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Abstract
Diffusion magnetic resonance imaging (dMRI) is developing into one of the most important non-invasive tools for clini-
cal brain research. This development is supported by a project funded by the German Research Foundation, in which four 
major obstacles related to dMRI data were addressed: (1) the lack of transferability of dMRI data between clinical sites, (2) 
the lack of training and label data, (3) the potential of complex diffusion data, and (4) the integration of spherical signals in 
neural networks to improve accuracy. To overcome the problem of different MRI systems producing slightly varying data, 
the project developed a method for harmonizing MRI signals. To address the issue of limited ground truth data, a framework 
was developed to synthesize individual diffusion data and complete datasets based on important diffusion characteristics 
and statistics. The integration of complex signals, often discarded during acquisition, to improve reconstruction was also 
explored. Finally, new methods were developed to preserve the spherical character of the diffusion data in the DL model. The 
resulting methods are intended to improve the usability of diffusion imaging data and to enable the creation of processing 
pipelines for dMRI data in clinical studies and clinical practice.
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1 Introduction

Diffusion imaging is a non-invasive technique that provides 
information on the diffusion of water molecules in biologi-
cal tissues, which can be used to infer the underlying tissue 
microstructure [1]. However, analyzing high-dimensional 
diffusion data requires complex image processing tech-
niques, which can be time-consuming and computation-
ally demanding. Therefore, the use of deep learning (DL) 
methods has gained attention in recent years to accelerate 

the analysis of diffusion data and improve the accuracy of 
the reconstruction [2–4]. This project aimed to develop an 
innovative and disruptive DL pipeline for diffusion imaging 
that can handle complex spherical signals and achieve opti-
mal reconstruction quality. To achieve this goal, four fun-
damental research questions were identified and addressed 
in this project: 

1. Lack of Transferability: The transferability of DL models 
between clinical sites has been a significant challenge 
due to the variability in image acquisition protocols, 
scanners, and patient populations. A model trained on 
a specific dataset may not perform well on new data-
sets with different acquisition protocols. This problem 
is particularly challenging in diffusion imaging, where 
the diffusion properties vary depending on the tissue 
type and pathology. To address this problem, the project 
explored supervised, semi-supervised, and unsupervised 
harmonization approaches to transfer datasets between 
different scanners or sites. The results showed that using 
harmonization approaches could improve the transfer-
ability of the DL model and reduce the reliance on large 
datasets for single clinical sites.
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2. Lack of Training and Label Data: The availability of 
training and label data is a significant challenge in diffu-
sion imaging, particularly in small-scale studies or rare 
diseases. The lack of ground-truth data makes it chal-
lenging to train DL models and evaluate their accuracy. 
In this project, the use of synthetic data based on novel 
diffusion models was explored to generate training and 
label data for the DL pipeline. The results showed that 
synthetic data could provide accurate ground-truth data 
for training and evaluating DL models, particularly in 
small-scale studies or rare diseases.

3. Potential of Complex Diffusion Data: The diffusion sig-
nal in magnetic resonance imaging (MRI) is a complex 
signal consisting of amplitude and phase information. 
The phase information contains valuable information 
about tissue microstructure, but its use in diffusion 
imaging is challenging due to its sensitivity to motion 
and susceptibility artifacts. This project explored inte-
grating phase information in the DL model, which may 
improve the reconstruction quality of complex diffusion 
data.

4. Spherical Signals in Neural Networks: Diffusion data 
is a spherical signal, and the gradient directions are 
highly correlated with the gradients in their immedi-
ate neighborhood. Therefore, the spherical character of 
the diffusion data should be preserved in the DL model 
to improve the accuracy of the reconstruction. In this 
project, the use of spherical harmonics was explored to 
preserve the spherical character of the diffusion data in 
the DL model.

The above research questions were addressed in a research 
project funded by the German Research Foundation (DFG) 
under grant number 417063796. In this project report, all 
five work packages of the project are presented, and for each 
work package, a summary of the methodological approaches 
as well as the results is provided, which have previously been 
presented in several publications [5–10]. Also, an overall 
discussion and conclusion are presented.

2  Work Packages—Methods and Results

WP1—Signal Harmonization
Diffusion MRI (dMRI) data from different sites exhibit 

considerable variability due to various factors, including 
hardware, acquisition settings, and reconstruction algo-
rithms. The variability can be in the same range as biological 
variability, which complicates clinical studies, and reliable 
harmonization methods are needed for multicenter studies. 
Two approaches to diffusion harmonization are presented 
here: an unsupervised algorithm that can perform harmo-
nization without paired data and an approach that requires 

paired data and incorporates a diffusion tensor imaging loss 
for harmonization. The cyclic neural network architecture 
forms the basis of the unsupervised algorithm. Unsuper-
vised learning is possible with cyclic networks because of 
their unique capacity to generate images without the need 
for paired data. Training can occur in unsupervised, semi-
supervised, or supervised settings depending on the amount 
of paired data available. The methods and results were previ-
ously published in [5, 6]. In the first step, the unsupervised 
harmonization algorithm was created and evaluated on the 
HCP dataset. A test group of 86 subjects who were not part 
of the training procedure was used to evaluate the trained 
generators. The mean squared error (MSE) of the dMRI raw 
data, mean diffusivity and fractional anisotropy were cho-
sen for evaluation. The proposed cyclic network was trained 
using a completely unsupervised method (without paired 
images), a fully supervised method (using paired images 
acquired in WP3), and a nested combination of the unsu-
pervised and supervised training methods. Furthermore, a 
baseline was incorporated for comparison. The baseline data 
underwent the same preprocessing procedures across all sub-
jects, including registering paired data and resampling diffu-
sion directions. These procedures introduced some degree of 
smoothing, thereby reducing the mean squared error (MSE) 
between the two datasets. Table 1 shows the baseline and 
all outcomes.

The development of this algorithm was then evaluated on 
the data collected in WP3. The proposed approach was com-
pared to SHResNet [11], the standalone MICA method [12], 
and the baseline between the two images to evaluate its per-
formance. The 24 individuals were randomly split into four-
subject groups for a six-fold cross-validation as part of the 
evaluation process. Before applying the complete pipeline, 

Table 1  Mean squared error between target and harmonized data for 
supervised, unsupervised, and mixed training in the 3T range (see 
also Table 1 in [6])

In the unsupervised setting no matching images are available. x% 
supervision denotes the percentage of subjects with matching images 
during training (i.e. 2% supervision refers to a single subject with 
matching images, given a training set of 50 subjects)

Training Raw (in 10−3) FA (in 10−3) MD (in 10−8)

Baseline 1.25 ± 0.51 0.82 ± 0.32 0.58 ± 0.47

Unsupervised 0.95 ± 0.39 0.71 ± 0.29 0.53 ± 0.44

2% sup 0.85 ± 0.40 0.68 ± 0.29 0.49 ± 0.44

4% sup 0.83 ± 0.38 0.68 ± 0.29 0.49 ± 0.44

10% sup 0.81 ± 0.39 0.67 ± 0.29 0.47 ± 0.44

20% sup 0.79 ± 0.38 0.67 ± 0.30 0.47 ± 0.44

30% sup 0.76 ± 0.37 0.66 ± 0.29 0.44 ± 0.44

50% sup 0.74 ± 0.38 0.65 ± 0.29 0.42 ± 0.44

80% sup 0.72 ± 0.38 0.64 ± 0.30 0.41 ± 0.42

Supervised 0.68 ± 0.35 0.63 ± 0.30 0.38 ± 0.42
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cross-validation was carried out, and it was maintained for 
every single step. Separate but identical harmonization pipe-
lines were employed for each of the three diffusion shells (b 
= 1000 s/mm2 , b = 2000s/mm2 , b = 3000 s/mm2 ) for MICA 
and the proposed method. The final product is a merger of 
the three harmonized shells. The study conducted three dis-
tinct evaluations: (1) a comparison of the single shell metrics 
utilized for training the proposed neural network, including 
the raw diffusion attenuation and DTI metrics FA and MD, 
(2) an analysis of the variations in multi-shell microstruc-
ture modeling using NODDI [13], and (3) an assessment 
of the perception-based similarity using the LPIPS metric 
[14]. The Wilcoxon signed-rank test was used to determine 
if a statistically significant number of subjects showed sig-
nificantly better harmonization results than with the previ-
ously available methods. This was done for all evaluations 
in comparison to the best baseline result or the second-best 
approach. First, the raw diffusion attenuation harmonization 
performance and the metrics derived from DTI were com-
pared for each shell. The raw diffusion attenuation signal’s 
mean squared error (MSE) was assessed independently for 
each of the three distinct b-value shells. Individual FA and 
MD maps were generated for each diffusion shell. The find-
ings are presented in Table 2. On the three derived metrics, 
our proposed method beats all other approaches, and it is the 
only examined method that did better than the baseline on 
all measures. The SHResNet approach, on the other hand, 
exhibited the best results in terms of raw diffusion attenu-
ation error. Second, we utilized NODDI [13] to measure 
intra-head coil impacts and harmonization performance on 
microstructural estimations by fitting it to the whole multi-
shell data. The MSE of the neurite orientation dispersion 
index (ODI) and neurite density index (NDI) were calculated 
for each method. In addition, we compared the effect on 
fiber direction by calculating the average orientation of the 
Watson distribution modified for the neurite compartment. 
Our algorithm yields statistically significant gains in NDI 

and ODI image similarity (p<0.005), with NDI seeing the 
greater of the two effects [5]. The fiber orientation similari-
ties between the two acquisitions have also been enhanced, 
but not to a statistically significant degree.

Third, given that basic signal smoothing techniques have 
demonstrated enhancements in the majority of signal com-
parison assessments [9], we proceeded to assess the dispari-
ties in raw diffusion-weighted images using a perception-
based metric. The selection of the LPIPS metric was based 
on its ability to replicate human perception closely [14]. The 
calculation was performed on a per-individual basis across 
all diffusion-weighted images and subsequently averaged 
across both images and subjects. The approach we propose 
exhibits superior performance compared to both the base-
line and the two comparison algorithms across all three 
b-value shells (see Table 3 in [5]). It is worth mentioning 
that the Mean Squared Error (MSE) reduces as the b-value 
increases for raw data, Fractional Anisotropy (FA), and 
Mean Diffusivity (MD) owing to the lower signal intensity 
(see Table 2). Simultaneously, the LPIPS scores exhibit an 
upward trend with an increase in the b-value, suggesting a 
heightened level of dissimilarity among images with more 
robust diffusion weighting. The results of the three distinct 
harmonization approaches are shown in Figure 3 in [5]. The 
proposed method and MICA significantly reduce signal 
distortion compared to SHResNet. The MICA technique is 
incapable of signal smoothing since it does not intrinsically 
consider location-dependent effects. However, our suggested 
approach takes local context into account. Figure 3 in [5] 
shows an example of this impact, shown by the green circles.

WP2—Development of Methods for Data Synthesis
The method of data synthesis relies significantly on the 

generation of training data using voxels obtained from each 
subject individually. In this study, using an eroded Fast seg-
mentation mask [15], cerebrospinal fluid (CSF) and gray 
matter (GM) voxels were extracted from a registered T1 
image. The diffusion tensors are calibrated for individual 

Table 2  Difference between 
the two head coil acquisitions 
before and after harmonization 
for the three b-value shells, 
according to [5], Table 2

Mean squared error (MSE) of diffusion attenuation (raw data), FA, and MD. The best outcomes are high-
lighted in bold, and those statistically significant (p<0.005) better than the second-best strategy are denoted 
with an asterisk*

Before SHResNet MICA Proposed

Raw data b1000 (in 10−3) 9.39 ± 0.79 5.82± 0.49∗ 8.85 ± 0.75 8.58 ± 7.07

Raw data b2000 (in 10−3) 7.27 ± 0.55 4.33± 0.32∗ 6.82 ± 0.52 6.62 ± 0.50

Raw data b3000 (in 10−3) 6.18 ± 0.49 3.71± 0.32∗ 5.71 ± 0.44 5.48 ± 0.41

MD b1000 (in 10−9) 29.6 ± 6.54 33.9 ± 7.42 29.5 ± 6.60 28.2± 6.36∗

MD b2000 (in 10−9) 9.01 ± 1.75 9.83 ± 1.78 8.71 ± 1.62 8.40± 1.53∗

MD b3000 (in 10−9) 4.50 ± 0.75 4.75 ± 7.00 3.92 ± 0.58 3.80± 0.60∗

FA b1000 (in 10−3) 8.09 ± 0.88 9.34 ± 1.06 7.87 ± 0.84 7.62± 0.82∗

FA b2000 (in 10−3) 6.92 ± 0.62 8.45 ± 0.84 6.99 ± 0.60 6.74± 0.59∗

FA b3000 (in 10−3) 6.79 ± 0.51 8.12 ± 0.76 6.84 ± 0.51 6.53± 0.50∗
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b-value shells in order to accommodate these specific vox-
els. The mean diffusivity of cerebrospinal fluid (CSF) and 
gray matter (GM) are determined based on these voxels. 
Subsequently, these values are employed to produce arti-
ficial training data. A single diffusion tensor may prove 
inadequate in representing the white matter (WM) diffu-
sion signal throughout the brain, given that multiple micro-
structural compartments may impact the diffusion within a 
voxel. The development of a single-fiber response function 
in constrained spherical deconvolution (CSD) [16] is used 
to extract single-fiber WM voxels from voxels within the 
corpus callosum with an FA larger than a pre-defined thresh-
old (FA>0.7). In comparison to the approach of constrained 
spherical deconvolution (CSD), our method involves the 
preservation of all single-fiber voxels extracted from the 
white matter. Then, for each voxel and shell, we fit prolate 
diffusion tensors, predicting three diffusion tensors for a 
three-shell acquisition, identical to the diffusion sequence 
used in the Human Connectome Project (HCP). Importantly, 
these tensors are estimated independently of one another. 
This leads to a range of diffusion tensors that represent vari-
ous white matter microstructures. This method relies on the 
assumptions that GM and CSF diffusion are isotropic and 
that diffusion can be defined by single fibers with prolate 
tensors for a single b-value. Because diffusion characteristics 
are evaluated separately for each shell, b-value-dependent 
effects (such as kurtosis) are incorporated in the synthetic 
data. In this study, an autoencoder [17], a network archi-
tecture originally created for denoising purposes, is used 
to evaluate the quality of synthetic diffusion data. When 
synthetic data is utilized for training and real data is uti-
lized for evaluation, it can serve as a metric for assessing 
the quality of synthetic data. In cases where the generative 
model of synthetic data aligns with only a subset of the fea-
tures present in the in vivo data, the trained autoencoder 
may face limitations in its ability to generalize across the 
entire spectrum of in vivo data. Conversely, if the generative 
model induces excessive diversity, the autoencoder’s per-
formance may be compromised due to the neural network’s 
loss of specificity. Consequently, the utilization of synthetic 
data that is more appropriate will result in enhanced recon-
struction performance in in-vivo data [8]. The autoencoder 
proposed in this study is designed to be self-adaptive to the 
shape of the input in order to optimize the balance between 
the generality and specificity of the data, regardless of the 
type of diffusion acquisition. Consequently, the dimensions 
of the architecture are dynamically adapted to the number 
of diffusion directions. Four distinct synthetic diffusion data 
models were subjected to training and evaluation on single-
voxel data in order to assess their respective quality. We 
evaluate the autoencoder’s reconstruction performance on 
various synthetic datasets using the diffusion-weighted raw 
signal and metrics obtained from adaptive diffusion tensors. 

In order to evaluate the reconstruction performance, first of 
all the diffusion-weighted signal is considered; this is the dif-
fusion signal divided by the b 

0
 value. A detailed evaluation 

is provided in [8], where Figure 1 depicts the standard devia-
tion of the reconstructed signal from dMRI images of the 
brain. Reconstruction performance for Syn, Sample &Mean, 
and Sample are almost comparable and display no statisti-
cally significant variations in HCP and study data, whereas 
RandomWM mode performs far worse. The performance 
of reconstruction varies between the HCP acquisitions and 
study data. The voxel sizes employed in the HCP study (1.25 
mm) and the local study (2.4 mm) provide an explanation 
for this difference in results. Accordingly, one voxel in the 
local study data corresponds to (2.4∕1.25)3 ≈ 7 voxels in the 
HCP data. Without taking into account variations caused 
by other acquisition parameters and the pre-processing 
pipeline, an SNR difference between the two datasets of 
(2.4∕1.25)3 ≈ 2.66 is expected. The observed difference in 
the raw reconstruction performance is precisely reflected by 
the mean absolute error values obtained for the three multi-
tensor simulations, which are 0.014 and 0.037 for the local 
study data and HCP data, respectively. Subsequently, the 
reconstruction performance was evaluated utilizing metrics 
that were derived from adapted diffusion tensors. The study 
found insignificant variation in fractional anisotropy (FA) 
among the three multi-tensor modes, namely Syn, Sample& 
Mean, and Sample. The mean absolute error for the three 
modes was 0.0075 in the local study data and 0.0104 in 
the HCP data. In contrast, the RandomWM model exhib-
ited considerably poorer performance, with a mean absolute 
deviation of 0.17 in the local study data and 0.22 in the 
HCP data. Figure 2 in [8] illustrates notable dissimilarities 
among the multi-tensor modes in their ability to reconstruct 
the main fiber direction. Significant dissimilarities are appar-
ent between the Syn and WM sampling models. In contrast, 
variations in the average or sampling of GM and CSF diffu-
sion attenuation do not exert a comparable level of impact 
on the outcomes. The RandomWM method’s performance, 
as indicated by the local study (42.4 ± 3.2) and HCP (42.7 ± 
2.8), is notably inferior to the other methods. Consequently, 
it has been omitted in the figure to enhance clarity.

This approach for generating synthetic single-voxel data 
was successfully applied for training free-water correction 
approaches in diffusion imaging data [18, 19].

WP3—Collection of diffusion data for the evaluation of 
the project

Thirty healthy subjects were scanned on different MRI 
machines using high-resolution diffusion sequences. For 
this purpose, two different 3T MRI systems (a Siemens 
Prisma Scanner and a Siemens Prisma Fit Scanner with 
coils with 20 and 64 channels, respectively) from the Uni-
versity Hospital Aachen were used. The Siemens Prisma 
Fit Scanner is identical in design to the Siemens Prisma 
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Scanner. For this study, 30 healthy male subjects were 
recruited through lectures and social media. The subjects’ 
ages were divided into two groups (21-25 and 26-30). 
Identical MRI measurements of the head were performed 
on both MRI systems. An anatomical measurement of the 
brain was performed at the beginning of each scan, which 
was necessary to examine different brain areas. Then, a 
diffusion imaging sequence was used based on the Human 
Connectome Project sequence. This very high-resolution 
sequence allows for optimal evaluation of newly developed 
methods for reconstructing nerve pathways. Furthermore, 
this recording can simulate a clinical recording, which 
does not need to be additionally taken. Measurements on 
both MRI systems were conducted on the same day, where 
possible. If this was not possible, the measurements were 
performed on two consecutive days and as close together 
as possible at the same time of day. This excluded side 
effects caused by growth or cyclic hormone effects. In a 
separate Zoom meeting before the first scan, the subjects 
were comprehensively informed about the study and its 
risks. The first measurement was then taken at the first 
MRI machine, and the second measurement was taken at 
the second appointment. Each of the two measurements 
took 1 h and 30 min. In total, it is assumed that the partici-
pation in the experiment (4 h) was compensated with 50€. 
A written consent form for participation in the study will 
be obtained from all subjects. This study was conducted 
in accordance with the Declaration of Helsinki. Further 
information on the recording sequence and study partici-
pants can be found in [20], Chapter 6. The data preprocess-
ing was implemented using a Nipype pipeline [21]. In the 
first step, the DICOM raw images were converted to the 
NIFTI format using dcm2niix [22]. Skull-stripping and 
segmentation are performed with ANTs [23] on two T1 
recordings, one from the 64 channel head coil session and 
one from the 20 channel head coil session. These processes 
were carried out jointly with the ”CorticalThickness” tool, 
which uses established criteria for brain extraction and tis-
sue segmentation to carry out an anatomical T1 brain pro-
cessing. The brain is segmented into cerebrospinal fluid, 
cortical gray matter, deep gray matter, and white matter. 
FSL [24] tools are used to process the dMRI scans. The 
anterior-posterior scans are corrected for susceptibility-
induced distortions using the posterior-anterior data with 
FSL Topup [25]. The brain is extracted using BET [26]. 
Eddy currents are removed using FSL Eddy [27] to cor-
rect motion artifacts. The segmentation map of the brain 
tissue is transformed into the diffusion space. Dipy [28] is 
used to fit diffusion tensors to the dMRI data and derive 
fractional anisotropy (FA) maps. The FA maps are used 
for affine registration to the T1 scan using the T1 scan 
from the same scanner. All registrations are performed 
using the special ANTs registration toolbox [29]. Finally, 

the four separate dMRI recordings for each subject must 
be merged in order to analyze differences in scanner setup 
and subsequent harmonization.

WP4—Complex Signals (Amplitude and Phase)
The B 

0
 field strength shows small local changes depend-

ing on the magnetizability of the tissue. For example, blood 
(which is rich in iron) has a different susceptibility than sur-
rounding tissue. In T2* weighted images, the phase image 
provides a clear contrast because T2* weighted images are 
sensitive to susceptibility artifacts and, therefore, to phase. 
This is mainly due to the gradient-echo sequence used for 
T2* weighted images. To suppress these T2* effects, pulse-
echo sequences are used for T1 and T2 weighted images, 
which suppress dephasing. Therefore, the remaining phase 
is very noisy because it is close to zero. In the case of diffu-
sion-weighted EPI sequences, a multi-echo GRE sequence 
is used during acquisition and a spin-echo sequence during 
excitation. The spin-echo sequence’s echo occurs during 
acquisition (Fig. 1). For this reason, only a noisy phase can 
be measured precisely at TE. Although the ratio of phase to 
noise is better in the higher-frequency parts of the k-space, 
they contain only a few image details. Thus, a classical 
DWI sequence in its current form is unsuitable for obtaining 
phase information. Changing the weighting and acquisition 
sequence could improve the phase data’s noise. However, a 
research scanner would be necessary for this purpose. There-
fore, whether phase information provides added value cannot 
be definitively determined. It is known that susceptibility 
depends on the applied B 

0
 field. However, the B 

0
 field is 

almost unchanged during a DWI sequence because the dif-
fusion gradients are two orders of magnitude smaller than 
the applied B 

0
 field.

WP5—Spherical Signals
Recent results in DL suggest that incorporating addi-

tional information improves the results of the respective DL 
approach [30, 31].Although novel network architectures 
such as the UNet [32], ResNet [33], or DenseNet [34] can 
improve performance, it is commonly agreed that it is still 
crucial to develop sensible training strategies, individual-
ized loss functions and individual layers [35]. In order to 
integrate the spherical character of a measured signal into 
a DL network, novel spherical DL layers were developed in 
this work package and analyzed with respect to a diffusion 
signal to ensure optimal processing of the diffusion signal 
in a deep neural network.

With respect to diffusion imaging data, the effect of dif-
ferent activation functions on the diffusion signal (Fig. 2), 
as well as on the Fourier signal of a diffusion signal (Fig. 3), 
was analyzed. This is particularly important since the spheri-
cal character of the signal has to be maintained within a 
DL network. The first activation function (Fig. 2 left) shows 
the Rectified Linear Unit (ReLU). This activation function 
shows the input signal without modification, as a ReLU only 
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sets negative values to zero. Since the diffusion signal has 
positive values only, this type of activation has no effect. 
This changes when a sigmoid or a hyperbolic tangent (TanH) 
function are chosen as activation functions. Here, a slight 
contrast reduction (sigmoid) as well as a contrast enhance-
ment (TanH) can be observed after applying these functions.

A slightly different situation arises when the activation 
function is applied in the Fourier space. A regular diffusion 
signal in the Fourier space usually has many values close 

to zero. Only the DC component of the signal has larger 
absolute values. A comparison of the different activation 
functions applied in the Fourier space can be seen in Fig. 3.

As illustrated in Fig. 3, a ReLU activation leads to 
reduced contrast as well as a drastic change in the signal, 
as any negative coefficients are removed. In case of the 
sigmoid function, negative values are converted to posi-
tive values, which destroys parts of the diffusion signal 
and therefore has a substantially stronger effect on the 

Fig. 1  Upper row: the phase in diffusion-weighted images. Middle row: the phase in diffusion tensor maps. Bottom row: in comparison, the cor-
responding representations of the amplitude images
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signal. In contrast, the TanH function accomplishes a 
contrast-enhancing effect by altering small values mini-
mally, but large values significantly. This mainly affects 
the DC component of the signal, which is reduced by the 
function.

To evaluate the reconstruction accuracy of differ-
ent spherical layers, a denoising autoencoder [36] was 
employed. Diffusion signals were artificially enhanced 
with noise, and the different layer-specific autoencoders 
were then used to remove this noise. Different combina-
tions of spherical layers and activation functions were 
used to evaluate the individual autoencoders. Subse-
quently, the performance was assessed through three dis-
tinct evaluations: runtime, signal denoising performance, 
and the impact on reconstruction accuracy in state-of-
the-art reconstruction methods. Twenty subjects from 
the Human Connectome Project were used for evaluation 
purposes. This database provides highly resolved diffu-
sion images of healthy subjects. In detail, each diffusion 
image has a voxel dimension of 1.5 mm3 , three different 
b-values with 90 gradient directions each, and an addi-
tional set of 18 non-weighted diffusion images. The dif-
ferent methods were evaluated only on the white matter 
region of the individual brains. All results, as well as a 
detailed description of the experiments, were published 
in [11]. In general, it can be said that spherical layers lead 
to a significant gain of information within a DL network.

3  Discussion

The development of a DL analysis pipeline for diffusion 
imaging data is an exciting and innovative approach that 
has the potential to significantly improve the efficiency 
and accuracy of clinical brain research. The project con-
sists of four methodological work packages (WP1, WP2, 
WP4, and WP5), each addressing a fundamental research 
question related to the application of DL in diffusion imag-
ing data, plus one work package (WP3) for diffusion data 
acquisition. The first work package focuses on the lack of 
transferability of diffusion MRI data between clinical sites. 
This is a major barrier to the widespread adoption of diffu-
sion MRI in clinical practice, as different MRI systems can 
produce significantly different results. The development of 
an optimal method for harmonizing MRI signals is essen-
tial to ensure that the DL pipeline can be used effectively 
across different clinical sites. The second work package 
addresses the issue of the lack of training and label data 
for DL. This is a common problem in medical imaging, as 
ground truth data is often difficult to obtain. The proposed 
framework for synthesizing diffusion data based on impor-
tant diffusion characteristics and statistics is a promising 
solution to this problem. This approach will allow for the 
creation of large single voxel datasets with corresponding 
ground truth that can be used to train DL pipelines for 
diffusion imaging data analysis. The fourth work package 
explores the potential of complex diffusion data. While the 
phase information is often discarded during acquisition, 
complex MRI signals comprising amplitude and phase 
may carry important tissue information that could poten-
tially be used to improve the accuracy of reconstruction. 
However, our results were not conclusive yet and would 
need sequence development on a research MRI scanner 
for further exploration. The fifth work package focuses on 
the integration of spherical signals in neural networks to 
improve accuracy by explicitly considering the spherical 
character of the signals. Previous DL methods have not 
been able to incorporate angle-related diffusion signals 
per voxel, which is why new methods are needed to adopt 
previous DL methods to spherical signals. This approach 
will allow for the inclusion of neighboring information 
within the signal as well as between signals to ensure opti-
mal reconstruction. Overall, the proposed DL approaches 
for diffusion imaging data have the potential to further 
support clinical brain research by improving the accuracy 
and efficiency of diffusion MRI analyses. The presented 
work packages address fundamental research questions 
related to the application of DL in diffusion imaging, and 
the results of this project could have a significant impact 
on the future application of diffusion imaging data for 
clinical purposes.

Fig. 2  Visualization of the diffusion signal for three different activa-
tion functions (from left to right: ReLU activation, sigmoid activa-
tion, and TanH activation), applied in the signal space. (Images cour-
tesy Simon Koppers, Aachen)

Fig. 3  Visualization of the diffusion signal for three different acti-
vation functions (from left to right: ReLU activation, sigmoid acti-
vation, and TanH activation), applied in the Fourier space. (Images 
courtesy Simon Koppers, Aachen)
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4  Conclusion

In conclusion, the development of an innovative and dis-
ruptive DL pipeline for diffusion imaging data is a sig-
nificant step towards improving clinical practice in brain 
research. The identified research questions, including the 
lack of transferability of diffusion MRI data between clini-
cal sites, the lack of training and label data, the potential 
of complex diffusion data, and the integration of spherical 
signals in neural networks, have been effectively addressed 
in this project. The results show that the developed pipe-
line can handle harmonization issues, synthesize single-
voxel diffusion imaging data, and integrate spherical sig-
nals into DL models to improve the reconstruction quality. 
Future research may further refine and expand upon these 
developments to enhance the capabilities of DL in the field 
of dMRI for clinical application.
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