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Abstract
Many progressive diseases develop unnoticed and insidiously at the beginning. This leads to an observational gap, since the 
first data on the disease can only be obtained after diagnosis. Mutual Hazard Networks address this gap by reconstructing 
latent disease dynamics. They model the disease as a Markov chain on the space of all possible combinations of progres-
sion events. This space can be huge: Given a set of n ≥ 266 events, its size exceeds the number of atoms in the universe. 
Mutual Hazard Networks combine time-to-event modeling with generalized probabilistic graphical models, regularization, 
and modern numerical tensor formats to enable efficient calculations in large state spaces using compressed data formats. 
Here we review Mutual Hazard Networks and put them in the context of machine learning theory. We describe how the 
Mutual Hazard assumption leads to a compact parameterization of the models and show how modern tensor formats allow 
for efficient computations in large state spaces. Finally, we show how Mutual Hazard Networks reconstruct the most likely 
history of glioblastomas.

Keywords Cancer genetics · Cancer progression model · Continuous-time Markov chains · Glioblastoma · Huge 
combinatorial state spaces · Low-rank tensor formats · Probabilistic graphical models · Proportional hazards · 
Reconstruction of latent processes

1  Disease Histories

Progressive diseases have long and complex histories. For 
example, cancer progresses over time as mutations accumu-
late in the genomes of cancer cells, immune cells invade the 
tumor, and cells leave the primary lesion and spread to other 
organs where they form metastases. In addition, clinical 
complications, the development of drug resistance, and in 
some cases death of the patient are events in the course of a 
disease. Every patient has their own disease history, includ-
ing different progression events that may occur in different 

temporal orders. The onset of these stochastic processes is 
never observed. When a patient experiences symptoms and 
is diagnosed, many of the events have already occurred. To 
better understand the genesis of these diseases, we want to 
reconstruct the dynamics of progression-event accumula-
tion. Additionally, to guide treatment decisions, we want to 
extrapolate the process to predict what will happen next in 
a patient’s disease.

By our definition, event data are binary and consist of 
vectors that store all events which have occurred during the 
course of a patient’s disease up to the time of observation, 
see Figs. 1a and 1c. In some cases, such data are available 
at several points in time, and we can therefore observe how 
the disease developed. However, more often, we have only 
one snapshot of the process. In cancer tissue is typically 
extracted only once, and we have to rely on this single obser-
vation of the disease to understand its entire course, past and 
future. Even more challenging, we do not know the time of 
onset of a tumor, and thus we do not know either to which 
point in time the observation corresponds.

Data show that progression events are typically not inde-
pendent from one another [36]. In cancer, we observe certain 
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mutations predominantly in tumors that have also acquired 
a specific other mutation. Vice versa, certain pairs of muta-
tions are hardly ever observed together, i.e., they display 
patterns of mutual exclusivity [32]. These dependencies can 
be modeled by assuming that the occurrence of one event 
changes the rate of another event. For example, in the case of 

mutually exclusive events, the event that occurs first makes 
the other less likely to occur. These dependencies are the key 
to reconstructing the course of the disease.

Figure 1 is an example of how such dependencies can be 
deduced from snapshot data. It shows two simulated data 
sets of four mutations recorded in a tumor cohort. Figure 1a 
was generated assuming independent mutations, while 
Fig. 1c was generated with certain dependencies between 
the mutations. Furthermore, the mutations have the same 
probability to manifest spontaneously, which we call their 
“base rate.” We now explain two dependencies in Fig. 1.

In Fig. 1c, M4 occurs predominantly if M1 does not occur 
and vice versa. Model B in Fig. 1d explains these depend-
encies by assuming that the occurrence of one of the two 
makes the other occur with a lower rate. This is indicated by 
the two orange arrows between M1 and M4. Model A cannot 
explain this pattern.

Next, we look at M1 and M2, whose relationship is not 
symmetric. In contrast to Data Pattern A, almost all samples 
in Data Pattern B that show M1 also have M2. On the other 
hand, only about half of the samples with M2 also show M1. 
Model B explains this by assuming that M1 increases the 
rate of M2, which is indicated by a green arrow, while M2 
has no influence on the rate of M1.

In a model with such dependencies, different temporal 
orderings of events do not have equal likelihoods. Let us 
assume that a tumor has mutations M1 and M2. Since M1 
makes future acquisition of M2 more likely, but not the other 
way around, the temporal order M1→ M2 is more likely 
than M2→M1. Similarly, in a tumor with M1 and M3, the 
order M3→ M1 is more likely than M1→M3, as M1 inhibits 
M3.

2  Related Work

The literature on disease progression models is long and has 
been excellently reviewed elsewhere [3, 13, 15, 24]. Here, 
we focus on recent contributions that paved the way for 
Mutual Hazard Networks. Beerenwinkel et al’s Conjunctive 
Bayesian Networks [2] are Bayesian networks whose node 
variables are binary and represent the presence or absence 
of disease events. Events can only occur if all their parent 
events have already occurred. Mutual dependencies are not 
allowed. For mutually exclusive events, workarounds have 
been developed [11, 19]. Mutual dependencies were intro-
duced by Hjelm et al’s Network Aberration Models [26]. 
They model disease progression using Markov chains whose 
state spaces consist of all possible subsets of the events con-
sidered. Each event has an aberration intensity that can be 
increased - but not decreased - by other events. Also the 
probability that the sample is “discovered” is modeled, 
depending on the number of events accumulated. Johnston 

Fig. 1  Two Mutual Hazard Networks, Model  A and  B, describing 
four events M1-M4 (Figs. 1b and 1d, green arrows indicate promot-
ing, orange arrows inhibiting dependencies) and their corresponding 
data patterns (Figs. 1a and 1c, columns are samples and rows indicate 
absence or presence of an event). In Model  A, the events accumu-
late independently from one another, while Model B assumes certain 
dependencies among events. Figure  1e shows the probabilities with 
which orders or sets of events will be observed according to the two 
models
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and Williams introduced HyperTraPS [28], a Markov chain 
Monte Carlo sampling algorithm that allows one to distin-
guish between different trajectories of event accumulation. 
In fact, this statistical platform can be seen as a sampling-
based approach to learn the parameters of a Mutual Hazard 
Networks under certain additional assumptions on the nature 
of observation times. Finally, Gotovos et al describe a simi-
lar sampling-based algorithm that scales up parameter esti-
mation in Mutual Hazard Networks in a way alternative to 
the low-rank tensor formats described here [20]. Finally, we 
mention the R package and web application EvAM-Tools, 
which allows one to train multiple state-of-the-art cancer 
progression models using a unified interface [14].

3  Mutual Hazard Networks

Mutual Hazard Networks model disease progression with 
continuous-time Markov chains. They drastically reduce the 
number of free parameters using the Mutual Hazard assump-
tion. Given cross-sectional data, optimal parameters can be 
found using maximum-likelihood estimation. This can be 
done for data with both known and unknown observation 
times [38, 39].

In the following, we describe Mutual Hazard Networks 
and their parameter inference.

3.1  Disease Progression Modeled by a Markov 
Chain

For a set of n binary events, we define a Markov chain Xt on 
the state space S = {0, 1}n , representing all 2n possible com-
binations of these events. The vectors in S represent observ-
able states of the disease at some time point t and contain 1’s 
for events that have occurred until time t and 0’s for those 
events that have not. We assume that at time t = 0 no event 
has occurred yet and that events accumulate one at a time 
and irreversibly. In other words, if the ith entry of a state 
vector x switches from 0 to 1 (we denote the resulting vector 
by x+i ), all state vectors at later times hold a 1 in this entry.

The rate matrix Q of the Markov chain can be very large, 
as the state space S grows exponentially with the number of 
events. Note that by ordering S lexicographically, the rate 
matrix becomes lower triangular due to the irreversibility 
of events, as depicted in Fig. 2a.

3.2  Reducing the Number of Free Parameters 
in the Rate Matrix with the Proportional Hazard 
Assumption

The estimation of Q would be intractable for a large number 
of events n. [39] alleviate this problem by assuming addi-
tional structure of Q, introducing what we call the Mutual 

Hazard assumption. Their Mutual Hazard Networks are 
probabilistic graphical models that describe the Markov 
chain’s transitions as Cox Proportional Hazard Models [9]. 
In concrete terms, the rate of transition from a state x to the 
state x+i is parameterized as

This represents the accumulation rate of an event  i as 
the product of the event’s positive base rate Θii and posi-
tive influence factors Θij for each event j that has already 
occurred in x. The diagonal entries of the resulting matrix Θ 
represent the spontaneous rates at which an event occurs if 

qx→x+i
= Θii

∏

xj≠0

Θij .

Fig. 2  Fig. 2a shows the sparse lower-triangular rate matrix QΘ of a 
Mutual Hazard Network with three events. Note that the states are 
ordered in lexicographical order. Figure 2b visualizes the correspond-
ing Markov chain’s states and some of the transition rates. Straight 
arrows indicate transitions that introduce a new event. They occur 
with the base rate of this event multiplied by the influence of other 
events that are already present, as indicated by curved arrows
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no other events have yet occurred. Off-diagonal entries Θij 
encode inhibiting (< 1 ) or promoting (> 1 ) modulations on 
the rates of events i from events j that occurred previously. 
The now much smaller parameter matrix Θ can be inferred 
using (regularized) maximum-likelihood estimation.

3.3  Parameter Inference

Let D be a data set of binary vectors in S and pD the cor-
responding empirical distribution on S. For a given Θ , the 
distribution of the Markov chain at time  t is a vector of 
length 2n given by

where  p(0) = (1, 0,… , 0) ∈ [0, 1]S denotes the distribu-
tion at t = 0 , which is completely concentrated in the initial 
state (0,… , 0) ∈ S . This holds by construction, as every dis-
ease is assumed to start event-free.

To derive the likelihood of Θ and the likelihood’s gradi-
ent given D, we distinguish between two scenarios: In the 
first scenario the observation times of the data points are 
unknown. In the case of cancer, for example, t = 0 corre-
sponds to the onset of the cancer, which is unobservable in 
human data. Hence, even if we know the date of an obser-
vation, we still do not know how much time has passed 
between the onset of cancer and the observation, i.e., the 
Markov-chain time. In the second scenario, the observation 
time is known. For example, this is the case when a cancer 
is experimentally induced in a mouse by a researcher.

Unknown observation time. [39] assume that the 
unknown observation times are independent, exponentially 
distributed random variables with rate 1. Under this assump-
tion, marginalizing over t in equation (1) yields

and thus the log-likelihood of Θ given D is

Its gradient is given by

Note that the computation of the log-likelihood and its deriv-
ative involve the application of the inverse of the 2n × 2n 
matrix RΘ to a vector, which is equivalent to solving a linear 
system of equations RΘp = q . This can be done efficiently 
by taking advantage of the matrix’ triangularity using either 

(1)pΘ(t) = exp(tQΘ)p(0) ,

pΘ =
∫

∞

0

exp(−t) exp(tQΘ)p(0) dt

= (I − QΘ
⏟⏟⏟
=∶RΘ

)−1p(0) ,

SD(Θ) =
∑

x∈D

log
(
R−1
Θ
p(0)

)
x
.

�SD
�Θij

=
∑

x∈D

1

(pΘ)x

(
R−1
Θ

�QΘ

�Θij

pΘ

)

x
.

forward substitution or the Neumann series. The latter boils 
down to a finite sum of matrix–vector products, due to nil-
potency of QΘ.

Known observation time. For every data point x ∈ D , 
let tx be the time of observation. Following equation (1), the 
log-likelihood of Θ given D is

The computation of both this log-likelihood and its gradi-
ent involve the matrix exponential of the 2n × 2n matrix QΘ . 
Grassmann and Rupp et al give numerically stable algo-
rithms approximating these with a series of matrix–vector 
products [22, 38].

Finally, in both cases log-likelihood maximization can be 
carried out using, for example, the L-BFGS(-B) algorithm, a 
quasi-Newton algorithm designed for optimization problems 
with many variables and limited memory usage [6].

Likelihood optimization can lead to parameter matrices Θ 
with many nontrivial off-diagonal entries different from 1. 
To avoid overfitting and at the same time reduce the com-
plexity of the model, we enforce sparsity of the model using 
an L1-penalty. Our objective function thus becomes

for some 𝜆 > 0 , which can be determined from cross-vali-
dation using SD.

This allows us to visualize the Mutual Hazard Network as 
a graph with the events as nodes and the interactions, i.e., Θ 
entries, as edges between them, as in Figs. 1b, 1d, and 5.

4  Efficient Computation

Training a Mutual Hazard Network involves operations 
with the matrices RΘ and QΘ , such as solving linear sys-
tems of equations RΘp = q or applying the matrix exponen-
tial exp

(
QΘ

)
p . Both matrices are huge. In fact, even for 

moderate n, they can be too large to store on any computer. 
For n ≥ 266 , the state space contains more elements than 
there are atoms in the observable universe. However, there 
are up to 800 genes known to be involved in cancer progres-
sion [1, 31, 41] whose mutations could be included as events 
in a comprehensive model.

The solution to this problem is the use of data formats 
that compress matrices and vectors but still allow for arith-
metic computations.

As a first step, the proportional hazard assumption allows 
for a compact and computationally advantageous tensor rep-
resentation of QΘ . It can be written as a short sum of tensor 
products of n small matrices,

SD(Θ) =
∑

x∈D

log
(
exp(txQΘ)p(0)

)
x
.

SD(Θ) + �
∑

i≠j

| log(Θij)|
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This tensor representation reduces the storage cost of QΘ 
from exponential to quadratic in n. In addition, it speeds 
up the matrix operations required to train a Mutual Haz-
ard Network. For example, matrix–vector products can be 
reduced from O(22n) to O(n2n−1) using the shuffle algo-
rithm [5]. Although still intractable for large n, this can be a 
significant speed-up for moderate n. In fact, using this tensor 
representation, Mutual Hazard Networks of size n = 25 can 
be trained [39].

CP-format. To further reduce storage and computation 
costs, we want to represent also the operands of Q, namely 
the distribution vectors p over S, as a short sums of tensor 
products,

where the  p(j)
i

 are vectors of dimension dj . This encodes 
the operand p as a higher-order tensor of order n with 
dimensions d1 , ..., dn . In Mutual Hazard Networks, the 
distribution pΘ is a tensor of order n with constant dimen-
sions d1 = … = dn = 2 . In the tensor literature, the represen-
tation in equation (3) is known as canonical polyadic (CP) 
format [7, 25], where the number r of terms is called the 
format’s CP-rank (or simply rank). Figure 3a illustrates a 
CP-representation for an order-3 tensor with dimensions d1
, d2, d3 and CP-rank r. A core advantage of the CP-format is 
its low storage cost in O(dnr).

Limitations of the CP-format become evident when 
performing arithmetics within this format. With every 

(2)QΘ =

n∑

i=1

i−1⨂

j=1

(
1 0

0 Θ
ij

)
⊗

(
−Θ

ii
0

Θ
ii
0

)
⊗

n⨂

j=i+1

(
1 0

0 Θ
ij

)
.

(3)p =

r∑

i=1

n⨂

j=1

p
(j)

i
,

operation, the rank can increase and with it storage and 
computational costs. For example, if we add two CP-ten-
sors p and q with ranks rp and rq by appending the terms 
of q to those of p, the sum p + q already has rank rp + rq . 
Similarly, applying a CP-operator Q with rank rQ to a CP-
tensor p with rank rp results in a CP-tensor of rank rQ ⋅ rp . 
The critical quantity for these tensor formats is no longer 
the order n, but the rank r. For this reason, these formats 
are called low-rank tensor formats.

Rank truncation. Low-rank tensor formats compress 
huge matrices and vectors efficiently. To keep the ranks 
low after performing arithmetic operations, we need an 
additional rank-truncation strategy, which approximates 
the tensor resulting from an arithmetic operation by 
another tensor of lower rank.

For tensors of order 2 (matrices) the singular value 
decomposition provides a best-rank r approximation by 
keeping only the singular vectors corresponding to the r 
largest singular values [16]. For higher-order tensors, the 
set of CP-tensors is not closed, and thus low-rank approxi-
mation within the CP-format is an ill-posed problem [40].

Using other low-rank tensor formats, truncation based 
on singular value decomposition can be generalized to 
higher-order tensors. In a nutshell, a higher-order tensor is 
unfolded into a matrix by selecting dimensions that define 
its rows while all others define its columns. The resulting 
matrices are called unfoldings. Figure 2b illustrates the 
isomorphism of unfolding and (re)folding an arbitrary ten-
sor. Here a tensor p of order 3 with dimensions d1, d2, d3 
is unfolded into a matrix by selecting row dimension {1} 
and column dimensions {2, 3} . Tree tensor formats take 
advantage of this idea.

Tensor trains. The low-rank tree tensor format we focus 
on is the tensor-train format [34], also known in physics as 
matrix product states [35, 46]. A tensor p of order n with 
dimensions d1 , ..., dn is factorized into n smaller core-ten-
sors p(i) of size ri × di × ri+1,

for all entries  x = (x1,… , xn) with  r1 = rn+1 = 1 . The 
tuple (r1,… , rn+1) is called the tensor-train rank (or simply 
rank) of this factorization.

Every CP-tensor of CP-rank r can be represented in the 
tensor-train format with tensor-train rank bounded compo-
nent-wise by r, while the reverse is not true in general. Fig-
ure 4a illustrates how a CP-tensor can be transformed into 
a tensor train.

Tensor trains have high compression rates, provided they 
have low rank components. Instead of storing a high-order 
tensor p with cost in O(dn) only the cores p(i) are stored with 
cost in O(dnr2) , where di ≤ d and ri ≤ r.

px =

r1∑

j1=1

⋯

rn+1∑

jn+1=1

p
(1)

j1,x1,j2
⋅ p

(2)

j2,x2,j3
⋯ p

(n)

jn,xn,jn+1

Fig. 3  3a: Illustration for a CP-representation of a d
1
× d

2
× d

3
 ten-

sor p and CP-rank  r,   3b: Unfolding of a d
1
× d

2
× d

3
 tensor p with 

row dimension {1} and column dimensions {2, 3}
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Each rank component ri, i ≤ d , corresponds to the matrix 
rank of an unfolding with row dimensions {1,… , i} . Using a 
rank-truncated singular value decomposition for the unfold-
ings in a hierarchical way gives a low-rank approximation in 
the tensor-train format [34]. Figure 4b illustrates a truncation 
step for an order n = 3 tensor p in the tensor-train format, 
where r2 is truncated to  r̃2 . Tensor trains allow for efficient 
arithmetic operations. Table 1 lists operations together with 
their cost.

The performance of low-rank tensor methods greatly 
depends on the choice of unfoldings. In addition to tensor 
trains, several alternative formats are available, such as the 
hierarchical Tucker format [21, 23].

In summary, tensor formats combined with rank trun-
cation can compress huge matrices and vectors. Moreover, 
arithmetic operations such as matrix–vector products to 
solve linear systems or the application of matrix exponen-
tials can be carried out efficiently in these compressed for-
mats. Even in situations where matrices such as QΘ and RΘ 
have more entries than there are atoms in the observable 
universe, we can still perform approximate computations 
with them in compressed low-rank tensor formats. These 
formats have already been successfully used for higher-order 
Mutual Hazard Networks whose distributions could not be 
stored or computed using classical methods [18].

5  Tensor Formats and Probabilistic 
Graphical Models

Low-rank tensor formats have not been used frequently in 
machine learning. In contrast, probabilistic graphical models 
are well established in the field. For this reason, we want to 
bridge the gap between low-rank tensor formats and proba-
bilistic graphical models with discrete random variables. 
Note that the graph of a Mutual Hazard Network cannot be 
directly equated with a probabilistic graphical model. How-
ever, the joint probability distributions for Mutual Hazard 
Networks can be approximately factorized in a similar way.

First, any joint probability distribution P of n discrete 
random variables X1 , ..., Xn over state spaces SX1

 , ..., SXn
 can 

be identified with a tensor p of order n,

for all states x = (x1,… , xn) . Thus p is non-negative, normal-
ized and has dimensions d1 = |SX1

| , ..., dn = |SXn
| , where |SY | 

denotes the cardinality of SY . Conversely, any non-negative, 
normalized tensor p of order n defines a joint probability 
distribution P over n discrete random variables.

Moreover, there is a connection between undirected dis-
crete probabilistic graphical models and tensor formats [37]. 
A probabilistic graphical model for an undirected graph G 
over visible variables X1 , ..., Xn and hidden variables H1 , 
..., Hm is a joint distribution P that factorizes into a set of 
clique potentials {�C}C,

fo r  a l l  s t a tes   x ∈ SX  ,  where   xC∶={xi ∣ Xi ∈ C} 
and hC∶={hj ∣ Hj ∈ C} [29]. Here, a clique C is a subset of 
variables that are all pairwise connected in G.

(4)px1,…,xn
= P(X1 = x1,… ,Xn = xn)

(5)P(X = x) =
∑

h1∈SH1

…
∑

hm∈SHm

∏

C clique

�C(xC, hC)

Fig. 4  4a: Transfer of a d
1
× d

2
× d

3
 CP-tensor p with CP-rank r into 

a tensor-train format with rank  (1,  r,  r,  1),  4b: Truncation of a ten-
sor train p (black) by reducing r

2
→ r̃

2
 with corresponding low-rank 

factorized unfoldings given by the operation �������(p, d
1
, d

2
⋅ d

3
) 

(gray)

Table 1  Operations and their costs for tensors p, q and operators Q 
of order n with constant dimensions d in the tensor-train format with 
rank component-wise bounded by r [33]

Operation Formula Cost

Storage  O
(
ndr2

)

Addition  p + q  O
(
ndr3

)

Evaluation  px  O
(
ndr2

)

Inner product  ⟨p, q⟩  O
(
ndr3

)

Matrix–vector product  Q
p  O

(
nd2r4

)

Trunction  p̃ ≈ p  O
(
ndr3

)
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This factorization of the joint distribution P is directly 
related to the concept of conditional independence: Two ran-
dom variables Y1 and Y2 are called conditionally independ-
ent given Z if P(Y1, Y2|Z) = P(Y1|Z) ⋅ P(Y2|Z) [29]. Thus, 
in a graphical model, two variables are conditionally inde-
pendent given all other variables if and only if they are not 
directly connected by an edge. In the factorization (5) of P, 
two variables are conditionally independent given all others 
if and only if they never appear together in a clique potential.

Similarly to the tensor-train format, general tree-ten-
sor formats can also be factorized into a set of core ten-
sors {p(C)}C,

for all x = (x1,… , xn) , where (r1,… , rm) is the rank of p in 
the tree-tensor format. Note that in low-rank tensor formats 
the core tensors typically have a small order, e.g., order 3 for 
the tensor-train format, and thus the right-hand side of equa-
tion (6) typically reduces the storage complexity from expo-
nential to linear in n. Assuming that all cores p(C) are non-
negative, we observe the following relationship by 
comparing the factorizations: The core tensors p(C) can be 
seen as evaluations of the clique potentials �C , the rank of p 
corresponds to the cardinality of the hidden variables, 
i.e., rj = |SHj

| , and vice versa.
Based on this relationship, the low-rank approxima-

tion (assuming non-negative cores) can be understood as 
an approximation of a joint probability distribution by an 
undirected graphical model with small hidden variables. In 
other words, in a low-rank approximation of distributions 
with non-negative cores, we look for clique potentials with 
small maximal cliques and hidden variables with small state 
spaces whose model still describes the distribution as accu-
rately as possible. Thus, in addition to its cost-effectiveness, 
non-negative low-rank tensor approximation of probability 
distributions provides an interesting aspect of understanding 
the model that warrants further investigation.

6  A History Book of Glioblastomas

Glioblastomas are the most common form of malignant 
primary brain tumor in adults, notorious for their aggres-
siveness and poor prognosis [27, 42]. Like for all cancers, 
genomic changes (the events that we will consider here) 
begin to accumulate long before the onset of symptoms 
and clinical presentation. At the time when they can be 
observed, the order and dynamics of their accumulation is 
thus obscured. [39] used Mutual Hazard Networks to recon-
struct the genomic history of glioblastomas to better under-
stand the dynamics of the disease.

(6)px1,…,xn
=

r1∑

k1=1

⋯

rm∑

km=1

∏

C

p
(C)

xC ,kC

The glioblastoma data set consists of 261 samples char-
acterized by 486 genomic events (gene point mutations (M), 
gene amplifications (A), and gene deletions (D)) [4, 30]. To 
model on a subset of events which is both informative and 
sufficiently frequent in the data, the pre-selection strategy by 
Constantinescu et al was adopted. This resulted in a final set 
of 20 events (minimum event frequency 5.4% ) [8].

On this data set Mutual Hazard Networks achieved a 
log-likelihood score of −7.97 in 5-fold cross-validation 
compared to −8.45 for an unconnected network. The latter 
assumes that all events occur independently of one another. 
This shows that the Mutual Hazard Network has in fact 
detected dependencies among events that generalizes to 
left-out samples.

The network in Fig. 5 models the dynamics of glio-
blastomas. A positive edge (green) from an event A to 
another event B indicates that, if A occurs, the rate for B 
increases. As a consequence, the average waiting time for 
event B is reduced once A has occurred, and more patients 
with A also acquire B before the time of observation. This 
is, for example, the case for IDH1 mutations that increase 
the rate of TP53 mutations. In fact, 71.4% of patients who 
show IDH1(M) also show TP53(M). This rate increase of 
TP53(M) given IDH1(M) is consistent with experimental 
observations: Watanabe et al [45] analyzed glioblastoma 
patients with multiple biopsies taken at different time points 
and found a strong tendency for these events to co-occur. 
For multiple cases in which they did co-occur, IDH1(M) 
preceded TP53(M), but never vice versa, suggesting both a 
temporal order and a dependency of TP53(M) occurrence 
on IDH1(M).

Analogously, a negative edge (orange) from  A to  B 
encodes that A reduces the rate of B. Given A, the expected 
waiting time for B is prolonged, and thus the probability 
that B occurs before the time of observation is reduced. 
The Mutual Hazard Network has identified pairs of events 
that mutually inhibit each other. For example, TP53(M) and 
MDM4(A) are connected by two inhibiting edges. Both 
events are frequent: 29.1% of the tumors have TP53(M) 
and 15.7% have MDM4(A). If we assume that the events 
occur independently of each other, we would expect 
that 4.6% have both mutations. However, only 2.7% of tumors 
have both, i.e., events occur less frequently in the same 
tumor than expected by chance. This data pattern is called 
mutual exclusivity and has been described frequently [17, 
32, 36]. Often, mutually exclusive events are events that 
trigger similar changes in tumor cells, for example, they 
both block cell death. This can result in mutual exclusivity 
if cancer-cell fitness increases with the first event but would 
remain constant or even decrease with the second event, for 
example because their combined effect is redundant. In fact, 
TP53(M) and MDM4(A) both suppress programmed cell 
death. The TP53 mutation directly inactivates a promoter 



 KI - Künstliche Intelligenz

of cell death, namely TP53, and the MDM4 amplification 
over-activates an inhibitor of TP53 [12, 44].

As mentioned above, the onset of cancer is never 
observed, and we do not know which events occur first. This 
constitutes one of the biggest scientific gaps in tumor biol-
ogy. A trained Mutual Hazard Network can reconstruct in 
which way such a tumor history is most likely to have hap-
pened. For every tumor, we see sets of unordered events that 
occurred before the time of diagnosis without their temporal 
ordering. However, every temporal ordering of events cor-
responds to a Markov chain trajectory whose likelihood we 
can calculate [20], and thus we can reconstruct the history 
of a tumor by choosing the most likely trajectory.

Figure 6a shows a tree consisting of the reconstructed 
maximum-likelihood histories of 261 glioblastomas. The 
root of the tree corresponds to the starting point of all 
tumors, the state in which no event has occurred. The history 
of each tumor is encoded as a path from the root outwards to 
a black-contoured node, and the order of events along this 
path reconstructs the temporal ordering of its mutations. The 
width of a line encodes how many tumors share that part of 
their history. For easier visualization, the events shown in 
the tree are restricted to the 10 events that show the most 
interactions with other events.

Mutations in glioblastomas can be broadly subdivided 
into two functional categories: Some of them are primar-
ily known to enhance cell growth  (EGFR(M), NF1(M), 
PTEN(M) and PTEN(D)), while others prevent cell 
death  (CDKN2A(D), TP53(M), and MDM2(A))  [10]. 
Enhanced cell growth and inhibited cell death are both cru-
cial to cancer progression.

Interestingly, the model uncovers a rigid temporal order of 
these two aberrations, which has been highlighted in Fig. 6b. 
There are three main branches initiated by CDKN2A(D), 
TP53(M), or MDM2(A), all of which are known to inhibit 
cell death. Most tumors show both cell-death-inhibiting and 
cell-growth-enhancing mutations, in which case the former 
almost always preceded the latter. There is only one rare 
context in which the order is reversed, namely, in 1.5% of 
glioblastomas the event PTEN(D) occurred before TP53(M) 
or MDM2(A) (roughly 11 o’clock on the graph in Fig. 6b). 
Furthermore, the analysis suggests a preferred order among 
multiple events involved in enhancing cell growth: PTEN(M) 
generally precedes NF1(M). Furthermore, returning to the 
example of IDH1(M) and TP53(M), the reconstructed tumor 
histories agree with the ordering proposed by Watanabe et al 
for all of the 10 cases where both events are present [45]. 
This can be seen in Fig. 6c.

In addition to reconstructing the past, Mutual Hazard 
Networks can also look into the future, which might help 
clinicians with treatment decisions. For example, promis-
ing results in treating glioblastomas have been shown for 
an anti-cancer compound called RG7112 in preclinical tri-
als [43]. The therapeutic success of this compound depends 
on two genomic events, namely the presence of MDM2(A) 
and the absence of TP53(M) [43]. Let us assume that in the 
future an oncologist is treating a patient with MDM2(A), 
among other events. To decide whether or not to administer 
RG7112, it would be helpful to know whether TP53(M) is 
expected to occur soon. Moreover, assuming that the patient 
has MDM2(A) and CDKN2A(D), the model would infer a 
reduced TP53(M) rate and therefore a longer average waiting 

Fig. 5  A Mutual Hazard 
Network of genetic glioblas-
toma progression. The nodes 
are frequent mutations that 
accumulate in the genomes 
of glioblastoma cells and that 
the model was trained on. The 
size of the nodes scales with 
the base rate of the individual 
mutations. The edges represent 
the dependencies inferred by 
the model. Their widths scale 
with the absolute value of the 
logarithm of the corresponding 
entry in the parameter matrix Θ . 
Green edges encode promoting 
interactions, while orange edges 
encode inhibiting interactions
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time, making the administration of RG7112 more attrac-
tive. In contrast, if the patient instead carried MDM2(A) 
and IDH1(M), TP53(M) would be expected to occur soon, 
and therefore the administration of RG7112 would be 
discouraged.

7  Summary

Mutual Hazard Networks turn snapshots of binary data into 
a dynamic model of stochastic progression over time. In can-
cer research, they can fill major gaps in the understanding of 
tumors by reconstructing their most likely history. Moreover, 
forecasting the future course of a tumor, could ideally guide 
treatment decisions. Initial results on glioblastomas are in 
line with our partial knowledge of this progression process 
and at the same time already generated new hypotheses.

Their efficient parameterization and ability to utilize 
modern tensor formats make them a valuable machine 
learning tool that could be applied to modeling any other 
suitable binary progression over time.

It still remains to further investigate properties of 
Mutual Hazard Networks, like their identifiability or the 
stability of the history reconstructions. Looking into the 
future, the model holds great potential for extension, for 
example by incorporating reversible events or non-binary 
events, just to name a few of them.
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Data availability The exact input data for MHN as described in Sect. 6 
can be found on https:// github. com/ RudiS chill/ MHN.

Fig. 6  A reconstruction of 
the individual histories of 261 
glioblastoma cases. For every 
case, the maximum-likelihood 
temporal ordering of its events 
is shown as reconstructed by the 
trained Mutual Hazard Network. 
The white central node repre-
sents the initial “healthy” state 
without events. Each trajec-
tory from this state outwards, 
ending at a black-contoured 
node, shows the most likely 
order of events for at least one 
glioblastoma. Several cases can 
have a common history, which 
is indicated by the widths of the 
edges. The plot is restricted to 
the ten events with the largest 
sum of absolute interaction 
weights. Figure 6a shows all 
these ten events, while Fig. 6b 
shows only events primarily 
associated with either promo-
tion of cell growth (green) 
or inhibition of cell death 
(magenta). Figure 6c shows 
only the two events TP53(M) 
and IDH1(M)

(a)

(b) (c)

https://github.com/RudiSchill/MHN
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