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Abstract
Interactions between logic and theoretical computer science are multiple and profound. In the last decades, they have been 
deeply investigated, but, surprisingly, the study of probabilistic computation was only marginally touched by such fruitful 
interchanges. The overall goal of my doctoral thesis was precisely that of start bridging this gap by developing logical systems 
corresponding to specific aspects of randomized computation and, due to them, by generalizing standard achievements to 
the probabilistic realm. To do so, the key ingredient is the introduction of new, measure-sensitive quantifiers associated with 
quantitative interpretations.

Keywords Randomized computation · Logical foundations of computer science · Probability logic · Reasoning about 
uncertainty

1 Introduction

Among the features historically defining standard compu-
tational models there is certainly determinism: given an 
algorithm and input, the sequence of computation steps is 
uniquely determined. In the XX century, this assumption 
started to be relaxed in different ways, and randomized 
algorithms were introduced for the first time, where a rand-
omized algorithm is a process which can evolve probabilis-
tically so that, given an input, the computation it performs 
may lead to different outcomes, each associated with a cer-
tain probability.

This more flexible design makes probabilistic models 
very efficient and powerful tools [33], with several appli-
cations in computer science (CS) and technology. Gener-
ally speaking, these are often crucial when dealing with 
uncertain information or partial knowledge, namely for all 
systems acting in realistic contexts, think for examples of 

driverless cars [40] or of computer vision modelling [29]. 
Notably, in some areas probabilistic models have become 
even more than optional; for instance in cryptography, where 
secure encryption schemas are probabilistic [25].

1.1  The Dissertation

In this context, my Ph.D. dissertation was driven by two 
main considerations. On the one hand, since their appear-
ance in the 1950s, probabilistic computational models have 
become ubiquitous in several fast-growing areas of CS, and, 
by now, related, abstract machines—as probabilistic Turing 
machines (PTMs) [19, 22, 36], stochastic automata [13, 18, 
34] or randomized �-calculi [28, 35]—have been massively 
studied in the literature. On the other, there exist deep and 
mutual interactions linking logic and theoretical computer 
science (TCS) and, in the past, the development of com-
putational models and theory has considerably benefitted 
from them. Surprisingly, randomized computation was only 
marginally touched by such fruitful interchanges and, so far, 
it has not found a precise logical counterpart. Such a miss-
ing connection looks even more striking nowadays, due to 
the increasing pervasiveness of probabilistic algorithms in 
many relevant fields of IT, from AI to statistical learning, 
from cryptography to approximate computing and robotics.

The global purpose of my doctoral thesis consisted in 
laying the foundation for a uniform approach to bridge the 
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mentioned gap. To do so, the key ingredient is the intro-
duction of a family of new logics, whose language includes 
non-standard quantifiers “measuring” the probability for the 
corresponding argument formula to be true and associated 
with inherently quantitative semantics.1

Concretely, the dissertation is tripartite. The first 
part focusses on the relation between logic and counting 
complexity, and its main result consists in showing that 
classical counting propositional logic provides a purely 
logical characterization of Wagner’s hierarchy [43]. The 
second part of the thesis deals with programming language 
theory. Here, the Curry–Howard correspondence (CHC) 
[38] is extended for the first time to the probabilistic setting 
by relating the intuitionistic version of our counting logic 
and a counting-typed probabilistic �-calculus. Finally, we 
consider the link between arithmetic and computation by 
introducing a quantitative extension of the language of 
Peano arithmetic ( PA ) able to formalize basic results from 
probability theory. This language is also our starting point 
to define randomized bounded arithmetic and to generalize 
canonical results by Buss [12].

2  Relating Logic and Randomized 
Computation

The existence of several and deep interactions between 
logic and TCS is not accidental, but rooted in the intimate 
correspondence connecting these disciplines. In fact, even 
the formal appearance of the science of computing was 
essentially motivated by foundational studies in mathematics 
and logic, defining the context in which this subject took 
its first steps. Later on, the back and forth between logic 
and CS has strongly influenced the development of both, 
and, today, numerous areas of IT—such as programming 
language theory [38], verification [39] and database theory 
[15], computational and descriptive complexity [16], just 
to name a few - have effectively taken advantages from this 
mutual dialogue. As Siekmann wrote, “[i]n many respects, 
logic provides computer science with both a unifying 
foundational framework and a tool for modeling” [37, 
14, 16, 27, 41], and by the numerous concrete exchanges 
between these disciplines: while the growing importance of 
IT has guided and stimulated advances in logic, logical tools 
have extensive applications in CS and technology.

On the other hand, when switching to the randomized 
setting, such a deep correspondence has been investigated 
only sparsely. One crucial peculiarity of dealing with 
probabilistic algorithms is that, in this case, behavioral 

properties, like termination or equivalence, have an 
inherently quantitative nature, that is  a computation 
terminates with (at least or at most) a given probability, and 
a program might simulate a function up to some probability 
of error (think, for instance, to probabilistic primality tests or 
learning algorithms). Then, the central question is: can such 
quantitative properties be studied within a logical system? 
My Ph.D. dissertation offers a positive answer at least to 
the specific aspects of the interaction between quantitative 
logics and randomized computation it focusses on.

2.1  Counting Complexity Theory

As it is well-known, classical propositional logic and 
computational complexity are strongly connected. Indeed, 
checking the satisfiability of PL-formulas is the paradigmatic 
NP-complete problem [16], while the language of classical 
tautologies is coNP-complete. In the early 1970s, Meyer and 
Stockmeyer also showed that, when switching to quantified 
propositional logic ( ��� ), the full polynomial hierarchy can 
be captured by a single logical system, and that each level in 
it is characterized by the validity of ���-formulas (in PNF), 
with the corresponding number of quantifier alternations 
[31, 32]. Nonetheless, when moving to the probabilistic 
framework, such a plain correspondence seems lost, since no 
analogous logical counterpart is known to relate in a similar 
way to the counting classes and hierarchy, introduced by 
Valiant [42] and Wagner [43]:

In the first part of the dissertation, a counting propositional 
system, called ��� , is introduced. This logic is a 
generalization of PL able to express that a formula is true 
with (at least or at most) a given probability [1, 9]. ��� is 
shown to be strongly related to counting computation and 
classes, being the probabilistic counterpart of ��� [6, 9, 
10]. Indeed, its counting quantifiers can be naturally seen as 
“quantitative” versions of standard propositional ones, and 
our main result here is the purely logical characterization of 
Wagner’s hierarchy via complete problems defined in terms 
of ���-formulas.

2.2  Programming Language Theory

Traditionally, CHC relates intuitionistic PL and the simply-
typed �-calculus [38], but in the last fifty years it was shown 
to hold in other, more sophisticated contexts too. Meanwhile, 
randomized �-calculi [35] and associated type systems, 
sometimes also guaranteeing desirable forms of termination 
[20], were introduced. Yet, these were not designed having a 
logical system in mind, and no (probabilistic) CHC is known 
for them:

polynomial hierarchy ∶ 𝖰𝖯𝖫 ⇔ counting hierarchy ∶ ?

1 An intuitive presentation of counting logics can be found in Sect. 3. 
For further details, see [6–8].
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In the second part of the thesis, two new systems are 
introduced to define the first probabilistic version of the 
above correspondence. On the one hand, we consider 
the intuitionistic counterpart of univariate ��� , called 
����0 , and show it able to capture quantitative behavioral 
properties. On the other, we define a “counting-typed” 
probabilistic �-calculus. Its untyped part is strongly inspired 
by the probabilistic event �-calculus presented in [17], while 
the type system is defined mimicking counting quantifiers. 
Finally, we establish a (static and dynamic) correspondence, 
in the style of Curry and Howard, between these two systems 
[8, 10].

2.3  Probabilistic (Bounded) Arithmetic

2.3.1  Arithmetic and Computation Theory

The theory of (deterministic) computation and arithmetic 
are linked by deep results coming from logic and recursion 
theory, such as Gödel’s arithmetization [23], or realizability 
[30], or the Dialectica interpretation [24]. Many interesting 
properties of algorithms can be expressed in the arithmetical 
language, and, due to the relation between totality (of 
functions) and termination (of algorithms), several issues 
in computation theory can be analyzed in the framework 
of arithmetic. Also in this context, when considering the 
probabilistic realm, there is no theory relating to randomized 
computation as PA does to deterministic one:

In the third part of the dissertation, we present a quantitative 
extension of the language of arithmetic, called ���� , which 
allows us to formalize basic results from probability theory 
that are not expressible in PA , for example the so-called 
infinite monkey theorem. This language is also proved to 
be actually connected to randomized computation as we 
establish the probabilistic version of Gödel’s arithmetization 
[17], namely it is shown that any random function can be 
expressed by a formula of ����.

2.3.2  Bounded Arithmetic and Probabilistic Complexity

In addition, the language of ���� is at the basis of our study 
of randomized bounded arithmetic theories. Historically, one 
of the main motivations for the development of bounded 
arithmetics (i.e. subsystems of PA whose language includes 
symbols for functions with specific growth rate together 
with bounded quantifiers, and in which induction is 
variously limited) was their connection with computational 
complexity [12]. As it is clear that not all computable 

simply typed �→ ∶ 𝗂𝖯𝖫 ⇔ randomized �-calculi ∶ ?

det. comput. ∶ 𝖯A ⇔ prob. comput. ∶ ?

functions are feasibly computable, bounded theories have 
become essential to characterize interesting (feasible) 
complexity classes in terms of families of arithmetic 
formulas. Specifically, in 1986, Buss proved that the class 
of poly-time computable functions precisely corresponds to 
that of functions which are Σb

1
-definable in a given bounded 

theory, �1
2
 . Although this fact is very insightful, no similar 

result was established in the probabilistic framework:

Inspired by ���� , in the third part of the thesis we 
introduce a randomized bounded theory, called ��1

2
 , enabling 

us to logically capture relevant probabilistic classes, as BPP
2 [3–5].

3  From Evaluating to Measuring

Counting quantifiers are quantifiers of the form Cq or Dq 
(for q ∈ ℚ ∩ [0, 1] ) and capable of expressing probabilities 
within a logical language. Intuitively, a counting quantified 
formula CqF expresses that F is true with probability 
greater than or equal to q, while DqF expresses that F has 
probability strictly smaller than q of being true. Thus, these 
quantifiers not only determine the existence of a satisfying 
assignment, but also count how many those assignments are. 
In a sense, they are quantitative generalizations of standard 
propositional ones. Accordingly, we move from a standard 
language made of formulas of the form (∀X)F, (∃X)F to that 
of counting quantified ones, CqF,DqF.

Such a generalization is possible only when contextually 
switching from a truth-functional (i.e. [[F]]��� ∈ {0, 1} ) to 
a quantitative semantics, in which formulas are no more 
interpreted as single truth-values but as measurable sets 
of models (i.e. [[F]]���0 ⊆ 2ℕ ). So, while (the truth of) 
an existentially quantified formula of ��� , for instance, 
(∃X)(∃Y)(X ∧ Y) , gives us information about the existence 
of a model for X ∧ Y  , counting quantified formulas tell us 
something about the number of these satisfying valuations.

Example 1 The (pseudo-)counting formula C1∕4(X ∧ Y) says 
not only that there is a model for X ∧ Y  , but also that at least 
one out of four possible interpretations of the argument for-
mula is a satisfying one.

deterministic classes ∶ BA ⇔ probabilistic classes ∶ ?

2 BPP is the class of decision problems solvable by a poly-time PTM 
with error probability smaller than 1

3
 for any instance. Differently 

from P it is a semantic class, the definition of which relies on algo-
rithms to be both efficient and not too erratic. For further discussion, 
see [5, pp. 1–5].
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In this way, such logic allows us to formally represent 
and study quantitative aspects of probabilistic computation 
in an innovative way.

Notably, our counting propositional logics are natural 
tools to represent stochastic events in a straightforward 
way [1], but, as predictable, their expressive power is quite 
limited. So, as anticipated, we have generalized the notion 
of counting quantifier to define the extended language 
���� , which is nothing but the language of first-order 
arithmetic endowed with second-order measure quantifiers 
and associated with a Borel semantics.

3.1  On Counting Propositional Logic

In order to make these intuitive notions clearer we briefly 
introduce the univariate fragment ���0 . Although the 
expressive power of this logic is limited, its semantics has a 
very natural interpretation and can be extended to full ��� 
in a straightforward way.

When dealing with ���0 , any formula, say F, is 
interpreted as the set [[F]] ⊆ 2ℕ made of all maps f ∈ 2ℕ 
“making F true” (and belonging to the standard Borel 
algebra over 2 ℕ , B(2ℕ) ). In particular, atomic propositions 
are interpreted as special cylinder sets [11] of the form 
Cyl(i) = {f ∈ 2ℕ | f (i) = 1} (for i ∈ ℕ ), while non-atomic 
expressions are interpreted as standard operations of 
complementation, finite intersection and union. Since 
these sets are all measurable, and B(2ℕ) is endowed 
with a canonical probability measure, it makes sense to 
ask whether “F is true with probability at least q” or “F 
is true with probability strictly smaller than q”. This is 
formalized by the notion of counting quantifier, i.e. by Cq 
and Dq for q ∈ ℚ ∩ [0, 1].3 As seen, the formula CqF (resp., 
D

qF ) intuitively expresses that F is satisfied by a portion 
of assignments greater (resp., strictly smaller) than q. For 
example, C1∕2F expresses that F is satisfied by at least half 
of its valuations.

A bit more formally,

Definition 1 (Formulas of ���0 ) Formulas of  ���0 are 
defined by the grammar below,

where i ∈ ℕ and q ∈ ℚ ∩ [0, 1].

F ∶∶= i |¬F | F ∧ F | F ∨ F | CqF | DqF,

The definition of the semantics for ���0 relies on the 
standard cylinder space 

(
2ℕ, �(C),�C

)
.4 x

Definition 2 (Semantics of ���0 ) For each formula F of 
���0 its interpretation, [[F]] ∈ B(2ℕ) , is the measurable set:

Example 2 Let C1∕2(F ∨ G) ,  where F = 0 ∧ ¬1 and 
G = ¬0 ∧ 1 . The measurable sets [[F]] and [[G]] have 
both measure 1

4
 and are disjoint. Hence, �C([[F ∨ G]]) = 

�C([[F]]) + �C([[G]]) = 1
2
 and [[C1∕2(F ∨ G)]] = 2ℕ.

Observe that counting quantifiers are inter-definable (as 
C

qF ≡ ¬DqF ) but not dual in the sense of standard modal 
operators: CqF is not equivalent to ¬Dq¬F.

In more expressive ��� , relations between valuations 
of different groups of variables can be taken into account. 
Contextually, the corresponding quantitative semantics is 
subtler than that of ���0 , and to define the interpretation 
for counting quantified formulas we rely on a few technical 
notions.5 Remarkably, there is a strong connection between 
(closed) formulas of ���0 and (closed) formulas of ��� in 
which only one name occurs.6 Moreover, in [6, 9, 10], sound 
and complete proof system(s) for ���0 and ��� have also 
been introduced.

3.2  On Measure‑Quantified Peano Arithmetic

The standard model N = (ℕ,+,×) has nothing probabilistic 
in itself. So, to define a model for ���� we extend it to a 
probability space, obtaining P = (ℕ,+,×, �(C),�C) . The 
grammar for terms of ���� is standard, while that for 
formulas is obtained by endowing the language of PA with 
special flipcoin formulas of the form FLIP(t) and measure-
quantified formulas, namely, Ct∕sF and Dt∕sF (where, now, 

[[i]] ∶= Cyl(i)

[[¬G]] ∶= 2ℕ − [[G]]

[[G ∧ H]] ∶= [[G]] ∩ [[H]]

[[G ∨ H]] ∶= [[G]] ∪ [[H]]

[[CqG]] ∶=

{
2ℕ if 𝜇C([[G]]) ≥ q

� otherwise

[[DqG]] ∶=

{
2ℕ if 𝜇C([[G]]) < q

� otherwise.

3 Notice that our quantifiers have been inspired by Wagner’s counting 
operator [43].

4 Here, C  is the field set of all cylinders of any rank, �(C) is the �
-algebra generated by C  , and �C  denotes the standard cylinder meas-
ure over �(C) , i.e.  the unique measure on �(C) such that, for any 
i ∈ ℕ , �C(Cyl(i)) =

1

2
 . See [11].

5 For further details, see [6, 9, 10].
6 In [2, Sec. 4.1], a straightforward, validity-preserving translation 
from (closed) formulas of ���0 to (closed) formulas of ��� and vice-
versa is presented.
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t and s are terms, possibly including variables). Specifically, 
FLIP(⋅) is a special unary predicate with an intuitive 
computational meaning: it provides an infinite sequence 
of independently and identically distributed bits. Given a 
closed term t, FLIP(t) holds when the n-th tossing returns 1, 
and n is t + 1.

Definition 3 (Terms and Formulas of ���� ) Let G be a 
denumerable set of ground variables, whose elements are 
indicated by metavariables x, y,… . The terms of ���� , 
denoted by t, s,… , are defined by the grammar below:

The syntax for formulas of ���� is as follows:

for ∗∈ {∨,∧} and ▪ ∈ {Ct∕s,Dt∕s}.

Given an environment � ∶ G → ℕ , the interpretation for 
a term t, [[t]]� , is defined as usual. Instead, that of formulas 
is not, being it inherently quantitative.

Definition 4 (Semantics for Formulas of ���� ) Given a 
formula F and an environment � , the interpretation of F in � , 
[[F]]� ∈ �(C) , is the measurable set of sequences inductively 
defined as follows:

The semantics is well-defined as the sets [[FLIP(t)]]� and 
[[t = s]]� are measurable, and measurability is preserved by 
all logical and counting operators. A formula of ���� , say 
F, is said to be valid when, for every � , [[F]]� = 2ℕ.

Example 3 The formula F = C
1∕1∃x.FLIP(x) states that a true 

random bit will almost surely be met. The formula is valid 
as the set of constantly 0 sequences forms a singleton of 
measure 0.

t∶∶=x | � | �(t) | t + s | t × s.

F∶∶= FLIP(t) | t = s | ¬F | F ∗ G | ∃x.F | ∀x.F | ▪F,

[[FLIP(t)]]𝜉 ∶= {𝜔 | 𝜔([[t]]𝜉) = 1}

[[t = s]]𝜉 ∶=

{
2ℕ if [[t]]𝜉 = [[s]]𝜉
� otherwise

[[¬G]]𝜉 ∶= 2ℕ − [[G]]𝜉

[[G ∨ H]]𝜉 ∶= [[G]]𝜉 ∪ [[H]]𝜉

[[G ∧ H]]𝜉 ∶= [[G]]𝜉 ∩ [[H]]𝜉

[[∃x.G]]𝜉 ∶=
⋃

i∈ℕ

[[G]]𝜉{x←i}

[[∀x.G]]𝜉 ∶=
⋂

i∈ℕ

[[G]]𝜉{x←i}

[[Ct∕sG]]𝜉 ∶=

{
2ℕ if [[s]]𝜉 > 0 and 𝜇C([[G]]) ≥ [[t]]𝜉∕[[s]]𝜉
� otherwise

[[Dt∕sG]]𝜉 ∶=

{
2ℕ if [[s]]𝜉 = 0 or 𝜇C([[G]]𝜉) < [[t]]𝜉∕[[s]]𝜉
� otherwise.

4  Conclusion and Future Work

My Ph.D. thesis aims at being a first step to bridge logic 
and probabilistic computation. In it quantitative logical 
systems are developed to uniformly generalize standard 
achievements in TCS to the probabilistic setting. First, 
classical ���0 and ��� are introduced and proved to be 
strongly connected to counting classes, as formulas of ��� 
in a special prenex normal form provide complete problems 
for each level of Wagner’s hierarchy [6, Cor. 1].7 Then, the 
computational fragment of its intuitionistic version, ����0 , 
and the probabilistic CHC are defined: proofs in ����0 
correspond, in the sense of Curry and Howard, to typing 
derivations for the randomized �-calculus ΛPE , so that 
counting quantifiers “reveal” the probability of termination 
of the underlying probabilistic program [8, Sec. 5].8 In 
addition, a quantitative extension of the language of PA , able 
to formalize basic results from probability theory, which are 
not expressible in standard arithmetic, is presented together 
with the first randomized version of Gödel’s arithmetization 
[7, Th. 3].9 Finally, a randomized bounded theory á la Buss 
is defined such that bounded formulas provably total in it 
precisely capture poly-time random functions. Due to RS1

2
 , 

a new, syntactical characterization of BPP is obtained by 
internalizing the error-bound check within the logical system 
[5, Th. 15, 18].

To the best of my knowledge, the project and approach 
developed in the dissertation is quite new. Accordingly, 
several problems and challenges are still open. In general, 
the investigation of the expressive power of our logics 
(initiated in [1, Sect. 3]) and of their relation with probability 
and modal systems deserves further attention. About the 
proof theory of ���0 and ��� , the study of their dynamic 
(namely, the underlying cut-elimination procedure) and the 
introduction of a purely syntactical calculus have only been 
initiated.10 Also the introduction of intuitionistic logics 
and probabilistic CHC opens up several new avenues of 
research: from the extension of CHC to polymorphic types 

7 A bit more formally, the theorem states that closed and valid ���
-formulas in PPNF and with k-ary quantifier alterations define a com-
plete set for CHk , where ��� is the multivariate version of ���0 , and 
a formula of ��� is in PPNF if it is both in PNF and D-free.
8 Extending the system with intersection types leads to a full charac-
terization of termination probability, see [8, Sec. 6].
9 The theorem states that all computable random functions are 
arithmetical, where a random function f ∶ ℕm → Dℕ is said 
to be arithmetical if there is a formula of ���� , Ff  , with free 
variables x1,… , xm, y such that for every n1,… , nm, l ∈ ℕ , 
�C([[Ff (n1,… , nm, l)]]) = f (n1,… , nm)(l) , see [7, Df. 4].
10 The calculi introduced in [6, 9] include external hypotheses, corre-
sponding to oracle queries counting the number of satisfying Boolean 
assignments. For first ideas to design a calculus without appealing for 
an external source, see [1].
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or to control operator to the study of intersection types to 
support program synthesis.

Concerning measure-quantified languages of arithmetic, 
one of the most compelling problems is the definition of 
a corresponding sound and sufficiently expressive proof 
system. Furthermore, as the language of ���� is somehow 
minimal “by design”, it would be natural to generalize its 
study to more expressive (named) fragments, following the 
path delineated by multivariate ��� . At the same time, the 
introduction of randomized bounded arithmetic could be the 
starting point for a long-term study on the logical nature 
of semantic classes and on its link with proof complexity, 
think for example of natural extensions of our approach to 
the characterization of other randomized classes, such as 
ZPP,RP and coRP , or to its applications to the study of 
random resolution refutations.
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