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Abstract
Valuable insights, such as frequently visited environments in the wake of the COVID-19 pandemic, can oftentimes only be 
gained by analyzing sensitive data spread across edge-devices like smartphones. To facilitate such an analysis, we present 
a toolchain called PrivAgE for a distributed, privacy-preserving aggregation of local data by taking the limited resources 
of edge-devices into account. The distributed aggregation is based on secure summation and simultaneously satisfies the 
notion of differential privacy. In this way, other parties can neither learn the sensitive data of single clients nor a single cli-
ent’s influence on the final result. We perform an evaluation of the power consumption, the running time and the bandwidth 
overhead on real as well as simulated devices and demonstrate the flexibility of our toolchain by presenting an extension of 
the summation of histograms to distributed clustering.
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1 Introduction

Analyzing huge amounts of data can bring valuable insights 
in various scenarios. In most cases, such an amount of data 
is distributed among multiple clients, specifically edge-
devices. Edge-devices are devices like smartphones or 
smartwatches that are limited in their resources, but pro-
vide a multitude of sensors, which can be used to collect all 
sorts of data. However, an increasing awareness of privacy 
concerns, e.g. supported by the general data protection regu-
lation in the EU [6], requires that the privacy of individu-
als is protected. To still be able to maximize the value of 
sensory data while simultaneously providing the necessary 
degree of privacy protection, we see two approaches, namely 
privacy-preserving federated learning or specialized aggre-
gation schemes. To the best of our knowledge, frameworks 
for privacy-preserving federated learning oftentimes do not 
provide any code [10, 11], or the provided code can only be 
used to reproduce experimental results and set up a local 
implementation [3, 7]. The same holds for privacy-preserv-
ing aggregation schemes specialized on specific use-cases 
like heavy hitters [12] or distributed clustering [4]. Even if 
an implementation is provided, it can only be used to create 
a local setup.
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Although frameworks for federated learning and special-
ized aggregation schemes are an important building block, 
we argue that there is also the need for a toolchain which can 
be used to implement the basic setup of distributed learning. 
This includes an app which is compatible to edge-devices 
and also a server which coordinates the learning process. 
Such a setup should lay the foundation for providing the 
necessary degree of privacy protection and for taking into 
account the limited resources of edge-devices.

In this light, we propose a toolchain called PrivAgE that 
provides the basic setup for distributed learning on edge-
devices and enables its rapid realization. This setup includes 
an app, a server and a communication protocol. First, a user 
installs the app on their edge-device and the app starts a data 
collection phase. At a certain point, the data collection stops 
and the collected data gets pre-processed into a summable 
format. Then, the server coordinates a secure aggregation 
to obtain a global result from all the local, pre-processed 
data of clients. After the aggregation, the server publishes 
the global result on a website to facilitate further analyses.

To enable secure aggregation, we provide an implemen-
tation of a state-of-the-art secure summation protocol [2] 
such that the server and other parties cannot learn individual 
inputs. Clients introduce random noise to their local data 
before the aggregation. By making use of the popular pri-
vacy notion differential privacy [5], the local noise addition 
in combination with the security guarantees of the secure 
summation protocol suffice to hide the influence of clients 
in the aggregated sum, i.e. to protect the privacy of clients. 
The implementation of the data collection, the exact format 
of the aggregated data and safeguarding differential privacy 
is tailored to the specific use-case.

This work is a proof of concept of our toolchain for a 
given use-case. The use-case is about collecting informa-
tion about frequently visited environments in a pandemic 
like COVID-19 [1]. Using our toolchain, clients locally 
record audio files, determine the surrounding environment 
via machine learning called acoustic scene classification and 
aggregate the resulting environment labels to a local histo-
gram. To further enrich the local data, clients also include 
the number of Bluetooth devices in their surrounding into 
the local histogram. Then, random noise is added to their 
local statistic and a secure aggregation takes place based 
on the provided secure summation protocol. Afterwards, 
the server publishes the final histogram to enable a further 
analysis by experts. The summed up noise in combination 
with the guarantees of the secure summation suffice to pro-
tect the privacy of single clients’ data.

Finally, we evaluate the power consumption, the running 
time and the bandwidth overhead of the most consumptive 
parts of our toolchain applied to the use-case of environ-
ment labels and thereby demonstrate its compatibility with 
edge-devices. Additionally, we discuss and demonstrate 

an extension of our toolchain to distributed, differentially 
private clustering. This naturally extends our use-case in 
the scenario of the COVID-19 pandemic for extracting not 
only the most frequent environment labels but sequences of 
labels. We present how we generated synthetic data, dem-
onstrate that such sequences can indeed be clustered and 
discuss how this could be implemented.

Contribution

– We present PrivAgE a toolchain for distributed and 
secure aggregation of sensory data explicitly designed 
for edge devices.

– We use a state-of-the-art secure summation protocol to 
prevent any external party and even the central server to 
learn individual inputs and apply the notion of differen-
tial privacy to hide the presence of single clients’ data in 
the final result.

– We demonstrate the flexibility of our toolchain by directly 
incorporating a use-case for improving the information 
flow in scenarios like a pandemic and discuss a potential 
extension to distributed clustering. Our source code is 
available at https:// github. com/ UzL- PrivS ec/ PrivA gE.

2  Parties

We consider the following parties in the context of our 
toolchain:

Users A user collects and stores sensitive data on their 
device. Thus, users have a vested interest in protecting their 
own data from unauthorized individuals. Additionally, a 
device is limited in its resources due to natural constraints 
imposed by, e.g., smartphones.

Server The server acts as an intermediary in our toolchain 
by providing necessary hyper-parameters and coordinating 
the aggregation. In contrast to clients, the server is equipped 
with high computational resources to efficiently perform the 
aggregation process.

Third Parties Other parties, such as public health officials, 
researchers, or users, are permitted to analyze the published 
results. However, they should not be able to learn single 
clients’ data (security) or whether a specific client was part 
of the aggregation (privacy).

3  Edge‑Device Toolchain

In this section, we give an overview over the individual steps 
of our aggregation toolchain and present design choices as 
well as details on the implementation. The specific reali-
zation of the individual steps depends on our use-case of 
extracting frequently visited environments in a pandemic.

https://github.com/UzL-PrivSec/PrivAgE
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3.1  Overview

Local Data Collection & Pre-Processing The app of our 
toolchain automatically collects environment labels over 
a specific period of time by using the microphone of the 
device and a machine learning model trained on acoustic 
scene classification. The environment labels are represented 
in the form of a histogram. To preserve privacy when deal-
ing with histograms, clients inject random noise into each 
count of the histograms [5].

Secure Aggregation The locally noised histograms are 
securely aggregated using a specific secure multiparty com-
putation (SMPC) protocol. This protocol allows clients to 
collaboratively compute an aggregated sum without reveal-
ing individual inputs to the server. After aggregating all local 
histograms, the noise introduced by each user separately suf-
fices to hide the influence of a single user on the aggregated 
result. Thus, third parties remain oblivious to individual 
contributions, safeguarding the privacy of the users.

Publishing After the server has aggregated the local 
histograms in a secure and privacy-preserving way, the 
resulting global histogram is ready to be published. Besides 
coordinating the secure aggregation, the server also hosts a 
website where the final results are made public. Interested 
third parties such as public health officials or researchers 
can now gain insights into the overall patterns of visits to 
different environments.

3.2  Technical Building Blocks

This section presents details about the building blocks of 
PrivAgE, namely acoustic scene classification (ASC) for 
collecting environment labels, a state-of-the-art secure sum-
mation protocol and differential privacy to guarantee the 
necessary degree of privacy.

Acoustic Scene Classification The data collection step 
mainly consists of a machine learning task called acoustic 
scene classification. Our app regularly records audio files 
on a user’s device. The files are used as input for a neu-
ral network trained to predict the environment in which the 
recording took place. We call this prediction the environ-
ment label. To enhance this information, we incorporate the 
number of Bluetooth devices present at the time of record-
ing, which can be obtained using Bluetooth LE technology. 
By aggregating local histograms over environment labels 
and Bluetooth device counts, we generate statistics that are 
highly valuable to experts. Especially in scenarios like the 
COVID-19 pandemic, these statistics can contribute to a bet-
ter understanding of infection waves.

Secure Summation We aim to ensure security for indi-
vidual inputs in the aggregation. Therefore, we employ a 
secure summation protocol to aggregate the local histograms 
of individual users into a single global histogram. For this 

purpose, we utilize the protocol introduced in [2] which can 
handle scenarios where some clients drop out during the 
execution, which is a realistic consideration when dealing 
with edge-devices. We have implemented the standard ver-
sion of the protocol in which the server acts honest-but-
curious which means that the server follows the protocol but 
tries to infer as much information as possible. The protocol 
can also be extended in a way such that it is able to tolerate 
a malicious server cooperating with other malicious clients.

Privacy Protection To protect the privacy of clients who 
take part in the aggregation, we require the aggregation to 
satisfy the notion of differential privacy (DP).

Definition 1 Differential Privacy (DP). A randomized algo-
rithm M ∶ D → A is �-differentially private if for any pair 
of databases D0,D1 ∈ D that only differ in a single element 
and all tests S ⊆ A on the result of M the following holds:

Pr[M(D0) ∈ S] ≤ exp(�) ⋅ Pr[M(D1) ∈ S].

We consider a scenario in which a data set is distributed 
among clients. The data set contains data points which attrib-
utes can be correlated. Thus, when protecting the privacy 
of individuals, we aim to hide the influence of entire data 
points and not single attributes. We consider two neighbor-
ing versions of the distributed data set, one data set D0 with 
all the data points and one data set D1 where the data points 
of a single client are missing. One of the data sets is used 
as input for our aggregation algorithm M. An attacker then 
receives the output of M and has to decide which data set 
was used as input. Formally (see Definition 1), we say that 
if the output distributions of the aggregation M(D0),M(D1) 
regarding neighboring data sets are similar s.t. their ratio is 
bounded by exp(�) , then the algorithm satisfies DP. In this 
way, the degree of privacy protection can be controlled via 
the parameter � called privacy budget. Generally, it can be 
assumed that with � ≤ 1 a reasonable privacy protection is 
ensured. To satisfy DP, an algorithm has to be randomized 
and for further details we refer to [5]. Intuitively, this means 
that even if an attacker has knowledge over the entire data 
set except for the data points of a single user, the influence of 
this user stays hidden and thus the privacy of this user can be 
protected. To hide the influence of a single users’ data, their 
worst-case influence on the final result has to be bounded 
from above by a finite value. We call this value sensitiv-
ity. When working with environment labels, we restrict the 
local count per environment label and the count of Bluetooth 
devices to a maximum of c and b, respectively. Now, the 
influence of a single client is bounded and by adding Lapla-
cian noise scaled by c

�
 and b

�
 , the summation of environmental 

labels and number of Bluetooth devices preserves �-DP [8].
In our distributed scenario, the server first publishes the 

required privacy budget � and then performs an aggrega-
tion of all clients’ individual data. Although clients locally 
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add the required amount of noise to their counts, directly 
aggregating all noised counts does not preserves privacy 
since other parties and the server have direct access to the 
individual noised inputs. Therefore, we use a secure sum-
mation protocol such that the server only obtains the sum of 
all individual inputs. In this way, we effectively simulate a 
trusted aggregator which enables the aggregation to satisfy 
DP.

To account for potential dropouts, where a proportion � 
of users may drop out, users are required to scale their noise 
by 1

1−�
 . This precaution ensures that even in the worst-case 

scenario the aggregated noise remains sufficient to achieve 
differential privacy.

4  Evaluation

4.1  Implementation Details

The implementation of PrivAgE involves several compo-
nents. The app was developed using Android Studio in Java 
and Kotlin, while the SMPC functionality was implemented 
using the Java Native Interface in C++. On the server side, 
we implemented the secure summation part in C++. Both 
the app and server components of the protocol rely on the 
libraries “boost” and “cryptolib” to facilitate their function-
ality. The web services and the underlying database aspects 
are implemented using Python3 and the framework Django.

4.2  Experiments

To demonstrate the efficiency of our aggregation toolchain, 
we conduct experiments of specific parts of the toolchain. 
The results show that being part of the aggregation only 
introduces a moderate overhead to a client’s device. We per-
form all measurements on Google Pixel 5 smartphones and 
to perform secure aggregation, we use simulated clients.

Running Time As secure aggregation constitutes the most 
to the running time, we measure the running time of our 
implementation of the protocol. We let the secure summation 
run 50 times for three different numbers of simulated clients. 
The results can be seen in Table 1. Our implementation is 

practical for a large amount of users: The running time for 
secret sharing and the pseudo-random generator (PRG) eval-
uation roughly doubles for every order of magnitude. This 
means our implementation succeeds in maintaining a sub-
linear running time (in the number of total clients) which is 
the main reason for the efficiency of the protocol.

Power Consumption Acoustic scene classification (ASC) 
and secure summation are the central components in our 
use-case which is why we measure the respective power con-
sumption. We first measure the baseline power consumption 
on a Google Pixel 5 smartphone without any active apps. To 
simulate the application of collecting environment labels 
in the every day life, we activate the ASC every 5 minutes 
and once a minute to underline the high consumption of 
performing inference with a neural network. We also include 
power measurements for plain secure aggregation of 100 
users which consists of invoking of the secure summation 
protocol once per hour.

The plot in Fig. 1 displays the power consumption of the 
four scenarios. It shows that performing ASC once a min-
ute drastically increases the power consumption. However, 
when comparing the daily routine to the baseline, the power 
consumption only increases by 5% . This is further reduced 
if ASC is omitted and the secure summation protocol gets 
invoked once per hour. In summary, the results show that 
secure aggregation and ASC without too many activations 
only increase the power consumption by a tolerable amount.

Bandwidth To measure the amount of data a smartphone 
receives and sends when being part of our toolchain, we 
make use of a profiler, an in-built tool of Android Studio, for 
measuring different system resources. A client first collects 

Table 1  Running time on simulated clients (in seconds) 
for Shamir secret sharing, PRG expansion (AES in coun-
ter mode) and the entire protocol. We set the hyper-parameters 
� = 1∕20, � = 1∕3, � = 40, � = 30 accordingly. For further details, 
we refer to [2]

Users Neighbours Sharing PRG Eval Total

103 83 0.017 0.033 24.5
104 103 0.033 0.078 27.43
105 109 0.061 0.112 28.41

Fig. 1  Effects of PrivAgE on the battery level on a Google Pixel 5 
over 12 hours in idle-mode (blue), acoustic scene classification (ASC) 
every 5 minutes (orange), ASC every minute (green) and plain secure 
summation (SecSum) executed once per hour (brown). While ASC 
every minute has a large impact on the battery level, executing ASC 
and SecSum not every minute only introduces a small overhead
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a few environment labels, creates a histogram and takes part 
in a secure aggregation of local histograms with around 104 
participants in total which requires a single invocation of the 
secure summation protocol. In the process, the client is a real 
smartphone and the other participants are simulated clients.

The results show that a client receives and sends around 3 
MB of data. This means our implementation requires around 
6 MB of data. For comparison: To browse on Instagram for 
5 minutes requires on average 35 MB of data which is more 
than 5× of our traffic. The experiments on the bandwidth 
show that the collection of environment labels in combina-
tion with secure aggregation only lead to a small amount of 
additional traffic.

5  Clustering Short Traces

To demonstrate that our toolchain is not restricted to the 
aggregation of histograms, we propose an interesting exten-
sion to distributed clustering as future work. This is also an 
extension of our use-case, because with clustering, we are 
interested not only in frequently visited environments but 
in frequently occurring sequences of environments we call 
traces. We first demonstrate how to generate a synthetic data 
set of traces and present results on how differentially private 
clustering performs on these traces. Finally, we discuss the 
implementation of the distributed analysis of traces.

5.1  Synthetic Trace Generation

Since we are not aware of any real-world data set containing 
traces, we generate synthetic data first. Specifically, we use 
random walks to generate synthetic traces. The resulting data 
set contains two types of traces: The first type represents 
repetitive daily routines, characterized by common patterns 
that occur frequently. These patterns have a high occurrence 
rate and mirror societal behavior. The second type of traces 
captures individual movement patterns that occur from time 
to time but are not representative for the population and are 
regarded as noise.

5.2  Evaluation

To demonstrate that traces can be aggregated by using a 
differentially private clustering algorithm, we apply such 
an algorithm in the central scenario. Specifically, we use 
the diffprivlib [9] Python library, which provides a differ-
entially private clustering algorithm based on KMeans. Our 
objective is to identify traces that represent frequently occur-
ring daily routines. In our evaluation, we vary the privacy 
budget � and the number of random walks, both affecting the 
accuracy of the clustering. Each random walk can be con-
sidered as a single individual generating environment labels 

through their daily activities, resulting in more traces. The 
results of our evaluation are depicted in Fig. 2. For bench-
marking purposes, we also compare the differentially private 
KMeans clustering implementation to a non-differentially 
private version.

With an increased number of random walks (samples), 
the clustering accuracy gets better. For a very strong privacy 
protection (ε = 0.1) the accuracy is low. When increasing 
ε to 1, the performance drastically improves to about 30%. 
Further increasing ε only improves the accuracy marginally 
to about 43%. The non-private clustering has an accuracy 
of up to 78%. This demonstrates that frequently occurring 
traces can be obtained via clustering while simultaneously 
enforcing privacy protection.

5.3  Integration

To integrate the analysis of traces into our toolchain, one can 
utilize the differentially private distributed clustering algo-
rithm LSH-Splits [4]. It can be implemented in a distributed 
manner solely based on secure summation which makes it 
compatible with our toolchain. The algorithm consists of 
two parts. The first part happens locally on each client and 
the second part at the server. Locally, clients project their 
data into a lower dimensional space by using a public projec-
tion which consists of a single matrix multiplication. Next, 
each client has to assign each of their data points to the clos-
est point from a set of predefined reference points of size k. 
This involves O(k) distance calculations. Then, clients derive 
two special data structures from the closest reference points 
represented as a histogram and a vector and send both to the 

Fig. 2  Clustering accuracy of differentially private clustering for 
identifying frequently occurring traces. We use different privacy 
budgets and compare to a non-private K-Means baseline. With an 
increased number of random walks (more samples) the accuracy gets 
better and for a privacy budget of 1 we can still achieve a reasonable 
accuracy
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server. On the server side, the sum of vectors and the sum 
of histograms are used to compute a clustering for the dis-
tributed data set. Since this algorithm requires only a single 
round of communication, an integration into our toolchain 
would require only two invocations of the secure summation 
protocol, one for each of the local data structures. In sum-
mary, the LSH-Splits clustering algorithm can be integrated 
into our toolchain due to the negligible number of compu-
tations for clients and the compatibility of the aggregation 
operations with secure summation.

In this scenario, clients create traces from local environ-
ment labels obtained via acoustic scene classification and 
join the distributed clustering when initiated by the server 
with their traces as data points. Due to secure summation, 
the server cannot learn individual inputs and only obtains the 
final cluster centers. The information which can be gained 
from these centers is that each center directly corresponds 
to a frequent trace. In this way, local traces can be aggre-
gated in a secure and privacy-preserving way with only a 
few adjustments to the underlying aggregation algorithm.

6  Conclusion

We introduce a toolchain called PrivAgE  to enable the 
aggregation of sensitive data distributed across edge-
devices. Our toolchain takes the limited resources of edge-
devices into account and covers the process from collecting 
local data to the publishing of results. It is separated into two 
parts, an app and a server to coordinate the aggregation and 
publish the result on a website. The aggregation is based on 
a secure summation protocol and differential privacy. Thus, 
other parties cannot learn individual inputs nor their influ-
ence on the result.

Throughout this work, we present the toolchain in the 
light of a special use-case based on a machine learning 
model for acoustic scene classification, specifically in the 
context of the COVID-19 pandemic, to facilitate the analy-
sis of frequently visited environments. To demonstrate the 
efficiency of our toolchain in this use-case, we measure the 
resource consumption on real and simulated devices in terms 
of power, time and bandwidth. In summary, collecting data 
locally and being part of the aggregation only introduces a 
moderate overhead to a client’s device.

To further demonstrate the flexibility of our toolchain we 
present an extension from environment labels to sequences 
of labels and show that it can directly be extended to dif-
ferentially private clustering to obtain frequently occurring 
sequences of environmental labels.
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