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Abstract
This paper provides a comprehensive overview of the architecture required to implement selective weeding in arable farming, 
as developed within the Cognitive Weeding project. This end-to-end architecture begins with data acquisition utilizing drones, 
robots, or agricultural machinery, followed by data management, AI-based data annotation, knowledge-based inference to 
determine the necessary treatment, resulting in an application map for selective hoeing. The paper meticulously details the 
various components of the architecture and illustrates through examples how they are interconnected.
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1 Introduction

Agriculture currently faces multiple challenges, character-
ized by the imperative to optimize land utilization while 
adhering to stringent demands for ecological sustain-
ability and biodiversity conservation [1]. Crop protection 
herbicides, integral to conventional agricultural practices, 
are pivotal in this context, while mechanical weed control 
plays a minor role [16]. Reliance on chemical herbicides 
leads to major problems, such as pesticides leaching into 

neighbouring environmental compartments or weeds becom-
ing resistant [22]. In addition, the elimination of weeds and 
the resulting loss of biodiversity in agroecosystems has a 
massive impact on their ecosystem services, such as pollina-
tion or prevention of soil erosion [16].

In response to these challenges, the Cognitive Weeding 
project has undertaken the development of a selective weed 
management system presented in this paper. This system 
offers tailored treatment strategies within an expert system 
framework. To operationalize this system, detailed informa-
tion of the field is essential, necessitating meticulous sensor 
data collection and subsequent automated analysis.

This paper outlines an architectural framework that inte-
grates data acquisition, data analysis, and the expert system 
to enable a selective weed management approach. Empirical 
findings substantiate the feasibility of implementing such a 
system. This described system, importantly, holds the poten-
tial to directly integrate ecological objectives into the appli-
cation maps of agricultural machinery, thereby contributing 
significantly to the environmental and ecological sustain-
ability goals within contemporary agriculture.
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2  Related Work

During the past years, plenty of research has been done 
on the construction and effectiveness of so-called smart 
sprayers. The main objective is usually reducing the total 
volume of herbicides sprayed onto the field. Partel et al. 
[19] show an exemplary approach by combining AI-based 
plant detection with a spraying system with individually 
controllable nozzles, detecting and distinguishing weeds 
from crops, so only weeds are targeted by the sprayer. 
Similar systems are available for different crop types [13, 
18], meanwhile even commercially [4, 6]. Additionally, 
the effectiveness of selective spraying was tested under 
multiple conditions, reporting values of reduced herbi-
cide volumes between 23 % - 89 % [3], depending on tar-
get weeds or crop [2]. For the detection of weed plants, 
different sensor data (image data or 3D-information) of 
ground-based or UAV-based sensors are combined with 
computer vision algorithms [10]. These systems are quite 
capable of detecting plants (green on brown) and differat-
ing between crops and weeds (green on green). The differ-
entiation between weed species and therefore harmful and 
non-harmful weeds is still an ongoing research topic [7].

A possible approach is to adapt the damage threshold 
principle to multiple occurring weed species. While this is 
still hardly feasible in practical applications, Elstone et al. 
[9] show that spot spraying using a weed-specific damage 
threshold is possible in salad cultures.

In contrast to the available spot-spraying solutions, we 
aim to integrate the differentiation between weed species 
into the removal process. The goal is not only to target 
weeds but also classify different weed species. With weeds 
being categorized, one can utilize a decision process based 
on prior agricultural knowledge like specific damage 
thresholds to identify and remove only weeds that are con-
sidered harmful. In addition to spot spraying, site-specific 

mechanical weeding has the potential for more sustainable 
weed control. This has been done for example by varying 
the aggressiveness of different harrow types [21], but to 
the best of our knowledge not with a selective mechanical 
hoe, which is able to spare specific weeds. In the Cog-
nitive Weeding project, both a spot sprayer and a selec-
tive mechanical weeder have been tested for the removal 
of only harmful weeds. While spot sprayers are able to 
remove weeds as they are detected, the decision process 
requires the recorded data to be analysed offline. As a 
result, an application map is generated, which is known in 
subdomains like precision agriculture [8].

3  Architecture

In this section, our proposed architectural framework will be 
described. Initially, the needed expert knowledge and field 
trials are described in Sect. 3.1. Based on that, the expert 
system which applies the expert knowledge is presented 
in Sect. 3.2. Afterwards, the data acquisition using drone 
based and ground based sensors (Sect. 3.3) as well as the 
data storage and provisioning using a semantic environment 
representation (Sect. 3.4) is elaborated. Finally, the selective 
actuators which do the actual weeding based on an applica-
tion map are presented in Sect. 3.5. The general interplay of 
the components is sketched in Fig. 1 and an overview over 
the processing steps is given in Fig. 2.

3.1  Agricultural Expert Knowledge and Field Trials

To feed the expert system (Sect. 3.2) with needed rules, lit-
erature on weed crop interactions was consulted. A rule for 
categorizing each plant detected by our sensors is necessary. 
For this, we choose the categories crop, harmful and harm-
less weeds (Fig. 1). Only weeds categorized as harmful are 
going to be regulated. The first criterion is a species-specific 

Fig. 1  Schematic overview 
of the presented architectural 
framework
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weed threshold, which is already known since the 1980s. 
Unfortunately, it did not establish in common agricultural 
weeding practices [15]. This is most likely due to the labour-
intensive acquiring of species-specific plant counts and 
the concerns about upbuilding soil seed banks. Advances 
in image acquisition and processing technology facilitate 
threshold monitoring. Furthermore, sensors acquire data at 
a very high resolution, which takes patchy distribution of 
weeds into account, thus avoiding averaging weed distribu-
tion over the whole field [11].

Most relevant criteria for the categorization into harmful 
and harmless weeds after applying species-specific thresh-
olds are the distance between crop plant and weed, and the 
relative germination time of the weed plants. Most crops 
have a critical period in which they react with high yield 
depression as a result of competition. Moving from direct 
competition to more general effects of weeds, potential seed 
production posing risk for subsequent years is of interest. 
Additionally, certain weeds are potential hosts for pests, 
whereas others are hosts for beneficial insects. Roots of 
weeds can also reduce soil erosion. Furthermore, rare spe-
cies can be protected, and invasive species can be regulated 
strictly upon their first occurrence. [12]

To measure the impacts of this approach to single plant 
specific weeding, we set up field trials in both maize (Zea 
mays L.) and beets (Beta vulgaris L.). In this trials, we 

compared standard whole-area weeding with our site-spe-
cific approach. Weeding was done with the selective hoe 
(Fig. 4a). We created one variant for each image acquisition 
implement and one control group with no weed regulation at 
all. During these trials, we evaluated species-specific weed 
density and coverage. Height, leaf area index and yield were 
determined for maize.

Existing weed thresholds are developed in single com-
petition between crop and one specific weed species. In the 
field, multiple weed species coexist simultaneously. Lit-
erature indicates that a multi-species weed community has 
lower yield impact compared to a weed infestation domi-
nated by a single species [1]. To investigate the interspecific 
competition effects, we conducted a second trial. Since there 
are no weed thresholds for maize and beets, we also aimed to 
approximate potential thresholds for the most relevant weed 
species on our sites.

3.2  Expert System

Based on this expert knowledge from Sect. 3.1, an expert 
system carries out the decision process, whether a plant is 
considered harmful or not, using specifically formulated 
rules.

Using the plant detections from the sensors, the plant 
instances are stored in a grid map. Now, for each plant, the 

Fig. 2  Processing steps in the Cognitive Weeding project. Images on the top show ground-based data, images on the bottom UAV data. The right 
figure shows the application map, spots are indicating the location of harmful weeds
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number of plants of the same species is counted in the sur-
rounding square meter ( Count∕m2 ). This builds the founda-
tion for the decision process and is assigned to each plant, 
as described in [20].

For example, in a cluster with 10 plants of Chenopodium 
album and 3 plants of Sinapsis arvensis, each C. album 
plant is assigned the value 10, and each S. arvensis plant is 
assigned the value 3.

During rule inference in the expert system, the Count∕m2 
value of each plant is compared with a species-specific 
threshold. When exceeding the threshold, a plant is catego-
rized as a harmful weed, otherwise it is considered harmless. 
If a threshold is not available for a species, a threshold for a 
higher taxon is used.

For example, the species Echium vulgare is detected, but 
there is no threshold for E. vulgare or its genus, Echium. 
There is a threshold for the family Boraginaceae, so it is 
used in the expert system. The highest taxon with an avail-
able threshold is class with Magnoliopsida (monocotyl) 
and Liliopsida (dicotyl), which includes all relevant plants. 
Additional rules are possible, but currently not implemented.

Also, it is possible to handle more general classifica-
tions. Sometimes, species-specific classifications are hard 
to achieve. In this case, a more general classification i.e., 
genus-specific can be processed identical to species-specific 
classifications. This also applies to unspecified weeds, that 
are distinguished from the crop but are not classified further. 
Those are treated as monocotyl, since monocotyl plants have 
a lower damage threshold than dicotyl plants. Furthermore, 
detected crops are categorized as such and are excluded from 
the threshold rule inference.

After categorizing all detected plants, an application map 
is generated based on the position of all harmful weeds, 
marking the spots, where weed removal is required (Fig. 2).

3.3  Data Acquisition

The expert system mentioned earlier requires information 
on the plants present in the field. To acquire this informa-
tion, the plant detection was carried out in field trials using 
both a ground based multispectral sensor and a multispectral 
UAV-camera (Fig. 3). Data from both sensors were collected 
two to three days before the hoeing events, depending on 
weather conditions.

The ground-based sensor data was recorded using a JAI 
fusion multispectral sensor covering the wavelength ranges 
of 400-700 nm (visible RGB spectrum) and 750-900 nm 
(near infrared). The camera is supported by 10 Hz short-
pulsed light source to cope with the influence of sunlight. 
It was mounted on a sensor carrier in front of a tractor at a 
height of 0.5 m, resulting in a ground resolution of 0.5 mm 
per pixel. The images were annotated with position and 
orientation information from 2 RTK GNSS antennas, and 

pre-processed to even out lighting conditions before being 
fed to the classifier. A semantic segmentation approach 
based on the EfficientNet architecture [24] was used, which 
outputs the most likely of up to 81 distinct plant species per 
super pixel. Sensor data and classification results are shown 
in the top of Fig. 2. On our test set, an F1 score of 0.92 for 
maize and F1 scores between 0.74 and 0.84 for the weed 
classes were achieved. An earlier version of the system is 
described in [5].

UAV imagery was captured using a MicaSense Altum 
multispectral camera mounted on a DJI Matrice 210. The 
flight altitude was 10 m with a front and side overlap of 75%, 
resulting in a ground resolution of 3.5 mm. Images were 
stitched using Agisoft Metashape (Version 1.7.2), georefer-
enced with field targets (located with a bi-differential GNSS 
receiver) and radiometrically calibrated using a white refer-
ence panel. The detection of maize and up to six occurring 
weed species was done with a pixel-based approach using a 
Support Vector Machine [14]. The classification results were 
post-processed using an NDVI mask and a majority filter to 
eliminate misclassifications and vectorized to polygons. Sen-
sor data and classification results are shown in the bottom 
of Fig. 2. F1 scores between 0.7 and 0.91 were achieved for 
maize, and mean F1 scores between 0.64 and 0.90 for the 
weed classes, depending on phenological phase and weed 
density.

3.4  Data Storage

To standardize the data interface and to enable spatio-tem-
poral-semantic queries, the sensor data as well as the geo-
referenced plant detections are stored in the semantic envi-
ronment representation SEEREP [17]. The position of the 
detections is stored as a 3D point with an attached timestamp 

Fig. 3  Ground based sensor mounted on the sensor carrier in front of 
a tractor and UAV with multispectral camera during data acquisition 
on 19th of June 2023
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and a semantic label. Based on this information, indices are 
created to enable efficient queries based on the position, the 
timestamp and the semantic label. Additionally, the semantic 
label is extended by a unique identifier representing a spe-
cific plant instance. If the detections of consecutive images 
in the RGB stream of the ground based system can be associ-
ated with each other, they get the same unique identifier of 
the plant instances so that only one plant instance is present 
instead of multiple detections.

These plant instances and their positions can be queried 
in the next step by the expert system (see Sect. 3.2) to get 
all needed information for the reasoning process. For this 
specific application, the images themselves are not needed in 
the following steps. Thus, it is not strictly necessary to store 
the images in SEEREP and the storage of the images can be 
omitted for efficient data storage.

3.5  Selective Weeding Actuators

Finally, the application map created by the expert system 
is used to control the actual weeding hardware. For the sin-
gle plant specific regulation, a selective hoe and a preci-
sion sprayer from Amazone are developed further and used 
within this project. The selective hoe (Fig. 4a) can actuate 
each of the hoe coulters individually. Each coulter has a 
working area width of 0.65 m at a 0.75 m crop row distance 
and a resolution of 0.8 m in the driving direction at 7 km/h. 
The selective hoe was already used in first experiments. The 
precision sprayer is still under development and aims to have 
a spot size of 0.1 m by 0.1 m (currently at 4 km/h, higher 
velocities are under development). The current prototype is 
shown in Fig. 4b.

4  Experiments

In 2023, our initial field trials demonstrated the fundamental 
functionality of all proposed framework modules. During 
three points in time in the season, we utilized ground-based 
and UAV-based sensor data to create application maps of dif-
ferent parts of our test field using the framework presented. 
Using the selective hoe (Fig. 4a) we achieved a reduction of 
the regulated area between 20 % and 93 % for organic maize.

During these experiments, a few issues became apparent 
which will be addressed in the remainder of this research 
project: (1) The ground-based plant detections are generated 
from an image stream, where a single plant appears in mul-
tiple consecutive images. Even though fused plant instances 
can be represented in the data storage, each appearance 
is currently considered as a single plant instance, which 
inflates the total plant count and results in more weeds cat-
egorized as harmful. Fusing the plant detections reliably to 
single instances has been challenging and is part of current 

work. Until now, an estimate of how often a single plant 
appears in the data is used to reduce the total number per 
species, although this is just considered a rough projection. 
(2) The UAV-based plant classification was done using a 
pixel-based Support Vector Machine. While this method is 
fast to apply and does not require a large amount of train-
ing data (compared to deep learning methods), it does not 
generalize well over different phenological phases, weather, 
and lighting conditions. Therefore, it needs to be re-trained 
for each classification. Also, the classification may contain 
some misclassified pixels that are treated as individual plants 
in the decision process. For the next season, a more efficient 
instance segmentation classifier will be trained based on the 
data collected in 2022 and 2023 to make the classification of 
UAV imagery less time-consuming and more accurate. (3) In 
the rule inference process, n∕m2-values are compared with 
thresholds based on matching taxon names. When differ-
ent labels are used between detector and the expert system, 
thresholds can not be applied successfully (i.e. Z. mays and 
corn refer to the same species). To solve this, an ontology 
based on the Agrovoc thesaurus [23] will be used as com-
mon vocabulary, so different labels are associated with the 
same plant or taxon. (4) Furthermore, the quality of the clas-
sification is critical for the final result. The classifiers often 
identify weeds as "unspecified weed", which can render 
the species-specific decision process less effective. Further 
improvement of the weed detection is therefore necessary. 
At least, a distinction between monocotyl and dicotyl should 
be possible reliably.

5  Conclusion

The prototype of the framework developed in Cognitive 
Weeding is working. As mentioned in Sect. 4, some issues 
will be optimized for the next season. In general, the results 
are promising. The approach to use formalized expert knowl-
edge for single plant-specific decision-making on whether 
to regulate the weed or not is very convincing. The known 

(a) The selective hoe with single coulter actuation.

(b) The precision sprayer.

Fig. 4  The two selective weeding actuators used in the experiments
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damage threshold system for weeds could be revived with 
the use of this concept and iteratively adapted to site-specific 
conditions. Further rules could be added to incorporate more 
environmental and biodiversity based considerations, though 
the transferability is ambiguous.

On the one hand, the sensor system can be exchanged to 
include further relevant information based on higher resolu-
tion, different carrier platforms or spectral bands. As men-
tioned, rules for the expert system can be adapted and the 
creation of application maps can be applied to other use 
cases. For example, weed management of harmful weeds 
in grain crops or grasslands could easily be implemented. 
Additionally, the presented architectural framework eases 
the development of weed thresholds, by regulating weeds in 
plots so that a given plant density is present, and the com-
petition effects can be evaluated. With bigger alterations, 
even the generation of fertilizing maps or harvesting maps 
may be possible.

On the other hand, when using the developed system for 
weed control on different sites or in subsequent years, limi-
tations may become evident. Changes in soil conditions, a 
different weather conditions and crop rotation will lead to 
the emergence of different weed species. Additionally, each 
crop reacts differently to competition of the same weed spe-
cies. Also, weather conditions can shift competition between 
crops and weeds. Therefore, experiments in the next year 
will be particularly intriguing. Moreover, with the newly 
available spot sprayer featuring a herbicide spot radius of 
5 cm, the area requiring regulation will be further reduced. 
We expect significant herbicide savings, potentially meeting 
the goals for GAP 2030 with a 50 % reduction in herbicide 
usage.
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