Policy is maximally compliant.   ◻

Since we have a maximally compliant policy, we can refer 
back to Lemma 1, and make a statement about the ENCC 
of the policy.

Proposition 2 The Policy from Algorithm  3 minimizes 
expected ENCC.

Proof Lemma 2 shows that Policy is maximally compliant, 
and Lemma 1 tells us that it has minimal ENCC.   ◻

Proposition 2 shows why Policy prioritizes maximizing 
QN  over choosing only actions from AN(s) . Though ideally 
we will always want to choose actions from AN(s) (which is 
argmin
a∈A(s)

VCN(s, a) according Proposition 1), policies that 

choose actions from argmax
a∈A(s)

 QN(s, a) minimize the expected 

count of violations (ENCC) that will occur over the whole 
trace generated by the policy. This has the effect of prioritiz-
ing the overall normative objective over immediate maximal 
compliance and can minimize violations in the long term. In 

VPolicy(s) = max
a∈A(s)

QN(s, a) = max
�∈Π

V�

N
(s)
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other words, if we take only actions from AN(s) we may end 
up choosing an action that is compliant in the immediate, 
but results in more violations later on. By using a policy that 
prioritizes minimizing the ENCC, we can choose actions 
which minimize violations in the long term, and by further 
minimizing VCN  , we can then exclude the actions which 
result in the most violations in normative deadlock scenar-
ios. We will see an example of these functionalities at work 
in Sect. 6.1.

Finally, we note that the adoption of our new definition of 
violation and the addition of the violation counting function 
to NGRL does not incur any extra computational cost. DDL 
conclusions can be computed in linear time with respect to 
the size of the theory [18], and its theorem prover SPINdle 
is run only once in Algorithm 2; since both RN(s, a) and 
VCN(s, a) can be computed directly from the output of Algo-
rithm 2, NGRL with violation counting allows us to deal 
with normative deadlock without requiring additional com-
putations from the theorem prover.

4.2.1  A Reporting Module

We noted in Sect. 3.4 that NGRL has another prominent 
shortcoming, aside from its inability to deal with normative 
deadlock; it is not a transparent means of developing norma-
tive behaviour (reflecting the criticisms in [5] of the notion 
of an “ethical utility function”). We noted briefly in Sect. 3.4 
that when using OCC, we can employ an event recorder 
functionality—creating “violation reports” whenever a vio-
lation occurs [38]—with no additional computational cost.5 
These violations reports consist of a formal representation 
of the environment and the normative system at the time of 
the violation, along with a list of possible actions and a list 
of minimally non-compliant actions.

For NGRL with violation counting, we cannot get 
this information at run time without using the normative 
supervisor in the operation phase. However, we can con-
figure a reporting module that generates one of these vio-
lation reports whenever an action a is chosen such that 
VCN(s, a) > 0 ; that is, when violations occur, we can reac-
tivate the normative supervisor and run it only in that state, 
cycling through all possible actions and getting a violation 
count for each of them; this could be accompanied by a for-
mal representation of Th(s,N) for each action a in state s. 
This is one way we could maintain some transparency in the 
framework while avoiding running the normative supervisor 
at each time step at operation time. This does not remedy 
all the problems mentioned in Sect. 3.4, but it does allow us 

the means to detect and record violations (and the conditions 
under which they occured).

5  Constructing a Normative Filter

A persistent issue affecting all techniques utilizing the nor-
mative supervisor remains—computational overhead. Run-
ning a theorem prover for every state transition is taxing, and 
the additional computational cost piles up for applications 
that require a large number of training episodes or have an 
extended operation time.

This degree of computational overhead is unnecessary—
some of these queries to the theorem prover are bound to 
be redundant, so one way to mitigate this steep computa-
tional overhead would be to make sure we never generate 
conclusions from Th(s�,N) when we already have generated 
conclusions from Th(s,N) , where Th(s,N) = Th(s�,N) . And 
perhaps the simplest way to do this is to compute the number 
of violations up front. Shielding—see [2, 23] for examples—
involves utilizing an abstraction of the environment and LTL 
safety specification to synthesize up front a shield, which 
restricts an RL agent’s actions in such a way that it never 
takes an action that may lead (up to a certain probability) 
to an unsafe state. Inspired by this technique (as well as the 
synthesis technique of [36]) we propose a method for con-
structing a normative filter up front, through which we can 
filter actions or rewards and thus perform OCC, NGRL, and 
NGRL with violation counting, without requiring that we 
continually run a theorem prover.

Since all we care about in the environment is what labels 
L(s) are assigned to a given state s, rng(L) ( ⊆ 2AP ) gives us 
something of a model of the environment (or at least, what 
of it is relevant to us). We can define equivalence classes for 
states [s] = {s�|s� ∈ S s.t. L(s�) = L(s)} ∈ [S] , then, and run 
Algorithm 2, ViolationCount, on Th(s,N) for each [s] ∈ [S] 
and a ∈ Act . We can then use the output to define a func-
tion filterN ∶ 2AP × Act → ℕ which maps subsets of AP and 
actions to the natural numbers.

Now, to avoid having to compute [S], we could in the-
ory just run ViolationCount on the theory Th(Γ ∪ {a},N) 
for each Γ ∈ 2AP (where Th(Γ ∪ {a},N) is the theory 
Th(Γ ∪ {a},N) = ⟨Γ ∪ {¬p�p ∈ AP⧵Γ} ∪ {a},RO,RC,>⟩ 
for regulative rules RO , constitutive rules RC , and supe-
riority relation >). However, 2AP may be prohibitively 
large, and it very well may be the case that there are many 
Γ ∈ 2AP that do not constitute the labels for any state. In 
addition, it is possible that some of the atoms in Γ are not 
at all referenced in RO ∪ RC of Th(Γ ∪ {a},N) , and there-
fore do not impact the conclusions that can be gleaned from 
Th(s,N) . It therefore makes sense to consider only subsets 
of APN = AP ∩ atoms(RO ∪ RC) , where atoms(R) is the set 
of all atoms occurring in the set of rules R. This still will in 

5 These violation reports are generated from the data processed in 
the LesserEvil algorithm, which in turn is generated from data from 
SPINdle’s inference logger.
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many cases constitute an overestimation of which labels we 
need to consider, and if this set is still prohibitively large, we 
could find a way to reduce it further by removing Γ such that 
Γ ≠ L(s) for all s. For the sake of simplicity, we will forego 
this further reduction and look only at 2APN  in our outline 
of Algorithm 4. 

Algorithm 4  ConstructFilter

input : APN , Act, RO, RC , >
output: filterN : 2AP ×Act → N
filterN ← ∅;
for Γ ∈ 2APN do

for a ∈ Act do
Th(Γ ∪ {a},N ) ← 〈Γ ∪ {¬p|p ∈
AP \ Γ} ∪ {a}, RO, RC , >〉;

viol ← V iolationCount(Th(Γ ∪ {a},N ));
filterN .add((Γ, a), viol);

end
end
return filterN

It is easy to see that for any s ∈ S , filterN(Γ, a) = VCN(s, a) 
if L(s) = Γ . That means, because of what we have proved in 
Proposition 1, we can use filterN  to compute AN(s) , and 
therefore we can use it to perform OCC without having to 
query the theorem prover. Likewise, complN  can be com-
puted from filterN  , so we can likewise perform NGRL (with 
or without violation counting) without having to query the 
theorem prover. Thus, by constructing the normative filter, 
we enable our agent to use all the techniques that employ the 
normative supervisor without the significant computational 
overhead they would normally incur.

Computing the filter is, of course, very computation-
ally expensive itself—but Algorithm 4 only needs to be 
run once, before training. We will discuss the comparative 
performance of employing NGRL with the filter and the 
supervisor in the next section.

6  Final Evaluation

In order to demonstrate the improvements born of adding 
violation counting to NGRL, along with training using the 
normative filter, we will now return to the pacifist norma-
tive system for the Travelling Merchant as presented in 2.3.

6.1  NGRL with Violation Counting

In Sect. 3.4, we saw how NGRL on its own fails to pro-
duce the correct behaviour from the agent. The agent avoids 
unnecessary violations, but when a violation does occur, 
it does not obey the contrary-to-duty obligation, choosing 
to fight (the more advantageous action) rather than unload.

When we run NGRL with violation counting, however, 
we get exactly the correct behaviour, shown in Fig. 4.

To clarify, though in the state s where at_danger 
is true QN(s, fight) = QN(s, unload) (as both actions 
result in a violation), it is going to be the case that 
VCN(s, fight) > VCN(s, unload) , so the action unload is 
taken.

As a final consideration, in order to demonstrate the 
advantages of minimizing ENCC, we will consider one more 
case, where we have changed the environment. Instead of 
having only two dangerous areas, we have four; in this envi-
ronment, when the agent is given the choice to enter the 
second dangerous area, it can either do so (and that is the last 
violation that will happen), or it can choose not to, and end 
up forced to pass through two additional dangerous areas. In 
this environment, choosing to violate the normative system 
unnecessarily results in fewer violations in the long term, so 
ideally, the agent would choose that path.

We can see in Fig. 5 that the agent we train with NGRL 
with violation counting does indeed follow this path, while 
observing the CTD obligation whenever a violation is 
incurred.

6.2  The Normative Filter

The above experiments can also be run using the normative 
filter we introduced in Sect. 5 (constructed with an imple-
mentation of Algorithm 4). The construction of the filter 
was completed in 484 ms—not an unsubstantial computation 
time, but again, it only needs to be run once, before training.

It turns out that the improvement in training time is dra-
matic, however. Below, we provide a table comparing train-
ing time using the supervisor with training using the filter.

Table 1 clearly demonstrates the drastic decrease in train-
ing time; on average, using the filter reduced training time by 
99.54%. Considering that even at only 500 training episodes, 
the difference in training time is 729.28 ms, the 484 ms it 
took to construct the filter is seems a very minor cost. This 
confirms that the use of the normative filter constitutes a 
significant improvement in training time, when compared 
to NGRL using the normative supervisor.

Fig. 5  The pacifist agent voluntarily violating a norm in order to 
avoid future violations
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7  Conclusion

In this paper, we have reviewed, analysed, and revised the 
normative supervisor presented in [35, 37, 38]. These papers 
mostly focus on experimental results, and address the archi-
tecture of the normative supervisor through the lens of case 
studies; to complement and improve the existing work, we 
have based our analysis and augmentations on a formal char-
acterization of normative system violation.

We began by introducing a formal definition of “nor-
matively optimal actions"—the subset of an agent’s avail-
able actions that the normative supervisor is designed to 
compute. Normatively optimal actions are actions which 
comply with a normative system, if such actions exist; we 
extracted a formal (but flawed) characterization of compliant 
actions from the algorithm from [38] used to compute them, 
from which we extrapolate an implicitly given definition of 
violation. After motivating the introduction of NGRL, we 
provided the basic definitions and results related to this tech-
nique, before expanding on the discussion of the technique’s 
limitations from [37]. Finally, we revisit the definition of 
violation we inferred and discuss how it fails to accommo-
date some normative systems.

Earlier, we had presented another definition of norma-
tive system violation, more comprehensive and conceptu-
ally faithful than the implicit definition we found; we thus 
adopt this presentation of compliant actions instead. We then 
provided an algorithm for computing the number of viola-
tions of a normative system for a given state-action pair, 
and returned to NGRL, adding an additional component, a 
violation counting function—which, together with the non-
compliance function fundamental to computing the policy 
in NGRL (that is, a non-compliance function that accommo-
dates our new definition of violation), can be computed from 
the algorithm we provided. This violation counting function 
can be leveraged to overcome one of the main shortcom-
ings of NGRL—its inability to cope with normative dead-
lock scenarios (in particular, contrary-to-duty obligations). 
We then specified a policy utilizing the violation counting 
function and the learned Q-functions corresponding to the 
agent’s normative and primary objectives. We proved that 

this policy minimizes the expected total number of viola-
tions (discounted) that occur in a trace generated by the 
policy, while also sorting out actions that are not norma-
tively optimal. As a final improvement—conscious of the 
significant computational overhead the above techniques 
incur—we introduced the idea of a normative filter, which 
allows us to compute ahead of time the means to perform 
OCC, NGRL, and NGRL with violation counting, without 
having to query the theorem prover at all following the run 
of the algorithm.

Finally, we have demonstrated the effectiveness of this 
approach with a simple case study, which shows violation 
counting resulting in the observance of a contrary-to-duty 
obligation (where NGRL alone could not), and furthermore 
showed that the agent could strategically violate its norma-
tive system in order to avoid additional violations later on. 
We also demonstrated the dramatic decrease in training time 
that comes with the use of the normative filter, in place of 
the supervisor.

As for future work, we plan to investigate how to manage 
the trade-off between the agent’s primary objective and its 
normative objective. There may be times when fulfilling the 
primary objective is crucial, and must be pursued in spite 
of (albeit while minimizing) violations; currently, our tech-
nique does not allow for this. In order to accomplish this, 
we will need to even more closely entwine tools for norma-
tive reasoning with the reinforcement learning framework. It 
may also be possible to expand the approach with weighted 
violations, so that we can deal with indirect conflicts that 
cannot be solved with DDL’s superiority relation (such 
as practical dilemmas where it is impossible to fulfill two 
norms, one being higher priority than the other, simultane-
ously, though they do not directly conflict). Additionally, we 
hope to explore possibilities for including temporal reason-
ing within the framework; temporal obligations constitute 
a crucial and challenging subfield of normative reasoning, 
and the normative supervisor, which strictly employs DDL, 
cannot accomodate them.
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Table 1  Training time with the supervisor and filter

Number of 
episodes

with Supervisor 
(ms)

with Filter (ms) % decrease

500 732.62 3.34 99.54
1000 1508.54 6.87 99.54
1500 2258.94 10.40 99.53
2000 3028.99 14.14 99.53
2500 3793.61 17.42 99.54
3000 4541.65 20.85 99.54

https://github.com/lexeree/normative-player-characters
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