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Abstract
In order to understand what influences the movement of an object or person it is important to consider a variety of factors. 
These could be the visibility of certain landmarks, the current temperature or the presence of a crowded area to be avoided. 
These insights then can be used to understand movement in the public sector and improve our build environment, e.g. to 
reduce street traffic accidents or orientation in complex buildings. The following extended abstract is a summary of a doctoral 
thesis submitted to the University of Münster. The thesis was successfully defended in February 2023 [16]. The dissertation 
focuses on the analysis of so-called semantically enriched trajectories, which are used to describe observed movement. It 
proposes a new model based on an extended finite state machine, which allows for the representation and consideration of 
the information about the context of the trajectory. With the new model, we consider two main steps in trajectory analysis: 
First, we aim to infer a semantically enriched representative trajectory for a given cluster of trajectories. Second, we intro-
duce a variation of the well-known k-means algorithm to calculate clusters based on the given context of trajectories. To 
show semantic feasibility of our approach, we conclude this work by evaluating the possibility to provide decision support 
for domain experts in two different public sector related contexts.
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1 Introduction

Understanding the interplay between different factors influ-
encing movement is a critical challenge, e.g. to support 
planning of new roads, public areas or buildings. Does the 
park need a special landmark for better orientation? Is a 
building easy to navigate in? Is there something distracting 
at a street that leads people to a different kind of move-
ment and may result in more accidents? These and similar 
questions could be answered with a better understanding of 
contextual information in trajectory analysis. A trajectory is 
a sequence of geometric points, referring to the current posi-
tion of the observed object. With the availability of more and 
better GPS devices, trajectory data becomes more relevant 
for explaining movements of objects. New devices are able 
not only to track the current location and time, but also to 
enrich the data with annotated context information. Context 
information includes intrinsic and extrinsic factors, such as 

the current temperature of the surroundings, the mode of 
transportation or the age of an observed person.

The movement of dynamic objects is a complex interplay 
of different external and internal factors [6]. If we assume 
that we know every influencing factor of an observed move-
ment, the idea of our work is that we can derive an underly-
ing function that defines the individual movement. While 
research on spatio-temporal trajectories has been intense 
over the past years, there has been less attention to the 
usage of additionally available features in the analysis of 
semantic trajectories [23]. The goal of our work therefore 
is to introduce a novel approach for modeling and work-
ing with what we call semantically enriched trajectories, 
where we assume each point of a (discrete) trajectory to be 
annotated with a set of attribute-value pairs that describe 
known annotated features. In the following we there-
fore assume for each annotated point to be in the form of 
p = (lat, long, {(att1, v1), (att2, v2),… , (attm, vm)}) ,  where 
lat and long describe the spatial position of the point and 
v holds the value for each of the m attributes. Note that 
m = 0 is possible and results in no extra annotated attrib-
utes besides the spatial position. In such a case we call them 
geometric trajectories. Attributes can hold different types of 
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values. Specifically numerical attributes, like temperature or 
velocity, but also categorical attributes, like mode of trans-
portation or current season.

We recognize the similarity of semantically enriched tra-
jectory data to the data used during the so-called reverse 
engineering process. Here the goal consists of modeling an 
unknown software system by regarding only the created soft-
ware traces of the system. These traces consist of multiple 
sets of attribute-value pairs and therefore match the appear-
ance of semantically enriched trajectories as defined. We 
choose Extended Finite State Machines (EFSM) [21] as a 
modeling option for the semantically enriched trajectories. 
The EFSM extends the well-known finite state machine for-
malism by adding transition guards that must be matched by 
the traversing points. An EFSM is created by a set of given 
input traces and, due to its determinism, each of these traces 
follows a unique path in the received EFSM. One example 
for an EFSM can be found in Fig. 1.

Therefore the basic idea of this work is as follows: We 
model a set of semantically enriched trajectories with an 
EFSM. The EFSM itself already holds information about 
the creating set in its general appearance and the annotated 
guards of the transitions. We enrich the EFSM further by 
tracing each of the trajectories of the creating set through the 
EFSM. This means that we follow the unique path of every 
trajectory through the EFSM and enrich the transitions with 
the information of the annotated points. As a result we have 
a complete model of the entry set of trajectories and use it 
for different tasks in the trajectory analysis. It is important 
that with the developed approach we are able to work even 
on a small set of trajectories. Another advantage is that with 
the calculated model we always have an easy to read rep-
resentation of the input trajectories and that every result of 
our further analyses is explainable by regarding the EFSM.

2  Inferring Semantically Enriched 
Representative Trajectories

In trajectory analysis a common first step is to calculate a 
representative trajectory for a given cluster of trajectories. In 
the context of our work a representative trajectory is defined 
as a trajectory that holds all “relevant” information1 of the 
given cluster and represents the group of trajectories [19]. 
Representative trajectories can be used to reduce calculation 
costs in further analysis steps and are useful in the context of 
visualization [22]. Currently they are often calculated based 
only on spatial characteristics (e.g. [2, 11, 20]). A given clus-
ter might be grouped together according to the trajectories’ 
spatial characteristics, but also according to their semantic 
properties. Therefore, the inferred representative trajectory 
of our approach should be calculated based on all properties 
and should still hold an acceptable geometric representation 
for the set of trajectories.

In our work [17] we first introduce an algorithm for 
deriving an EFSM from a given cluster of trajectories. The 
EFSM models the cluster and we assign each trajectory to 
one specific path in the EFSM. We annotate each transi-
tion of the path with the attribute-value pairs of the points 
of the aligned trajectories and receive an annotated EFSM. 
We then define an algorithm for calculating a representative 
path in the EFSM with a greedy approach. The approach 
determines in every state, beginning with the initial state 
of the EFSM, which transition has been taken by the most 
trajectories at the current index of the representative path. 
Because the EFSM might include loops and therefore transi-
tions might have been traversed by the same trajectory mul-
tiple times with different points, it is important to consider 
the current index of the representative path and the indices 
of the belonging points to a transition.

Fig. 1  Left: Hurricane data set (gray, from [9], with permission) and 
representative trajectory inferred using our approach (blue). Right: 
EFSM inferred from the input data and derived representative path 

(blue). Letters represent semantic (shape) annotations (see [9]), 
latitude and longitude refer to the spatial position of the points. To 
reduce clutter, only guards at branching points are shown

1 The “relevant” information is strongly dependent on the current 
context and trajectory set.
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The algorithm receives a path of the EFSM and further 
enriches it with the data of transitions. The annotated attrib-
utes are not only the semantic attribute-value pairs, but also 
the spatial latitude and longitude of the points. Therefore we 
can reinterpret the path and receive a semantically enriched 
representative trajectory. An example of the whole process 
of inferring an enriched path and a geometric representation 
of the trajectory can be found in Fig. 1.

To evaluate our approach we compare it against current 
state-of-the-art approaches regarding the geometric quality 
according to the Fréchet distance [1]. The results can be 
found in the table in Fig. 2.

They show that our approach is able to calculate a repre-
sentative trajectory that is similar to the input trajectories in 
the context of the number of points and also is close to the 
geometric quality provided by solely geometric approaches. 
We also assess the semantic quality of our results by manu-
ally inspecting the annotations of the generated trajectories. 
As we are not aware of any other algorithm using semantic 
annotations for calculating a representative trajectory, we 
were not able to use any other benchmark.

3  K‑Means for Semantically Enriched 
Trajectories

In order to calculate a representative trajectory for a given 
group of trajectories there is a need for a clustering algo-
rithm. The classification process usually relies only on spa-
tio-temporal properties of the trajectories (see references in 
[23]). Motivated by our previous work we aim to include the 
semantic factors in a clustering algorithm, because solely 
spatio-temporal clustering might not reflect the characteris-
tics of the additional semantic data.

We introduce EFSMCluSt [18] which is based on the 
k-means algorithm [13]. We modify the centroid-based 
approach to work with semantically enriched trajectories. 
To do so we use EFSMs and infer representative paths as 
the needed centroids. Additionally, we define a new simi-
larity measure EFSMSiM for scoring the similarity between 
semantically enriched trajectories and representative paths 
by aligning a trajectory with a representative path. EFSMSiM 

returns a score reflecting how well the attributes of each 
point of the trajectory fit the range of attribute values of the 
aligned representative segment. EFSMCluSt works as fol-
lows: We regard an input consisting of a set of semantic 
trajectories and a parameter k indicating the wished number 
of clusters for these trajectories. The algorithm first calcu-
lates an EFSM and a representative path for the whole set of 
trajectories. The received representative path is used as the 
first initial center. Afterwards k − 1 initial centers are itera-
tively calculated, using an initialization strategy following 
[4]. When all initial centers are calculated, the trajectories 
are assigned to the centers according to the score calculated 
by EFSMSiM. The algorithm then calculates an EFSM for 
each of the received clusters and the representative path 
of the new EFSM as the new centroid. Some trajectories 
might change the assigned cluster based on the new calcula-
tions. The algorithm terminates when the calculated average 
radius of all clusters does not improve after one iteration. It 
returns k clusters of the input trajectories, the EFSMs, and 
the semantically enriched representative central trajectories 
for each cluster.

We evaluate EFSMCluSt by comparing it with state-
of-the-art spatial clustering algorithms. Some results for a 
set of trajectories of the GeoLife data set [24] can be found 
in Fig. 3. The GeoLife data set describes the movement of 
persons in a big city. The data set is annotated with the spa-
tial position, time, weekday, season and mode of transport. 
We observe that EFSMCluSt identifies a single outlier in a 
cluster, which is semantically reasonable, because it is the 
only trajectory which was created by using the bus only, 
while all other trajectories were created using other modes 
of transportation or a mixture of them. Spatial algorithms 
fail to recognize this property. Our experiments show that 

Fig. 2  Number of points, mean and median fréchet distance of all 
given clusters in [9] for different approaches

Fig. 3  (Data extracted from [24]) Results for a person of the GeoLife data set
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our algorithm achieves a similar geometric quality and at the 
same time returns a representation of the centroids that can 
be used by domain experts to interpret both spatio-temporal 
and semantic information as well as to explore their possible 
relationships.

4  Application in Wayfinding Tasks

During wayfinding, a person has to find a certain goal in 
an unfamiliar environment by first planning a route to get 
there and second moving along the route and making adapta-
tions to it based on experienced environmental factors [7]. 
In order to understand different wayfinding strategies and 
routing decisions it is important to include all internal and 
external factors into the analysis to come up with a suitable 
model of the process [8]. In current research such a model 
is missing [7] and therefore domain experts have to clas-
sify wayfinding strategies manually (as in [12]). To support 
the process of classifying wayfinding strategies, we use the 
introduced tools for the analysis of semantically enriched 
trajectories.

In a first experiment we use 96 trajectories which were 
created during an experiment for measuring navigational 
map reading competencies of children using the location-
based game GEoGaMi [15]. GEoGaMi provides a map of the 
environment (real or VR) and includes different wayfinding 
tasks. Using EFSMCluSt we calculate a set of clusters for 
the given semantically enriched trajectories for one of the 
tasks (task 11). To receive a comparable ground truth we ask 
four domain experts familiar with the regarded experiment 
to classify the trajectories manually according to the applied 
strategies. Afterwards we ask the experts in a two iteration 
Delphi process [5] to rate all other results, including the one 
by EFSMCluSt. Furthermore we calculate the Rand index 
[14] to give a calculated impression on how well EFSM-
CluSt matches the results of the experts. In the expert rating 
EFSMCluSt is placed fourth out of five. However, comments 
of the experts reveal that they struggle with understanding 
certain clusters and miss an explanation of the made deci-
sions during the clustering process. This can be solved by 
providing the cluster EFSMs and central paths. Moreover the 
process shows strongly differing ratings of the experts along 
the two iterations. We assume that the classification of the 
trajectories is not unique and a challenging task. The Rand 
index reveals that almost all results by the domain experts 
have the largest overlap with the EFSMCluSt result. This 
leads us to the result that the application of EFSMCluSt can 
work as a common start point for a discussion by experts.

We aim to confirm these results by providing a second 
experiment with a clearer ground truth. Therefore we apply 
EFSMCluSt on a set of 128 wayfinding trajectories received 
in a wayfinding experiment in a virtual mall setting with 

several floors [12]. Domain experts classified the received 
trajectories into three different categories of applied strat-
egies: A central, a directional and a floor strategy [10]. 
Roughly one quarter of the trajectories remained unclassified 
by the experts. In our experiment we show that we can repro-
duce the given ground truth with an accuracy of over 93% , 
where the difficulties appear solely in the classification of 
trajectories of the central strategy. We justify the misclassifi-
cations of trajectories of the central strategy with EFSMSiM 
being a more local measure, which fails to recognize a more 
global strategy, such as the central. Additionally, each tra-
jectory of the central strategy could partly be interpreted as 
directional and floor strategy, which is an insight we gain as 
the result of applying EFSMCluSt. In order to gain insights 
into the unclassified trajectories, we compare them using 
EFSMSiM with the clusters defined by the domain experts. 
This results in three values for each trajectory, indicating the 
similarity to the given wayfinding strategies. Trajectories 
with high similarity to one or more strategies can be shown 
to actually include parts of these strategies. Trajectories with 
low similarity to all of the clusters can be shown to include 
participants without any known strategy. We conclude that 
we can use EFSMCluSt to produce insights into the unclas-
sified trajectories and create suggestions for domain experts.

5  Conclusion

In our work we introduce an approach to use so called 
Extended Finite State Machines (EFSM) to model a set 
of semantically enriched trajectories. By this we open the 
possibility to learn about the impact that different intrinsic 
and extrinsic factors might have on the behavior of the indi-
vidual. We use the novel modeling of trajectories to infer a 
semantically enriched representative trajectory of a given 
cluster of trajectories. Evaluations show that we are able to 
retain a certain geometric quality and also meet our aim of 
gaining insights into the semantic relations of the trajecto-
ries. Based on the novel modeling approach we introduce 
the k-means based clustering algorithm EFSMCluSt with 
its similarity measure EFSMSiM. EFSMCluSt enables us 
to calculate a set of k clusters not solely based on spatial 
characteristics, but also on semantic attributes. We evalu-
ate our work in the context of wayfinding strategies. In two 
different experiments we show that EFSMCluSt is usable 
to support domain experts in their task of classifying trajec-
tories regarding applied wayfinding strategies.
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