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Abstract
In crop protection, disease quantification parameters such as disease incidence (DI) and disease severity (DS) are the principal 
indicators for decision making, aimed at ensuring the safety and productivity of crop yield. The quantification is standardized 
with leaf organs, defined as individual scoring units. This study focuses on identifying and segmenting individual leaves in 
agricultural fields using unmanned aerial vehicle (UAV), multispectral imagery of sugar beet fields, and deep instance seg-
mentation networks (Mask R-CNN). Five strategies for achieving network robustness with limited labeled images are tested 
and compared, employing simple and copy-paste image augmentation techniques. The study also evaluates the impact of 
environmental conditions on network performance. Metrics of performance show that multispectral UAV images recorded 
under sunny conditions lead to a performance drop. Focusing on the practical application, we employ Mask R-CNN models 
in an image-processing pipeline to calculate leaf-based parameters including DS and DI. The pipeline was applied in time-
series in an experimental trial with five varieties and two fungicide strategies to illustrate epidemiological development. 
Disease severity calculated with the model with highest Average Precision (AP) shows the strongest correlation with the 
same parameter assessed by experts. The time-series development of disease severity and disease incidence demonstrates 
the advantages of multispectral UAV-imagery in contrasting varieties for resistance, as well as the limits for disease control 
measurements. This study identifies key components for automatic leaf segmentation of diseased plants using UAV imagery, 
such as illumination and disease condition. It also provides a tool for delivering leaf-based parameters relevant to optimize 
crop production through automated disease quantification by imaging tools.
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1  Introduction

Imaging sensors attached to unmanned aerial vehicles 
(UAVs) are systems that currently revolutionize the way to 
monitor agricultural fields [1]. Agricultural management 
practices are feasible after analysis of high spatial and tem-
poral resolution images, allowing decision making at the 
right place, with the right intensity, and at the right time. 
The list of practical applications of UAV-systems starts 
with the area of plant breeding and phenotyping, and has 
further applications for plant protection, yield prediction, 
growth vigor, nutrient status, weed detection and drought 
stress. Moreover, UAV-systems support precision agricul-
ture because crop production is optimized by maintaining 
or increasing yield, while reducing environmental impact 
and resources for pest, water and nutrient management [2].

Disease quantification is a common visual scoring 
activity for plant breeding and decision making in plant 
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protection nowadays. This activity must be executed several 
times over vegetation development by appropriately trained 
staff or experts [3]. The most established parameters for 
quantification are disease incidence (DI) and disease sever-
ity (DS) [4, 5]. For phenotyping DI and DS in sugar beets, 
experts collect a representative number of sugar beet leaves, 
which are assessed for presence or absence of symptoms, 
and for determining the degree of damage [6]. According 
to Reynolds et al. [7], phenotyping work like visual scoring 
represents the major proportion of costs in experimental tri-
als. Variability and repeatability of collected data is also an 
issue in field assessments: “Inter-rater” errors occur when 
different experts are involved in phenotyping at various key 
disease development stages. The high manpower require-
ment associated with this error source is a disadvantage for 
extensive experimental fields. Similarly, other factors nega-
tively influence the variability and repeatability of observa-
tions, including the effect of noise, heat, exhaustion or time 
allocated for an assessment [5]. All those factors emphasize 
the limitations of visual scoring methods and motivate the 
development of innovative and automated UAV-based imag-
ing approaches for quantification of plant diseases [8–11].

In the past, studies used RGB and multispectral UAV-sys-
tems for disease quantification in sugar beet fields. Jay et al. 
[8] and Görlich et al. [9] segment limits of plot regions from 
RGB and multispectral orthomosaic images to calculate DS 
in variety trials. Similarly, a pipeline by Günder et al. [12] to 
segment individual plants, was extended for an application 
in disease quantification of Cercospora leaf spot (CLS) to 
classify infested plants according to their disease categories 
[10]. Circular regions within a plot are considered for an 
automated analysis of multispectral images to calculate DI, 
DS, and additional parameters such as area of foliage, area 
of healthy foliage, number of lesions and mean area of lesion 
by unit of foliage [11]. Whether circular-, plant-, or plot-
based regions, this image-based scoring shows robustness 
to calculate DS. Nevertheless, DI is an aspect to improve: 
Barreto et al. [11] highlight the disadvantages of delimit-
ing scoring in circle regions within a plot. False positive 
pixel classification of non-diseased regions leads to inac-
curate quantification of diseased units for DI. Visualization 
of scored multispectral images shows that the principal rea-
son of disease misclassification is the pixel quantification 
of harvest residues of previous crop laying on soil regions. 
This highlights a potential application of leaf segmentation 
because image-regions with high misclassification rate are 
removed from determining DI. While leaf segmentation 
could also contribute to DS, this has not been tested yet.

Image-based leaf phenotyping requires detecting and 
delineating a representative number of leaves for a later 
parameter calculation. Sugar beet canopy is a complex 
structure of non-uniform leaves. Individual leaves are posi-
tioned with extreme overlap, mutual occlusion, at different 

heights and diverse orientation. Moreover, leaf appearance 
is dynamic, either by natural develop stages and senescence, 
or by exogenous factors like diseases. Leaves change in size, 
and color from green to yellow, by degradation of chloro-
phyll content, and later from yellow to brown when necrotic 
tissue dominates the canopy. At last, weather conditions 
play also role. UAV monitoring activities must be able to 
cope with cloudy and sunny sky conditions if farmers are 
to obtain an on-time decision. Furthermore, shaded regions 
caused by passive illumination have to be considered for 
image-based individual leaf segmentation.

To solve the task of leaf identification and segmenta-
tion from UAV-data, adequate data analysis approaches are 
required. This task can potentially be automated by deep 
learning models in computer vision, more specifically 
instance segmentation [13]. Unfortunately, the main limita-
tion of deep learning models in agriculture is the need for a 
high number of labeled images [14]. In the context of UAV-
data of agricultural fields, labeling individual leaves in real 
images is time intensive, making this work the bottleneck 
for the availability of labeled data.

In this paper, we make two main contributions: (i) we 
address the challenge of leaf segmentation from multispec-
tral UAV-based images with a limited number of labeled 
images. We evaluate augmentation approaches including 
basic image manipulation and copy-paste techniques to 
create a data set of adequate size for training instance seg-
mentation models (Mask R-CNN). For this specific aim, 
we consider recommendations as described by Kurnichov 
et al.  [15] using a copy-paste data augmentation approach 
for banana plantain and arabidopsis images. We identify 
the best model by testing performance under diverse dis-
ease and illumination conditions. (ii) We apply our best leaf 
segmentation model to large orthomosaic images, and inte-
grate Mask R-CNN into a pipeline to extend the number 
of parameters for disease quantification beyond the circle-
based parameters. Lastly, we apply the pipeline in a variety 
trial and evaluate the performance by comparing expert with 
automated scored data of DS collected in time-series.

2 � Modeling Leaf Segmentation

2.1 � Field Monitoring and Methodology

The monitoring campaign took place from 2019 to 2021 
in four locations [11, 16]. We use multispectral UAV-sys-
tems: a DJI Inspire 2 with a 5-channel multispectral sen-
sor, Micasense RedEdge-M; and a DJI Matrice 210 with 
a the 6-channel sensor variant, Micasense Altum. To get 
high resolution images, flight missions were planned to 
deliver a ground sample distance (GSD) between 2.5 and 
4.1 mm. We truncate and calibrate the raw images from 
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digital numbers to reflectance according to Barreto et al. 
[11]. For the photogrammetry, we use the software Agisoft 
Metashape Professional for stitching of truncated multi-
channel images, and export the output as orthomosaic. We 
generate image patches to cover a field area of 1.28×1.28 
m and scale these to 512×512 px by resampling (Fig. 1a). 
We use five and six channel re-scaled arrays for defining 
RGB composite images from reflectance values by using 
V = max(�BLUE, �GREEN , �RED) , and the following formulae:

Data augmentation: Manual data labeling is a very difficult 
and time-consuming task, particularly for sugar beet images 
which have highly overlapping leaves with almost identical 
colors. We compare five strategies (see Fig. 1b) to generate 
sufficient training data while keeping the labeling efforts 
within reasonable bounds. First, we completely label every 
leaf in 100 images ( 512 × 512 pixels) containing healthy 
and diseased sugar beet plants under sunny and cloudy light 
conditions. In total, the images contain 2951 leaves with-
out occlusion and we split the individual leaves 80/20 into 
training and validation set. Eighteen additional completely 
labeled images serve as a hold-out test set to evaluate the 
performance of different models. For the background, we 
select 758 background UAV-images (without sugar beet 
plants), containing different field conditions such as: diverse 
soil humidity, weed pressure and soil tillage.

We use the training data and background images in 
four of five data augmentation strategies (I–V). For all 
strategies the data sets contain 10,000 images (training 
to validation ratio of 8000 to 2000). For strategy I we 
use a copy-paste augmentation technique. For this, we 
paste 70–140 randomly selected segmented leaves onto 
randomly selected background images. We use image 
flipping, scaling and brightness shift to transform each 
leave image before pasting it to the background. Likeli-
hood and transformation factor are specified in Table 1. 
Strategies II to IV are mixed strategies. We combine the 
copy-paste method described above with the inclusion of 
100 fully labeled images. Additionally, we include 100 
fully labeled images and apply basic manipulation meth-
ods, such as flipping, rotation, channel shift, cropping, and 
brightness adjustment (Table 1). For strategy II, we use the 
100 original images and created 4900 copy-paste images. 
Subsequently, we augment the whole set two times with 
simple augmentations to obtain 10,000 images. Strategy 
III uses the 100 original images along with 1900 copy-
paste images. We augment this dataset with basic transfor-
mations five times. In the case of Strategy IV, we employ 
100 original images and 100 copy-paste images, subject-
ing them to fifty rounds of basic augmentations. The last 
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strategy (V) relies solely on basic manipulation, with each 
original image augmented 100 times.

Training: For instance segmentation, we use a Mask 
R-CNN architecture [17] with a ResNet-101 backbone for 
ROI (region of interest) prediction. We train the models on 
four RTX 5000 GPUs running in parallel with two images 
per batch (batch size = eight images) and use the adapted 
Mask R-CNN implementation for Tensorflow 2.0 [17] with 
modules Cudnn 7.6.5.32−10.2, cuda 10.1.243 and Tensor-
flow 2.2.0. Before training, we specify the classes “leaf” and 
“background”. We put the number of ROIs to train per image 
from 200 up to 256 and anchors to train per image from 256 
up 512. We initialize our models with weights pretrained 
on the COCO data set [13]. Training the model for one step 
takes about 22 s. Since we make 500 steps per epoch we get 
a training time of three hours for one epoch. Mask R-CNN 
implements a multi-task loss, L = Lcls + Lbox + Lmask , to 
balance correct class predictions, accurate bounding boxes 
and exact masks. In this study, we trained all models for 50 
epochs based on the available computational resources. Dur-
ing the first 25 epochs, the learning rate is kept at 0.001, then 
changed to 0.0001 until the end of the training.

Evaluation and metrics: We group test set images in six 
categories based on illumination conditions (cloudy and 
sunny), as well as the degree of disease damage (healthy, 
medium and severe). We evaluate the performance of the 
models with precision, recall and average precision (AP). 
Precision measures how many of our predicted leaves are 
actually leaves, while recall evaluates how many of the 
actual true leaves are detected by the model. Precision and 
recall depend on a threshold measuring intersection over 
union (IoU) between a predicted and a ground truth leave. 
We set this threshold to 50% for precision and recall. This 
means that to accept a prediction as correct it needs to over-
lap at least to 50% with a ground truth leave. The second 
hyperparameter is the confidence score threshold describing 
how confident the model must be to use the leave prediction. 
In this paper, we compare values of 0.5 and 0.75 for the 
confidence score (CS).

For AP, we measure precision and recall for all possible 
confidence thresholds and plot them in a curve. The area 
under this curve is the AP. It is large when the true predic-
tions come with high confidence values and there are few 
false positives.

2.2 � Instance Leaf Segmentation

Augmentation for leaf segmentation: In this section we com-
pare the five augmentation strategies for leaf segmentation 
in diseased sugar beet plants. In Table 2 the AP, precision 
and recall under two confidence scores CSs are compared. 
In all approaches, by increasing the CS value, the number 
of false negative or missed leaves will increase. In contrast 
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to recall, precision increases with higher CS. Increasing CS 
from 0.50 to 0.75 yields between 6% to 12% better preci-
sion results. The advantages of models with CS of 0.50 was 
reflected on a higher AP in comparison to models with 0.75 
CS. Overall, the best AP was found in the model of strategy 
V with a value of 0.31. This strategy consist of augment-
ing fully labeled images only using simple techniques to 
increase the train and validation set to 10,000 images. Con-
sidering the study of Kuznichov et al. [15], and our findings 
based on the precision values obtained from strategy I in 
Table 2, we confirm that copy-paste augmentation strategy 
can serve as alternative for training Mask RCNN models for 

leaf segmentation. However, it is worth noting that the most 
efficient approach might be achieved by employing basic 
augmentation techniques. A reason for this behavior can be 
potentially attributed to the number of leaves and their rela-
tively low resolution, which characteristics of small object 
detection and segmentation tasks. Two-stage detectors such 
as Mask R-CNN have been observed to exhibit a 50% drop in 
detection performance for small objects compared to larger 
ones [18, 19]. Difficulty to distinguish object from back-
ground, lack of well-trained features due to limited object 
information (number of pixels), object occlusion and trunca-
tion, are the principal challenges of two-stage detectors for 

Algorithm 1   Implementation of sliding window prediction for large images

1: procedure LeafSeg(I,W, s, o)
� I: RGB orthomosaic image
� W : weights of trained Mask R-CNN model
� s: vector with dimensions of window/image to predict
� o: overlap pixels between windows

2: m,n ← Im,n � Get number of rows and columns (m, n)
3: Ileaf , Ie ← ∅m,n � Creating empty matrices
4: centers ← ∅
5: stepSize ← s[1]− o
6: c, cx, cy ← 0
7: Pmasks[1],s[2] ← false
8: Pmask[(o+ 1) : (s[1]− o− 1), (o+ 1) : (s[2]− o− 1)] ← true
9: Nwinx ← (m/stepSize)[ceiling]

10: Nwiny ← (n/stepSize)[ceiling]
11: for x ← 1 : Nwinx do � Cut the large image into patches
12: for y ← 1 : Nwiny do
13: a ← s[1]/2 + cx
14: b ← s[2]/2 + cy
15: centers ← centers ∪ a, b
16: cx, cy ← cx, cy + stepSize
17: c ← c+ 1
18: Ie[a− s[1]/2, b− s[2]/2] ← c
19: Ie[a+ s[1]/2, b− s[2]/2] ← c
20: Ie[a+ s[1]/2, b+ s[2]/2] ← c
21: Ie[a− s[1]/2, b+ s[2]/2] ← c
22: end for
23: end for
24: for w ← 1 : c do � Mask R-CNN prediction for single windows
25: limx ← {minx(which(Ie = w)),maxx(which(Ie = w))}
26: limy ← {miny(which(Ie = w)),maxy(which(Ie = w))}
27: P ← I[limx, limy, 3] � 3D array of image patch
28: L1, .., Lk ← Prediction(W,P ) ∈ {leaf}
29: L ← {L1, .., Lk}[which({L1, .., Lk} ∩ Pmask)] � Intersect only with

non-overlapping center of patch Pmask

30: Ileaf [limx[1] : limx[2], limy[1] : limy[2]] ← L
31: end for
32: end procedure



KI - Künstliche Intelligenz	

1 3

quantifying small objects [18]. At this stage, when limited 
amount of information is a constraining factor, image con-
text becomes relevant. Visual objects often appear within 
specific environments and may coexist with related objects 
[20]. The incorporation of contextual information in the 
datasets gradually increases from strategy I to V (Table 2), 
consequently enhancing the AP scores. The epidemiologi-
cal development of the leaf disease and the nadir UAV-per-
spective by imaging should be an example of image context 
for the used data augmentation techniques, because specific 
environmental conditions and coexist with other related 
objects are not emulated. A previous study demonstrated 
that enhancing the performance of small object detection 
is attainable by incorporating additional image information 
(1 mm GSD) and utilizing simplified conditions. More spe-
cifically, when recording images of sugar beet plants prior 
to canopy closure and in the absence of disease pressure, 
with fewer leaves, no overlapping, and no leaf senescence, 
the use of Mask R-CNN yielded an AP value of 0.413 [21].

Environmental conditions for segmenting diseased 
leaves: We test on data sets with categories “cloudy” and 
“sunny” separately to further explain the performance of a 

Mask R-CNN leaf segmentation model under two different 
environmental illumination conditions. For this evaluation, 

Table 1   Operations, likelihood and change factor for image transfor-
mation used in copy-paste and simple augmentation techniques

a= transformation applied to single leaves, and b= transformation 
applied to entire patch image

Technique Operation Likelihood Factor

Copy-paste Flippinga 1.0 Degree range: 0 to 159◦

Scalinga 1.0 Scale range: 0.5 to 1.0
Brightness shifta 1.0 Factor: 0.7 to 1.1

Simple Horizontal flipb 0.4 –
Vertical flipb 0.4 –
Rotationb 0.4 Rotation angles: 90, 180, 

270◦

Channel shiftb 0.6 Shift range: -10 to +10
Croppingb 0.7 Cropping range: 1 to 

40%
Brightness shiftb 0.5 Factor: 0.8 to 1.5

Table 2   Error metrics of 
Mask R-CNN models for 
augmentation strategies I to 
V considering two confidence 
scores for prediction in the test 
set

The model with the highest Average Precision (AP) is highlighted in bold
CS confidence score

Strategy I II III IV V

CS 0.50 AP 0.036 0.161 0.251 0.297 0.305
Precision 0.377 0.457 0.568 0.623 0.642
Recall 0.064 0.249 0.336 0.384 0.402

0.75 AP 0.015 0.102 0.162 0.183 0.162
Precision 0.436 0.581 0.695 0.726 0.723
Recall 0.022 0.139 0.201 0.221 0.200

Table 3   Performance of model from strategy V in test set consider-
ing patch-based image annotation for two light conditions and three 
disease severity stages

The Average Precision (AP) performance for each disease severity 
stage or light condition is individually highlighted in bold

Healthy Middle Severe Average

Cloudy AP 0.315 0.350 0.354 0.339
Precision 0.741 0.670 0.701 0.704
Recall 0.380 0.441 0.436 0.419

Sunny AP 0.304 0.265 0.242 0.270
Precision 0.680 0.535 0.528 0.581
Recall 0.399 0.404 0.350 0.384

Average AP 0.309 0.307 0.298 0.305
Precision 0.710 0.602 0.615 0.642
Recall 0.390 0.423 0.393 0.402

Table 4   Definition of parameters inside leaf instance

Parameter Abbreviation formula

Leaf area Al

∑

i

∑

j

AL

Leaf slope �l
∑

i

∑

j �L

i × j

Diseased leaf area AD

∑

i

∑

j

DL × AL

Healthy leaf area AH

∑

i

∑

j

HL × AL

Disease severity (cover 
based)

dsl
∑

i

∑

j DL
∑

i

∑

j DL + HL

× 100%

Disease severity (area based) DSl
∑

i

∑

j DL × AL

Al

× 100%

Number of clusters c c
Average cluster area Ac

∑

i

∑

j DL × AL

c
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the best model in terms of AP (strategy V) was analyzed in 
Table 3 for all six categories. Data recorded under sunny 
illumination conditions is the principal source for decrease 
of performance. UAV-images of sunny days drop in AP of 
7% against cloudy and diffuse illumination. However, the 
question still remains as to whether the drop in performance 
is primarily influenced by false positive or false negative 
detections. A more detailed analysis of additional metrics, 
such as precision, reveals that this parameter experiences a 
more significant decrease in performance compared to the 
AP, while the recall remains relatively constant (resulting 
in a 12.3% decrease in precision). We conclude that analyz-
ing images recorded under sunny illumination conditions 
increases the number of false positives or objects incor-
rectly detected as leaves. Illumination is an image condition 
that affects intra-class variation. This variation drastically 
impacts the performance of object detection deep learning 
approaches, because object appearance change in bright-
ness and shading [22]. Furthermore, the effect of degree 
of disease damage is not clearly visible (Table 3). Future 
research will need to evaluate this last phenomena seeking 
the practical application of segmentation. Additionally, apart 
from the RGB composite, the removed multispectral chan-
nels ( �REDEDGE , �NIR , and �LWIR ) from original multispec-
tral orthomosaics needs to be evaluated within alternative 
representations for false color composite images to deter-
mine possible improvement of leaf instance segmentation 
of infected fields. Finally, with the increased availability of 
computational resources for the training step, it is necessary 

to evaluate early stopping for achieving optimal leaf instance 
segmentation results.

3 � Application of Leaf Segmentation 
for Parameter Extraction

3.1 � Methodology for Disease Quantification 
in Variety Trial

We explore the potential of leaf segmentation for monitor-
ing field experiments in a variety trial in 2021 near Göttin-
gen, Germany. The goal of this experiment was to quantify 
resistance against the disease Cercospora leaf spot (CLS). 
We arranged a plot-trial with five sugar beet varieties and 
two fungicide strategies in a two-factorial block design with 
four blocks or repetitions. The two fungicide strategies are: 
control with fungicide, and inoculated without fungicide. 
The registration identifiers of the five sugar beet varieties 
Beta vulgaris L. ssp. vulgaris (A–E) are: 3012, 2444, 3290, 
3316 and 3706 respectively. Selected varieties belong to the 
national variety list of the German Federal Plant Variety 
Office (Bundessortenamt) [23].

Disease assessment: We carry out visual scoring of DS 
of CLS as ground truth simultaneously to the UAV flights, 
and quantify symptoms as an average value of the plot by 
assessing middle leaves in percentage estimating a repre-
sentative infected from total leaf area [6]. The assessment 
is conducted at leaf level. In total, we randomly sample 100 

Fig. 1   a Experimental field trial with flight mission, RGB composite 
orthomosaic, and labeling of image patches (left). b Data augmenta-
tion following five strategies an (I) exclusively copy-paste technique, 

(II–IV) combination of copy-paste and simple techniques, and (IV) 
exclusively simple techniques
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leaves (25 leaves/plot) per treatment and inspect them for 
CLS symptoms.

Prediction on large images: Orthomosaic images from 
UAV-imagery outrun current GPUs capacity for prediction. 
To extend the model application to a large image from a 
complete mapped field, we use a sliding windows proce-
dure (Fig. 2). For this purpose and as proposed by Machefer 
et al. [24], we crop the RGB composite orthomosaic image 
(I) in patches with an overlap (15 cm or 60 px, o) between 
neighbours. We use the segmentation model to predict leave 
instances sequentially on each patch; and eliminate instances 
with 100% cover in the overlap region. After selection, we 
reconstruct the remaining leaves in a new orthomosaic 
image ( Ileaf  ). Algorithm 1 shows the procedure.

Instance segmentation for leaf parameter extraction: The 
availability of Ileaf  increases the potential for extraction of 
plant phenotyping parameters. In this study, we propose the 
integration of this output to a pipeline for pixel-wise clas-
sification and extraction of disease-relevant parameters as 

specified by Barreto et al. [11]. The new pipeline starts with 
radiometric calibration and photogrammetric processing of 
raw images resulting in the multispectral orthomosaic and 
the digital surface model (DSM). Then, we create a RGB 
composite orthomosaic image as specified in Sect.  2.1 
(Fig. 3a). In the next step, prediction of large image takes 
place to deliver the Ileaf  output (Fig. 3b). We calculate image 
features of multispectral orthomosaic and DSM and store 
them for later feeding them to two multiclass classifiers, a 
partial least squares discriminant analysis (PLS-DA), and a 
support vector machine radial (SVMR). At this level each 
pixel (Z) is assigned one of four classes, “other", “soil", “dis-
eased", “healthy". This results in a binary array of four layers 
or images: Oi,j , Si,j , Di,j , and Hi,j , assigned to the four classes 
respectively. The overlay of any of those outputs with an 
instance L ( L ∈ Ileaf  ) returns four outputs with the delimited 
instance region: OL , SL , DL , and HL (Fig. 3c). The binary 
image DL is relevant for disease quantification; therefore, 
clusters (c) can be extracted from DL (Fig. 3c) by labeling 
eight connected cluster pixels [25].

Considering the image area ( AL ) and image slope ( �L ) as 
calculated features from DSM within an instance L [11, 26], 
we calculate the leaf-based parameters with the formulae 
in Table 4. These parameters are: leaf area ( Al ), leaf slope 
( �l ), diseased leaf area ( AD ), healthy leaf area ( AH ), disease 
severity (cover based, dsl ), disease severity (area based, 
DSl ), number of clusters (c), and mean cluster area ( Ac).

Automatic scoring at plot level: Some parameters can not 
be directly determined from one instance, but they require 
a sample of instances within a field area. In field trials, this 
sampling takes place within a plot. A representative sam-
pling for monitoring diseases normally consists of taking 
100 leaves for scoring per plot [6]. In the same way, we can 
express the parameters mentioned in Table 4 as an average 
within the field area. Moreover, we can calculate the relevant 
parameter DI in a plot-based manner. To determine DI, it is 
necessary to define an affected or diseased unit as mentioned 
by [11, 27, 28]. In the past, we defined an instance as dis-
eased if at least one lesion was present or if the pixel summa-
tion in D was greater or equal than one cluster ( c ≥ 1 ). We 
can also define a diseased unit with another parameter such 
as dsl . Similarly, it is possible to establish threshold values 
to order diseased leaves (Fig. 6a).

3.2 � UAV Parameter for Disease Quantification

Leaf segmentation for disease severity: We compare the 
disease quantification parameter, DS from UAV-based and 
expert-based sources in Fig. 4. Figure 4a and b show a para-
bolic behavior of the UAV-based DS for models with the 
lowest and the highest AP (strategy I and V). This behaviour 
presents a maximum value of UAV-based DS at 40% of the 
ground truth data, and seems to be a limit for the automatic 

Fig. 2   Pipeline sliding windows for Mask R-CNN prediction of large 
orthomosaic images, considering an overlap between windows of 
15 cm
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calculation of leaf-based DS. By evaluating the proportion 
of variance in linear regression ( r2 ) between both DSs, we 
observe slightly better results in the linear regression model 
of the UAV-based data from strategy V compared to strategy 
I. Moreover, there are no clear differences between models 
with CS of 0.50 or 0.75.

We attribute this parabolic relationship of UAV-based DS 
to the image context and the combined effect from nadir 
UAV perspective and the new leaf growth emerging of a 
typical severe epidemics of CLS [29]. The nadir perspective 
of UAV record mainly above-located leaves which are under 
severe epidemics and covered by healthy new leaves. This 
entails special advantage of visual scoring because from a 
side perspective heavy diseased and small leaves are quan-
tified with high DS values [30], while low DS values are 
delivered from UAV-based scores by quantifying healthy 
new leaves.

To mitigate the effect of image context by analyzing less 
disease development stages, in Fig. 4c and d were deleted all 
data with high expert-based values (DS higher than 40%). 
In general, values of r2 increase significantly after data dele-
tion. Here, the model with the highest AP (strategy V) shows 
a clear advantage against model of strategy I. In addition, 
the model with CS of 0.75 performs slightly better than 
the model with CS of 0.50. A possible solution against this 
image context challenge is to introduce a new class of leaf 
instances for leaves with damage higher than 40% in order 
to give priority to the detection of this morphological dif-
ferent leaves.

Epidemiological development of disease quantification 
parameters: In this section we show one of the principal 
applications of leaf segmentation for parameter extrac-
tion and plant phenotyping of variety trials for resistance 
quantification. As described in Sect. 3.1, we work with the 
experimental design with five varieties and two fungicide 
strategies. In Fig. 5, we show the development of each geno-
type during the complete period for disease monitoring with 
average values of DSl , Al , and c. We compare the develop-
ment of DSl in Fig. 5a and b for the control with fungicide 
and inoculated without fungicide variants. Here we see 
the effect of disease pressure by applications of fungicide, 
where the control with fungicide variant keeps all varie-
ties healthy until the beginning of September (Fig. 5a). We 
further observe resistant characteristics of a genotype with 
high disease pressure. In Fig. 5b, variety A shows the most 

Fig. 3   Prediction of disease quantification parameters by application 
of leaf segmentation. a RGB composite of diseased plants, b segmen-
tation of leaves, and c multiclass pixel-classification and parameter 
extraction of leaf instances as healthy region ( H

L
 ), diseased region 

( D
L
 ), and number of clusters within a leaf (c)

▸
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susceptible characteristics, and variety E presents appar-
ently the highest tolerance against CLS. The leaf area is 
also affected by the genotype and disease pressure (Fig. 5c 
and d). In Fig. 5c we see that variety C presents the smallest 
Al until mid August, while varieties D and E show the big-
gest Al during the complete monitoring period. Al is further 
affected by disease pressure. UAV-monitoring is a new way 
to describe resistance (Fig. 5d), where an accumulative value 
of leaf area highlights the resistance of a genotype. Figure 5e 
and f show the development of c, where we observe similar 
properties for disease quantification as with DSl . The shape 

for instance should influence the relevance of c for disease 
quantification. In our past contribution [11], we calculate c 
from a circle shape instance and do not find relevance for 
disease quantification and variety differentiation for resist-
ance. However, using leaf form instances from our instance 
segmentation model, we are able to contrast variety quantita-
tive resistance.

UAV-parameters for plant protection measure: In Ger-
many, thresholds of DI are the principal indicators for 
plant protection measures, avoiding losses in sugar beet 
cultivation [6]. On the field and for the case of CLS, leaves 

Fig. 4   Relationship of unmanned aerial vehicle (UAV)- and expert-
based scores for confidence scores (CS) of 0.50 and 0.75 in two 
monitoring dates of experimental test field. Comparison of all 

ground-truth values for model in data augmentation a strategy I and 
b strategy V. Comparison for ground truths lower than 40 % in c strat-
egy I and d strategy V. Monitoring dates: 17th and 31st August 2021
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are ordered as “diseased" when at least one CLS spot is 
present on a sampled middle leaf. To implement an auto-
matic scoring approach, an accurate and robust detection 
of single spots is compulsory. However, current pixel-wise 

UAV-based image processing approaches are far from 
100% level of precision and recall [9, 11]. This disadvan-
tage makes the automatic definition of a diseased unit a 
challenge due to the risk of false positives if the criteria 

Fig. 5   Development within fungicide strategies and five sugar beet 
varieties of leaf-based disease quantification parameters: disease 
severity (a, b), leaf area (c, d), and number of clusters per leaf (e, f). 

A total of 100 leaves were used for each treatment level. Curves were 
smoothed using locally estimated scatterplot method
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“ c ≥ 1 " is considered, because of the wrong classification 
of healthy regions as diseased increases. However, this 
criterium is easy to adapt to different disease quantifica-
tion parameters in image-processing approaches (e.g. by 
using c or dsl ) and diverse threshold values (Fig. 6a). We 
emulate possible time-series developments of DI with four 
different threshold values that defines a diseased unit ( 
“diseased" if {c ∣ dsl ≥ 1, 5, 10, 25} number of clusters or 
%). In Fig. 6b we observe that DI based on c parameter 
has a slightly advantage in comparison with DIs based on 
dsl criteria, due to the early exponential phase in DI curve. 
Nevertheless, DI with the most sensible definition criteria 
of “diseased” (“diseased” if {c ≥ 1} ) shows the disadvan-
tage of the inaccurate pixel-wise approach, delivering high 
values of DI at the begin of July when the pathogen was 
just inoculated, with false positive detections. This inaccu-
racy can lead to a wrong decision for disease control. The 
alternative to this problem is to fix a higher threshold value 
to define a diseased unit avoiding possible emergence of 
false positives as observed in criteria {c ≥ 5, 10, 25} . How-
ever, this decision shifts the exponential phase of DI to a 
later point in time, making this adaptation not suitable for 
practical use.

In Fig. 6c, we visualize the development of expert-based 
and UAV-based parameters. We observe that DS from 
expert-based and our leaf segmentation UAV-based data 
stay close together. This demonstrates that multispectral 
UAV-imaging for an automatic DS assessment under field 
conditions is feasible. However, in the case of DI, the expert 
ratings show an early exponential phase in the curve in July, 
while UAV-based scoring with a criteria “ c ≥ 5 ” presents 
an exponential phase two months later than the experts. The 
performance of UAV-based DI parameter can be improved 
with a higher precision and recall for detecting diseased 
regions. However, we suspect there is a technical gap in the 
case of CLS for multispectral VISNIR UAV-imaging com-
parison to expert evaluation. We believe that this is due to 
restricted view of nadir perspective of UAV-based images in 
comparison to the possibility of the expert to sample middle 
and old sugar beet leaves individually, where first symptoms 
are observed [31].

Fig. 6   Decision making based on disease incidence (DI). a Criteria 
for defining a diseased unit based by thresholding c or ds

l
 parameter. 

b Development of DI curve based on diverse threshold magnitudes 
individually for c and ds

l
 parameters. c Development of UAV-based 

and expert-based parameters. A total of 100 leaves were used for the 
treatment level in time-series (variety B and control with fungicide). 
Curves were smoothed using locally estimated scatterplot method

▸
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4 � General Discussions, Further Work 
and Conclusion

In this work we give an overview of the complexity of mod-
eling a leaf segmentation approach for UAV-images under 
field condition. For practical use, automatic leaf segmen-
tation should provide robustness. This includes good per-
formance under diverse illumination conditions, for a high 
number of genotypes, and considering the epidemiological 
development of infested plants. This requires a high num-
ber of annotated images for modeling one plant–pathogen 
interaction.

Mask R-CNN models with a good AP performance 
deliver more accurate disease quantification parameters 
according to our results in comparison with models with 
a low AP. Leaf-based phenotyping parameters are relevant 
tools to describe epidemiological development of sugar beet 
genotypes under diverse disease pressure. Accumulated Al Ó 
over the complete monitoring season should differentiate 
genotypes for resistance against leaf diseases.

Instance form, whether circle or leaf, should influence 
the relevance of respective parameters to differentiate geno-
types. To graph this statement, we evaluate the case for c 
parameter from our past contribution [11], where circle-form 
c showed no significance for the genotype factor, while a 
leaf-form c presents a potential for resistance differentiation 
(Fig. 5c).

One of the principal limits for monitoring and scoring leaf 
diseases in field experiments is the necessity of a high number 
of trained personal. An automatic UAV-based scoring offers 
the chance to eliminate human error proper from individual 
scoring increasing the efficiency of collecting data.

The potential application of multispectral UAV-imag-
ing and leaf-based parameters for disease management 
has to be analyzed in future studies. Although we mention 
the possible technical gap for UAV-based DI, we have 
to consider the potential of dividing a mapped field in 
mini plots for calculating DI, to make an individual and 
geo-referenced decision in large mapped fields. Reduc-
tion of fungicide use is an important step towards sus-
tainable sugar beet production. This reduction is feasible 
through site-specific applications guided by geo-ref-
erenced and accurate UAV-based DI’s as indicators for 
decision-making.

In conclusion, our experiments show basic image aug-
mentation techniques to be more efficient than the com-
putationally expensive copy-paste augmentation approach 
for training the leaf segmentation Mask R-CNN on UAV-
images in our resource constraint setting. We demonstrate 
that a leaf-segmentation Mask R-CNN model can be inte-
grated in a pipeline to extract leaf-based parameters of 
monitored fields. Advantages and limitations from calcu-
lated parameters are identified and critically discussed. 

Moreover, geo-referenced decision making and site-spe-
cific application needs to be addressed by future research. 
Although we evaluate only the case of CLS disease, the 
present pipeline for leaf-based parameter extraction can 
be transferred to agricultural practice and can support 
decision making in plant breeding for resistance and inte-
grated disease management. Overall, we demonstrate that 
UAV-based monitoring of sugar beet fields followed by 
proper post-processing, can output reliable information 
that increases efficiency by replacing the very laborious 
work of visual scoring.

Appendix A Supplementary information

UAV	� Unmanned aerial vehicle
CLS	� Cercospora leaf spot
DSM	� Digital surface model
DI	� Disease incidence
DS	� Disease severity
AP	� Average precision
ROI	� Region of interest
ML	� Machine learning
IoU	� Intersection over union
CS	� Confidence score
GSD	� Ground sample distance
A	� Surface area
�L	� Image slope or angle between surface and normal 

to horizontal within a leaf instance
�l	� Average slope or angle between surface and nor-

mal to horizontal within a leaf instance
PLS-DA	� Partial least squares discriminant analysis
SVMR	� Support vector machine radial
L	� Individual leaf instance
AL	� Image surface area within leaf instance
Al	� Surface area within leaf instance
Ac	� Average cluster area within leaf instance
AH	� Surface area of healthy foliage within leaf 

instance
AD	� Surface area of diseased foliage within leaf 

instance
dsl	� Cover based disease severity within leaf instance
DSl	� Area based disease severity within leaf instance
W	� Trained weights for leaf segmentation Mask 

R-CNN model
c	� Number of clusters
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