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Abstract
In recent years, agriculture has become a major field of application and transfer for AI. The paper gives an overview of the 
topic, focusing agricultural processes and technology in Central-European style arable farming. AI could also be part of the 
transformation process of agriculture that is emerging world-wide in response to the UN global sustainable development 
goals (SDGs). In that sense, our overview includes pointers to some research towards AI in future agricultural systems.
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1  Introduction: AI Fits Ag Tech

For millennia, agriculture has been a critical field of technol-
ogy leading to abundant innovations and applications. Its 
criticality is currently emphasised by the dramatic increase 
in world population and rapid climate change: world agri-
culture is an essential factor in achieving the UN Sustain-
able Development Goals. Artificial Intelligence (AI), on the 
other hand, is an obvious candidate to contribute to modern 
agricultural technology (Ag Tech): The OECD definition of 

AI Systems1 [136], as recently adopted by the EU for the 
AI Act, is a perfect fit within the context of machinery or 
decision-support for agricultural processes under their large 
variety of independent environment dynamics, incomplete 
control and limited observability.

Consequently, according to [174], over 3900 articles have 
been published regarding the topics of AI in agriculture in 
2022 alone, which can be found in SCOPUS2. This extends 
a trend of continuously growing research interest in the field 
with distinctly more momentum in the past ten years. The 
history of publications is now long enough to have changed 
focus topics several times, highlighting how AI has already 
become an integral part of agricultural research, and this 
tendency is likely to increase: Applications of decision-
support systems, learning approaches to sensor data inter-
pretation problems and robotics are of considerable interest 
to researchers worldwide, resulting in an impressive body 
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of work [44, 174]. In addition, AI-based functionalities are 
included in operator assistance or process control compo-
nents in many modern agricultural machines.

To provide an introductory overview of this work, this 
article aims to present some of the recent developments 
of AI in Ag Tech. To keep this overview manageable in 
size, we restrict ourselves mostly to arable farming and its 
machinery, treating the large application field of animal hus-
bandry and many other aspects of modern agriculture only 
very briefly, if at all.

As is typical in real-world application domains, there is 
no strict one-to-one mapping of AI sub-fields or methods 
to domain machinery or processes. This means the inter-
section between AI and agriculture is not as simple as “for 
ploughing, use AI topic (A), for seeding (B), etc.”; rather, all 
agricultural processes typically encompass the whole spec-
trum of AI technology. In this paper we address agricultural 
processes first (Sec. 2) and then switch to the perspective of 
AI technologies (Sec. 3). We conclude with a view about the 
role of AI in future agricultural innovations.

2  Application Domains

The domain dynamics and inherent partial information in 
agricultural environments lead to numerous processes that 
are – in principle – perfectly well suited for the applica-
tion of AI technologies. As mentioned, the primary focus in 
this paper lies on arable farming, but we also include some 
greenhouse applications as well as a short glimpse into ani-
mal husbandry since this topic deserves some attention in a 
survey about AI technologies in agriculture. The structure is 
based on general farming processes as shown in agricultural 
textbooks such as [39, 111], while an overview of on-field 
applications as a general introduction to the basics of agri-
culture is given and serves as a basis to support the posi-
tion that AI is not just some interesting optimisation tool. 
Agricultural applications of AI, we argue, may be crucial to 
create a sustainable and environmentally friendly techno-
logical landscape that can contribute to feeding a growing 
world population.

As a reminder to our AI audience we’d like to stress that, 
in our experience, successfully transferring AI or any other 
technology to an application domain demands substantial 
domain-specific knowledge and expertise. We cannot and 
will not provide an overview of the entire domain of agri-
culture, and will instead sketch some basic processes, struc-
tures, and conditions (mostly in arable farming) through the 
lens of AI research, in order to establish a suitable back-
ground for a discussion about agricultural applications of 
AI. Readers knowledgeable about agriculture may safely 
skip this section.

2.1  Soil Tillage and Seeding

Soil tillage is fundamental work in agriculture for pre-
paring the soil to produce strong and healthy crops. This 
process usually takes place before seeding and can be 
performed in various mechanical working steps, such as 
ploughing for turning the soil or using a harrow to develop 
a crumbling surface [98]. In combination with crop protec-
tion, soil tillage ensures the suppression of weeds, pests 
and diseases through the mechanical treatment of harvest 
residues or weeds.

An important difference needs to be made between con-
ventional and conservation soil tillage, where the latter 
foregoes the usage of a plough [102]. Ploughing has been 
a basic and regular tool for intensive conventional farm-
ing, but in recent decades, conservation soil tillage with 
its non-turning soil cultivation (by e.g. a cultivator) has 
gained importance all over the world [19, 34, 124]. While 
the usage of a plough comes with a clean, residue-free 
soil surface, its negative effects cannot be neglected; these 
include impacting the soil structure and fauna (especially 
earthworms), the occurrence of plough compactions and 
its potential cause for erosion. For this reason, conserva-
tion soil tillage is a suitable alternative for a stable soil 
structure, better soil fertility and less erosion [101].

The goal of conservation soil tillage is to perform the pro-
cess of mulch sowing by establishing a cover of plant resi-
dues from previous crops on the soil surface by shallow soil 
cultivation, in which the seeding itself can be applied. Under 
specific arid conditions with low disease and weed pressure, 
the procedure of no-tillage (direct sowing process without 
soil cultivation) can be performed, but it needs to be further 
investigated in more humid regions [101]. A combination of 
both no-tillage and mulch sowing can be achieved by a so-
called strip-till, where only a narrow soil strip is cultivated 
for seeding with the goal of combining the benefits [183].

In general, conservation soil tillage needs to be linked 
to preconditions such as dry soil or specific crop rotation 
due to higher weed and disease pressure. Unlike the con-
ventional approach, conservation soil tillage is typically 
associated with a higher application of pesticides as well 
as the necessary usage of total herbicides (such as glypho-
sate), which are effective on all kinds of plants, but also 
one of the main points of criticism [101, 102].

This is also the point where AI can start to play a signifi-
cant role: in recent times there has been a noticeable increase 
in spot-spraying applications and intelligent mechanical 
solutions, which have led to very promising approaches that 
may reduce the usage of pesticides by a substantial amount 
[58]. This in turn may be the key to more frequent deploy-
ments of conservation soil tillage or even no-tillage, espe-
cially with regard to intensive agriculture.
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2.2  Weed Detection and Control

Weeds have always been a concern of farmers around the 
world, competing with crops for valuable resources such 
as nutrients and sunlight while potentially reducing yields 
by significant amounts. Until the 19th century, before the 
development of chemical weeding approaches, weed regula-
tion was a purely manual task. Since approximately 1950, 
chemical weeding became a ubiquitous technique in arable 
farming until the 1980 s, when environmental concerns 
gained traction [190]. Modern agriculture generally follows 
the principles of integrated pest management, which means 
that non-chemical procedures such as crop cultivation meth-
ods or biological approaches are preferred over chemical 
ones, minimising the negative effects on the environment. 
This concept has been accepted and incorporated into public 
policies and regulations in the European Union, although 
most cropping systems still depend on the heavy use of pes-
ticides [178].

The development of technical solutions, based on AI, has 
become a promising approach to face recent regulations such 
as the framework of the European Green Deal. These regu-
lations aim to reduce the application of pesticides by 50% 
by the year 2030 [48], and include an ongoing discussion 
about a near-term prohibition of glyphosate within the EU. 
The resulting AI-based solutions can be a factor contributing 
to healthier ecosystems and preventing chemical herbicide 
resistance in weeds [31].

Viable commercial solutions with AI already exist (see 
Sec. 3.4), not to mention numerous scientific developments 
such as the smart sprayer attachment by [140], a mechanical 
approach [25] or the Asterix weeding robot [185], which 
uses computer vision for weed detection in conjunction with 
a spray controller while claiming a reduction of herbicide 
use by up to 90%.

In general, we maintain that the field of weed detection 
and control has immense potential to connect environmental 
standards with high yields by using AI.

2.3  Biotic and Abiotic Stress Monitoring

Beyond weeds, biotic factors such as insects, viruses and 
fungi as well as abiotic factors, including drought, chemi-
cal and physical soil conditions, may all have a sizeable 
impact on the productivity of crops and thus their yields 
[59, 125]. Similar to weeding (Sec. 2.2), but starting in the 
1930 s, control of biotic stress has been carried out through 
the widespread and indiscriminate use of crop protection 
products (such as DDT), leading to environmental problems 
and eventually to more careful and integrated crop manage-
ment approaches [105]. Future ecopolitical regulations and 
challenges such as population growth, however, increase 
the pressure to improve yields and enhance environmental 

quality, thus forcing the application of all available advanced 
technologies to face these issues successfully [164].

A modern and efficient approach to biotic and abiotic 
stress monitoring consists of satellite and aerial remote sens-
ing. Since 2015, satellites (such as Sentinel-2A/2B) have 
provided high-quality data for precision agriculture [164] 
and the deployment of drones has allowed the monitoring 
of crops even on a plant-level basis [22]. Drones offer higher 
resolution data and more readily available crop information 
[62], but both methods can be used to generate different veg-
etation indices and detect biotic and abiotic stress symptoms 
[90, 110, 179, 204]. Data processing and detection can be 
done with a good performance by using AI and ML methods 
[72].

The conventional method for monitoring, e.g., plant path-
ogens is to hire disease specialists who scout a field to iden-
tify the presence of diseases, but this approach is nowadays 
unappealing, given the amounts of labour and time required, 
especially in an era of decreasing workforce in agriculture 
[199]. An automated monitoring system would increase the 
spraying efficiency by conducting early and local detection 
of potential biotic stress, helping to reduce the application 
of pesticides [41].

In sum, the integration of developments in AI and 
advances in remote sensing technologies may have the 
potential to establish an economically viable, and environ-
ment-friendly, crop-stress forecasting system.

2.4  Yield Prediction and Estimation

Precise yield prediction is a crucial instrument for farmers 
to reduce costs and enhance harvest quality. The conven-
tional approach is based on parameters such as historical 
data, weather conditions and time-consuming, inaccurate 
manual work such as gathering fruit samples [18, 127]. AI-
based systems can automate these tasks by predicting or 
directly estimating the yield, can save time and provide bet-
ter results [18].

Furthermore, crop yield prediction is not only an essential 
task at the farm management level, but (as a study shows) 
also for decision-makers at the national and regional scale 
[186]. This study also mentions that some of the most com-
monly used parameters for AI-based crop yield estimation 
are temperature, soil type, and rainfall, all of which carry 
challenges of their own including insufficient data availabil-
ity and a lack of variety (e.g., different climatic conditions, 
different vegetation) when developing accurate models. 
These circumstances further complicate the integration of 
additional data sources and the final deployment in real farm 
management systems.

Recent examples of technological advances include a 
direct crop yield estimation, using computer vision, with 
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promising results for fruits such as apples [187], citrus [42], 
and grapes [127].

An innovative approach uses satellite data in conjunction 
with parameters such as soil properties, weather information 
and data aquired by the combine harvester to develop pre-
dictive models for selected arable crops in Europe and the 
Americas. A successful end-to-end model has already been 
designed which can predict yields up to 120 days before 
harvest [36, 68].

In summary, reliable forecasts create an incentive for 
farmers to optimize parameters such as irrigation and fer-
tilisation, opening up opportunities to cultivate crops in a 
more efficient and sustainable manner [68].

2.5  Harvesting

Harvesting can be subdivided into two main areas of inter-
est: crop monitoring and the actual process of harvesting.

Crop monitoring helps determine the best time to har-
vest a crop, which is usually the time when the expected 
yield is optimal. High-value crops, however, may not ripen 
uniformly and thus not be ready for harvest all at the same 
time. This means harvesting is a continual task that typically 
requires manual and repetitive work which, driven by prices 
and labor shortages, poses a suitable application field for 
automation.

There is substantial work regarding the detection of sin-
gle-crop fruits, their ripeness, and health. Promising results 
can be found for cherries [55], grape bunches [175], palm 
oil fruits [86], bananas [53], chili peppers [69] and strawber-
ries [75]. Challenges include varying degrees of ripeness 
translating to variations in form, colour, and size, as well 
as occlusions caused by the environment or by the plants 
themselves.

For the physical process of harvesting, fewer and less 
readily integrated solutions can be found. Building upon the 
correct detection of fruits and their ripeness for harvest, the 
development of well-performing (soft) end-effectors and 
their application arises on top of the typical challenges of 
building functional robots for agriculture.

Prototypic and partial solutions have been described 
recently for tomatoes [84], pumpkins [155], sweet peppers 
[8], strawberries [201] and others. In their review on soft 
grippers for automated harvesting [131], the authors come 
to the conclusion that there is still much work to do.

There is a wide variety of sensors, effectors, processes, 
and sensorimotor control approaches necessary to carry 
out all the tasks collectively referred to as harvesting, 
caused by the wide variety of fruits that can be harvested. 
In all fairness, the same applies to human harvesters: 
strawberries, pumpkins, asparagus and maize, for example, 
all require different actions and different approaches. This 
variety is, of course, mirrored by the technology and the 

large amounts of papers reporting about its development, 
resulting in numerous and extensive approaches. We will 
revisit this feature in Sec. 3.4, where we discuss effectors 
in Robotics.

2.6  Organic Farming: A Special System

Organic farming plays a special role in agriculture and can 
be seen as an alternative to conventional, intensive farming. 
Established in Europe during the 1930 s and 1940s, organic 
foods have grown immensely in popularity and originated 
hundreds of certification bodies [151]. In 2021, the organic 
area share of total farmland was about 9.63% in the EU 
[154].

Although accompanied by a decrease in yields [92], the 
increasing public interest in organic farming systems is 
possibly a response to the perceived downsides of conven-
tional farming. Despite its greatly increased crop produc-
tion, labour efficiency, and thus productivity, conventional 
farming is also characterised by the use of external inputs 
like mineral fertilisers and chemical pesticides, resulting in 
a higher environmental pressure [129, 152]. Such external 
inputs are widely prohibited in organic farming systems, so 
the challenge is to solely rely on the principles of crop rota-
tion, mechanical cultivation, manuring, and biological pest 
control (also applied in conventional agriculture). There is 
a strong focus on maximising nitrogen availability, the pri-
mary nutrient for plant growth, in some cases up to strict 
closed-cycle cropping systems and going beyond organic 
certification guidelines [151]. It is worth noting that, on 
average, organic agriculture results in higher soil organic 
matter content compared to conventional farming [106, 129].

Since organic farming systems are characterised by lim-
ited external inputs and heavily depend on the principles 
mentioned above, we can observe a decrease in yields, a 
more frequent application of conventional soil tillage to 
lower the weed pressure [141] and the use of questionable 
biological preparations such as copper to fight diseases [51]. 
These are all domains that may be strongly impacted by AI 
technologies.

Overall, AI may become a crucial technology to help 
overcome the weaknesses of organic farming and improve 
its yields. We understand that no single organic approach is 
guaranteed to feed the planet [151], and in this sense AI may 
serve as a bridge technology from conventional agriculture 
to the comparatively smaller organic market. Furthermore, 
ecopolitical regulations are one of the main reasons driving 
the need for AI innovation, as is the case with the “Farm-
to-Fork-Strategy” within the EU Green Deal which aims to 
reduce chemical pesticide applications by 50% and expand 
organic agriculture to 25% area share of total farmland by 
2030 [48].
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2.7  Livestock Farming

Farm animals play an essential role in the biomass cycle, 
in which far more non-edible biomass is produced than 
biomass for human consumption. Sustainable food pro-
duction cannot succeed without integrating animal pro-
duction into the agricultural material cycle [194]. Animal 
husbandry is a particularly important factor in the trans-
formation process of the agri-food system towards greater 
sustainability, and the use of AI in livestock farming sup-
ports this transformation [54].

The scope of application of AI includes animal iden-
tification, behaviour monitoring (feeding behaviour, 
aggression behaviour), health monitoring (disease detec-
tion, activity recognition), performance prediction and 
production technology in different livestock species (e.g., 
cattle, pigs, poultry) [14]. The meta-study showcases a 
wide spectrum of AI methods, including a variety of 
machine learning and deep learning approaches in e.g., 
computer vision.

In pig farming, AI can be used to detect upcoming 
births of piglets with high reliability, and to monitor the 
course of birth resulting in a significant reduction of num-
ber of piglets crushed by the sow. In the later fattening 
phase, AI methods can be used to detect and analyse the 
causes of tail biting. Individual animal identification is 
particularly important in order to be able to reliably select 
culprit animals. AI is also used to predict growth trends 
more accurately and to select animals by weight before 
slaughter [188]. Even if the use of AI in cattle and poul-
try farming has a different focus due to the differences 
between the species, the above-mentioned central topics 
are identical.

The AI application area in livestock farming is largely 
interdisciplinary. Recent approaches include not only the 
research areas of computer science, veterinary medicine, 
agricultural science, environmental sciences, mechanics 
and electronics, but ethics considerations are also taken 
into account [132].

In summary, AI has the potential to enable far-reaching 
improvements (and spread awareness) in animal welfare 
and holistic monitoring, and can help obtain better effi-
ciency indicators.

Finally, the research field of explainable AI can 
become increasingly important in the context of livestock 
production. Farmers have a high level of responsibility 
in dealing with animals, and the degree of clarity and 
comprehensibility in the decision-making component of 
AI approaches is not only important for increasing accept-
ance [74], but it also allows humans to recognise and 
honour their responsibility towards farm animals.

3  AI Technologies for Agriculture

As previously mentioned, there are no recipes for how to 
solve challenging problems with specific AI techniques. 
We organise this section in the form of a several comple-
mentary (and often overlapping), high-level topics in AI 
that illustrate different foci of interest and levels of matu-
rity. Often such technologies are used together to solve 
real-life problems, as exemplified in the last subsection 
dealing with agricultural robotics.

3.1  Vision and Perception

The availability of high-resolution spatial and temporal 
sensor data is rapidly spreading through the development 
of new sensors, reaching implements and mobile platforms 
such as autonomous field robots and UAVs. Interpreting 
such data is a core driver for innovation in agricultural 
processes.

The rising costs and severe shortage of skilled workers 
are among the factors steering agricultural innovation. This 
is countered by automation, which in turn creates a demand 
for high-quality sensor data.

This section contains an overview of vision and percep-
tion technologies. Different techniques for environment 
interpretation are presented and followed by requirements 
for the development of such techniques.

3.1.1  Vision Tasks

As pointed out in Sect. 2, many agricultural applications 
require a reliable model of the environment and suitable 
methods to interpret environment data. In autonomous agri-
cultural machines or assistive systems, collecting informa-
tion about the environment is of critical importance.

Localisation and navigation are among the core tasks 
that help guide a machine on a field (c.f. Sect. 3.4). Percep-
tion systems are used to support such tasks by detecting, for 
example, crops and rows [4, 11, 45, 78]. This could occur 
before harvesting or weeding processes and can rely on top-
view images from drones [11, 142]. Real-time detection 
systems have been developed for decades, based on e.g., 
the Hough transformation [9], the random sample consensus 
(RANSAC) algorithm [195] or masks based on vegetation 
indices [4]. Furthermore, crop poses on semantic maps ena-
ble localisation with visual features [27]. Obstacle detection 
is essential for safety reasons, and agriculture is no excep-
tion. In contrast to autonomous driving on roads, classifi-
cation of the obstacle is mandatory to distinguish between 
plants, which are to be harvested and therefore touched, and 
objects that might cause a harmful collision [29].
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Pose estimation is another important task, necessary 
when objects need to be manipulated (e.g., by grippers, pick-
ers or other special purpose end effectors) as is the case in 
applications such as weeding [112, 113, 118, 158, 198] as 
well as harvesting and fruit picking[7, 10, 117, 182].

While classical object detection and pose estimation 
algorithms often provide only axis-aligned bounding boxes, 
weeding requires tight boundaries between crops and weeds. 
Instance segmentation [113, 122, 158] addresses this prob-
lem by providing individual polygons on single plants or 
plant groups. RGB and NIR data are combined in the nor-
malised difference vegetation index (NDVI)[17, 65, 158], 
and crops and weeds can be distinguished by local binary 
patterns (LBP) [17, 117] or covariance features [17].

As pointed out in Sect. 2.5, handling single fruits of high-
value crops, like sweet pepper or strawberries, is important 
since their price directly correlates with their quality [7, 10, 
182]. Pose estimation is fundamental for automated fruit 
harvesting [56, 139], so object detectors like SSD [137, 145] 
or instance segmentation algorithms like Mask R-CNN [56, 
139] are often used together with RGB-D data. Harvesting 
selection is based on different quality parameters [35, 115], 
such as firmness and ripeness. This can be implemented 
through vision systems, albeit clutter and occlusions pose 
major challenges [139]. In [115], quality measures get 
derived from Near-Infrared bands (NIR). Firmness, for 
example, can be determined from hyperspectral data with 
regression models [35].

Other applications of sensor data processing include plant 
monitoring, for instance through a perception system that 
can track the growth state of a plant [99] or detect pests 
and diseases. This allows an early intervention and is often 
approached using convolutional neural networks (CNN)
[169, 180, 199]. Region Proposal Networks like Faster 
R-CNN-based architectures [180] and augmentation learning 
[128] can be used to detect citrus diseases like black spot.

Although sensor data may be collected and interpreted 
in various ways and for different reasons, we can identify a 
common core of four main techniques:

• Object detection, classification, and tracking
• Instance segmentation
• Feature extraction
• Anomaly detection

3.1.2  Datasets

In recent years, many such models and algorithms were 
released and have continued to increase their levels of per-
formance [205]. Perception algorithms are mostly trained 
for specific tasks and domains, and the underlying datasets 
constitute a determining factor on the resulting applicability 
and performance of algorithms. Publicly available datasets 

exist, which contain plenty of common objects in everyday 
scenes with some focus on urban or driving scenarios [49, 
57, 108, 157]. In general, the development and evaluation 
of AI-based perception systems requires large amounts of 
data, together with a suitable ground truth. Preparing these 
datasets is a core challenge when bringing detection systems 
to the market. Especially in the agricultural sector, the pre-
vailing variety of scenarios and environmental conditions 
must be taken into account.

In addition to common object datasets, off-road and agri-
cultural scenarios have also been made available. Marulan 
[143], RELLIS-3D [79], NREC [144], Robot Unstructured 
Ground Driving (RUGD) [193] and FieldSAFE [94] in par-
ticular can be used to train and evaluate environment per-
ception algorithms that deal with obstacle detection. For 3D 
Mapping and localisation, the Bacchus Long Term Dataset 
[146] contains RTK-GPS and IMU, as well as RGB-D cam-
eras and 3D LIDAR data. The data was recorded in vine-
yards over an entire growing season. In agriculture, envi-
ronmental conditions are often harsh and changing, due 
to weather and vegetation. These conditions are often just 
partly covered, instead of comprehensively for the whole 
operational design domain. For this reason, recording addi-
tional data is essential to develop and validate application 
systems suitable for commercial use. This can be done via 
sensors mounted on vehicles like tractors and trucks [93, 
196, 153].

While data recording with vehicles offers flexibility, 
rail-guided test stands like AgroSafety [120] and AI-TEST-
FIELD [95] are designed to achieve higher comparability 
between test runs under many different environmental condi-
tions. For the comparability of different test runs, dummies 
are usually employed as test specimens to represent real 
obstacles. In order to standardise the evaluation, ISO 18497 
[1] describes a barrel-like obstacle, which roughly compares 
to a seated person. A more realistic replicate of a human is 
proposed in ISO 19206-2 [2]. The reflectivity of test targets 
should represent the worst-case scenario, so [121] proposed 
a modified pedestrian test target based on ISO 19206-2 [2] 
with new cotton material.

In addition to the general perception of the surround-
ings, process-related perception algorithms are essential 
in agricultural domains and need to be trained accordingly. 
To that end, published datasets are available including the 
Swedish Leaf Dataset [173], which contains images of sin-
gle leaves before a white background and can be used to 
classify different Swedish tree classes. Other datasets like 
Flavia [197], Leafsnap [96] and PlantVillage [126] contain 
images of plants under laboratory conditions. The Crop/
Weed Field Image Dataset (CWFID) [64] contains 60 RGB 
and hyperspectral images, recorded by the autonomous field 
robot Bonirob in an organic carrot farm, that can be used 
for single plant phenotyping. The Vegetable Crops Dataset 
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for Proximal Sensing (VCD) [100] contains RGB images of 
vegetable crops at an early stage of growth. The Plant-Doc 
dataset [171] contains around 2500 images of plant species 
with up to 17 classes of diseases. A crowd-sourced dataset 
with more than 50,000 images also exists, created on the 
PlantVillage platform [73]. Additionally, 375 pixel-wise 
labeled sugar beet and weed images (RGB and NIR) are 
published in the weedNet dataset [158].

Since there might not be free or public datasets available 
for every application, data recording becomes necessary in 
many cases but data acquisition comes with challenges of 
its own. Existing work includes that of Sankaran et al. [162], 
who provide a survey of sensor systems for phenotyping. 
Recording can be conducted on different devices such as 
UAVs [168], RC-Copters [26], airships [107], robots [184], 
self-propelling chairs [6, 33, 80], handcarts [12, 77, 192], 
spidercams [13, 89] or specific test stands [85].

In general, collecting data is a challenge and calls for 
special care. Data acquisition and labelling are costly and 
time-consuming tasks, especially when pixel-wise annota-
tion is required as is the case in semantic instance segmenta-
tion. This can become very challenging very quickly if the 
labelling processes is manual, especially when dealing with 
occluded and young plants. Hence, synthetic training data 
has become more prominent, since images can be generated 
from models and the ground truth is known in advance for 
every pixel [16, 38, 77].

One last issue in dataset creation and usage that affects 
all topics in computer vision, are biases in the data [50], and 
agriculture is of course no exception [135]. Seasonal vegeta-
tion and irregular occurrences of diseases, pests, and weeds 
exacerbate the challenge.

3.2  Knowledge Representation and Reasoning

Knowledge representation addresses an important need of 
AI agents and AI-based technologies, whether physical or 
purely software-based: access to a formal (albeit potentially 
incomplete) model or description of their environment that 
can support processes such as querying, inference or action 
selection.

3.2.1  Ontologies and Semantic Web Technologies

Ontologies and knowledge graphs are commonly used rep-
resentation methods with connections to semantic web tech-
nologies which allow these models to be stored and queried 
in a distributed manner. Examples spanning various sub-
domains of agriculture include [21, 24, 66, 83, 104, 156]. 
A comprehensive overview can be found in a 2019 survey 
[43], where the authors argue that the increasing amount of 
sensor data in the agricultural domain has little benefit to the 

farmer in its raw form, and that its value lies in the insight 
gained by processing such data with suitable technologies.

Among the more representative semantic technology 
tools used in agriculture are AGROVOC [23], a type of the-
saurus under the supervision of the Food and Agriculture 
Organization (FAO), the Crop Ontology [116], the Agro 
Portal [82] and, on the topic of plant science, AgroLD [103]. 
It should be noted, however, that most of these examples 
either refer to very specific subfields or take a very gen-
eral approach to agriculture, and not much work exists that 
addresses the practical aspects in between. Some recent 
work also discusses the connection between ontology mod-
elling and data mining, and provides an example application 
in crop farming [133].

Whether the input data is obtained automatically via min-
ing and whether the result is an ontology or not, these mod-
els ultimately fulfil the need for a repository or “knowledge 
base”, often used in combination with an inference engine 
or some other information processing tool to generate useful 
or meaningful results.

3.2.2  Decision‑Support Systems

A decision-support system (DSS) is a tool that relies on 
various AI techniques to process multiple types and sources 
of information, in order to provide useful and non-trivial 
insight that may inform the decisions made by an external 
agent. In agriculture, information sources might include a 
description of crops, fields, the soil and the weather fore-
cast and the system may generate suggestions to facilitate 
e.g., farm-level management. DSS technologies and expert 
systems in general have a wide array of applications but, as 
some studies show, agriculture was not a primary focus at 
least until the turn of the current century: in a survey span-
ning the period between 1995 and 2001, the authors found 
only a couple of agricultural applications [46]. Furthermore, 
these few examples constituted more traditional computer 
programs than knowledge- or inference-based AI systems. 
Since then, and perhaps as a result of considerable improve-
ments in the acquisition and storage of large amounts of 
data, there appears to be some renewed interest, particularly 
when the inference component of a DSS is combined with 
automated data analysis and machine learning tools.

DSSAT is a current example that focuses on Ag Tech 
transfer and is capable of simulating crop growth, devel-
opment and yield [70, 71]. Other existing systems provide 
support in a variety of agricultural tasks ranging from farm 
operation through scheduling and optimisation [150], irri-
gation activities based on fuzzy inference [60] or a fuzzy 
neural network [130], as well as impact assessment with 
respect to sustainability and climate change [163, 191]. A 
more in-depth discussion of these and other support sys-
tems can be found in a recent survey [203]. In this paper, 
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the authors compare the performance and functionality of 
several agricultural DSSs in the era of remote sensing, large 
amounts of data, cloud computing and artificial intelligence, 
which is collectively referred to as “Agriculture 4.0”.

3.2.3  Planning and Optimisation

From a functional perspective, planners and decision-sup-
port systems are both AI technologies that can inform human 
activities, but a DSS is limited to generating suggestions or 
contextual information while a planning problem is solved 
by identifying an optimal sequence of actions, meant to 
be executed. Similar to planning, optimisation approaches 
generate optimal value assignments that may be pursued or 
implemented directly.

An exemplary approach is the unmanned monitoring of 
crop health utilising a UAV capable of choosing its own 
paths and targets, in order to perform a close inspection, 
apply herbicide or collect higher-resolution images [5]. 
Work also exists on route planning and optimisation that 
can guide auto-steering and navigation-aiding systems [20]. 
Another approach uses a combination of aerial and ground 
vehicles, where information about crops and weeds is gath-
ered from the air and used to plan possible interventions, 
reducing the application of herbicide [30].

AI-adjacent topics such as control optimisation may also 
have an impact in agricultural applications, as exemplified 
by a drip irrigation system that approaches moisture trans-
port in unsaturated soil as a linear optimisation problem, 
providing correct amounts of water [91]. Another optimising 
approach focuses on agricultural resource management and 
suggests optimal land allocation for diversified crop plan-
ning, relying on combinatorial methods that consider socio-
economic and environmental objectives as well as farm- and 
district-level goals [160].

Finally, a recent paper shows that the application of opti-
misation methods through multiple AI technologies can lead 
to more efficient crop protection by applying more suitable 
products at the right time, in the right amounts and only 
where necessary, which also may contribute to reaching the 
United Nations Sustainable Development Goals of respon-
sible consumption and production [166].

Planning and optimisation techniques are commonly 
used as components of autonomous robotics and agricul-
tural vehicle platforms, discussed in more detail in Sect. 3.4.

3.3  Data Acquisition and Analysis

During nearly all agricultural activities, from tillage to 
seeding and fertilising as well as weeding and harvesting, 
large amounts of data may be gathered and stored. Deci-
sions, actions or other generated knowledge, as described in 
Sec.  3.2, all rely on input from field data and are supported 

by additional intermediate data processing [159]. Several 
selected approaches to interpreting sensor raw data have 
already been discussed in Section  3.1. Machine learning 
techniques play a fundamental role throughout all of these 
stages of data analysis and information processing.

Multiple implements are equipped with telemetry units 
and sensors like opto-electronic devices [138]. This data 
stock can be enhanced by remote sensing as well as sepa-
rate IoT sensors (e.g., soil moisture sensors). See [172] for 
an an overview of remote sensing. While satellites provide 
data on a regular (up to daily) basis, the spatial resolution 
is limited [123] and data acquisition must be extended with 
(manual) drone flights. Despite being time-consuming and 
hence not performed as frequently, drones can gather data 
with a significantly higher spatial resolution.

As mentioned in Section  3.1, RGB data and NIR spec-
trum are relevant for phenotyping and classification between 
crop and weed. In addition, they are used to derive biomass, 
chlorophyll, and nitrogen among others. An overview of rel-
evant indices, like NDVI, and their applications are given 
in [172].

In agricultural research there are a number of ongoing 
activities regarding the use of ML methods to predict crop 
yield [28], but these tasks can be very challenging due to 
the inherent uncertainty from factors such as the weather. 
In [203] it is pointed out that meteorological forecast is rel-
evant to support agricultural activities, as its influence may 
be reflected in drought [87] and groundwater level [165]. 
Through an analysis of properties such as moisture [88] and 
nutrients [28], a basis for fertilisation and irrigation activi-
ties can be laid out.

3.4  Robotics

Robotics is a distinct technology with very clear applications 
in agriculture. The research, development, and prototyping 
of well-integrated machines that can automate agricultural 
tasks or execute entire processes autonomously goes back 
decades. While this chapter concentrates on the more recent 
developments, a source like [18] can be used to obtain a 
broader overview.

Applications of robotics technology can take various 
forms: (Partly) automated versions of conventional machines 
such as harvesters or tractors fulfil the same tasks as always 
without the need of a driver; In a different approach, inte-
grated mobile robots, rail systems with robotic arms in 
greenhouses or drones can have the same appearance and 
role as conventional machines or differ vastly in both 
aspects.

The distinction between such concepts is by no means 
clear cut and many technologies can be transferred from 
one to another. It is also important to note that while there 
is still much ongoing research in the scientific community, a 
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significant portion of the development is driven by industry 
with many platforms already commercially available.

3.4.1  Integrated Robotic systems

Field robots are autonomous systems oftentimes described 
as the technological means to meet ambitious goals, regard-
ing sustainability and development of the agricultural sector 
[181]. Robots are also a particularly good choice for the 
application of AI as they can, in principle, address many 
agricultural domains and integrate – to some degree – many 
if not all of the technologies provided by AI [97]. In the con-
text of the very active field of object detection with machine 
learning techniques, robotics can be seen as the actuating 
counterpart to the advances in perception and sensing [161]. 
The large amount of papers on robotics applications, how-
ever, makes it difficult to provide an exhaustive overview of 
a field as active as agricultural robotics.

Topics of special importance to mobile robotics include 
localisation and path planning, sensing, and actuating, which 
can be found at different levels of technological maturity 
[200, 202].

In the last years, a rich account of surveys has been pub-
lished hinting at a plenitude of prototypes, in general, [81, 
149, 189] and with a focus on monitoring and phenotyp-
ing [15, 52, 76, 147], seeding[52], weeding [47, 52, 63], 
and harvesting [8, 52]. Fundamentally, it can be observed, 
that recent developments in image processing have led to an 
enormous increase in work related to monitoring and detec-
tion use cases.

Actuation on the other hand, and therefore fully integrated 
farming robots, accounts for much less published articles as 
the required mechanical components are still under develop-
ment. Especially in the fields of weeding [17, 119, 148, 185] 
and harvesting [7, 167, 170] (see also 3.4.2 below), there are 
some recent examples of working prototypes in both science 
and industry.

It is worth mentioning that the ideal of fully automating 
food production on farms is not devoid of social and ethi-
cal considerations. Farming continues to play a fundamen-
tal role in the course of societies worldwide, and continues 
to involve small stakeholders [40, 176]. The farmers’ own 
perspectives are of great importance, as robots are expected 
to become commercially available. Work such as [177] 
becomes particularly interesting also from the technological 
perspective, as issues regarding human-robot collaboration, 
but also the choice of size and a fitting role for robots on 
farms will depend on commercial demand.

Additionally, integrating multiple robots in swarms as 
well as enabling and orchestrating cooperation between 
robots, and between humans and robots, seems to be a prom-
ising trend as suggested by several studies [3, 40, 114].

An additional perspective, albeit not yet as visible in the 
community, is that of the expected long-term behaviour of 
autonomous systems in agriculture. Robots in this context 
have to deal with a dynamic, partially controllable, and 
partially observable environment. When tasks take long 
enough to complete that such dynamics become relevant, 
for instance when tending to a large field, or when tasks must 
be repeated multiple times, as is the case of weed manage-
ment, dealing with these aspects becomes a complementary 
but no less important challenge that poses many interest-
ing research questions. In 2017, some aspects of long-term 
autonomy were examined in an indoor setting [67], while 
the authors of [97] describe different technologies neces-
sary to enable long-term capabilities of robots in different 
contexts, including agriculture. In these examples, long-term 
autonomy is described as a central challenge based on the 
integration of various building blocks.

3.4.2  End‑Effectors

Physical interactions between robots and the environment 
demand special attention and the development of well-
suited tools. If conventional implements are to be used, this 
is often a matter of interfaces and control; when a robot is 
supposed to fulfill a task typically performed manually, like 
the plucking of larger fruit, new types of tools or approaches 
are necessary.

As mentioned in section 2.5, there is a wealth of ongoing 
research on special end-effectors and their integration into 
fruit harvesting robots operating in both fields a greenhouse 
contexts. Examples include tomatoes [84], pumpkins [155], 
sweet pepper [8], strawberries [201] and others, although 
many questions remain unanswered so far what harvesting 
strategy and which tools will prove best. Soft end-effectors 
which are experimented on but not yet widely used might 
prove as a promising avenue for further investigation [131].

Judging by the abundance of different individual solu-
tions for different fruits, it seems that it is not easy to 
transfer robotic systems from one use case to another. This 
might have to do with the detection systems or individual 
requirements of the end-effectors and future research seems 
worthwhile.

3.4.3  Unmanned Aerial Vehicles (Drones)

Although often remote-controlled by humans during critical 
phases, such as take-off and landing –or even for their entire 
deployment–, drones are also associated with robotics. With 
programmable missions, collision avoidance systems, and 
automated path planning drones become unmanned vehicles, 
a type of autonomous robot.

In agriculture, drones are typically used as low-cost 
but efficient sensing platforms, especially for RGB aerial 
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imagery but other sensor data such as lidar or multi-spectral 
may also be collected, although less commonly. Overlapping 
with the field of remote sensing, drone images are used for 
plant monitoring, especially for pest and disease control [32, 
37, 47, 109, 134, 167]. Although less frequently due to chal-
lenges in engineering and administration, drones can also 
be used to precisely spray pesticides onto small patches to 
drastically reduce overall agrochemical usage [61].

3.4.4  Commercial Agricultural Robotics

Although originally dominated by academic institutions, in 
the last decades the industrial sector has also joined the field 
of robotics research and prototyping. Small and large cor-
porations alike have contributed their own innovations and 
initiated collaboration efforts with the scientific community. 
Websites like ducksize.com,3 industry-oriented conferences 
like World Fira, or the robotics components in Ag-Tech fairs 
such as Agritechnica can offer a good starting point to show-
case agricultural robots, in the form of products and proto-
types both currently available and under development. As 
previously mentioned, robotic systems come in many shapes 
and configurations, but a coarse distinction can be observed 
between hybrid or upgraded conventional machines, large 
robots without driver cabins, and small or very small robots 
that might be used in newer and less conventional ways.

Despite the progress illustrated by such products and pro-
totypes, many open questions still remain regarding architec-
ture, data sovereignty, and interfacing, in addition to tech-
nological challenges. Especially in larger machines, which 
are meant to be coupled with different farming implements 
for multiple farming tasks, there are several open problems 
related to interfacing, compatibility, and automated decision-
making in addition to concerns about functional safety.

4  Conclusion – The Role of AI in Future 
Agricultural Innovations

The introduction of this paper has argued that AI fits agricul-
ture and, in particular, Ag Tech, based on the typical under-
standing of (applied, “narrow”) AI as it is formulated in the 
OECD definition of AI Systems. We have surveyed a subset 
of the substantial body of literature that exists about AI in 
agriculture applications. To keep the survey manageable in 
size, we have focused on arable farming and on farming as 
it is currently practised in Central Europe, giving short hints 
to topics beyond this narrow focus, like animal husbandry 
or organic farming. Extending the process view to other 
farming systems and to worldwide farming products and 

procedures would have revealed additional examples of AI 
applications, but it would not have changed the main point 
of our argument: that AI fits Ag Tech, that it is currently 
applied in Ag Tech machinery, and that there is ongoing 
research and development with future innovations already 
underway.

In conclusion of this survey, widening the scope about 
the role of AI in future Ag Tech should not be restricted 
to listing new or additional applications (as was the focus 
here), but could include potential AI-based improvements in 
current agricultural practises (be it on a field, in a barn, in 
greenhouses or elsewhere) all of which are useful involve-
ments of AI in Ag Tech. Examples include providing opera-
tor assistance in current Ag machinery and processes, mak-
ing use of data from current machines for improving work 
efficiency by economic or ecological benefits or by reducing 
human labour, which is hard to come by already as much 
of the manual workforce is shifting away from agricultural 
jobs.

Yet, there is another potential use of AI in agriculture, 
which may be even more influential for the future of agricul-
tural practise: AI that enables autonomous machinery capa-
ble of uninterrupted, continuous work or with the ability to 
make recommendations based on analysing data at both a 
rate and scale far beyond human ability. These applications 
may enable agricultural processes and practices that differ 
substantially from those that we have today, which have co-
evolved with more traditional technology (without AI) over 
the past decades (again, in Central Europe, but elsewhere in 
the world, too). To meet the agri-food-related Sustainable 
Development Goals (SDGs) of the United Nations, and do so 
in a changing world climate, it appears that adapting current 
agricultural practices, processes and technology is a neces-
sity more than a choice.

AI can or should play a part in this as an enabler of 
such new processes, although the actual implementation or 
deployment should be led by agricultural experts. AI can 
now provide methods and technology not readily available 
when the current Ag Tech emerged, and has the potential to 
make machines more adaptive, more autonomous, smaller 
and easier to deploy in harsh environments. Consequently, 
AI also has the potential to develop agricultural systems that 
can raise economical, ecological, and societal standards of 
food production worldwide. AI may take away workload 
from farmers, yet grant them control and responsibility for 
their own farms. We’d argue that the AI research community 
is well aware, perhaps more than anybody else, that provid-
ing the technology to achieve such goals is extremely diffi-
cult. The possible contributions to achieving the UN SDGs, 
however, appear be worth the effort.

3 https:// www. ducks ize. com as of October 2023.

https://www.ducksize.com
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