
Vol.:(0123456789)

KI - Künstliche Intelligenz
https://doi.org/10.1007/s13218-023-00810-z

TECHNICAL CONTRIBUTION

Automated Computation of Therapies Using Failure Mode and Effects
Analysis in the Medical Domain

Malte Luttermann1 · Edgar Baake2 · Juljan Bouchagiar3 · Benjamin Gebel4 · Philipp Grüning5 ·
Dilini Manikwadura6 · Franziska Schollemann7 · Elisa Teifke8 · Philipp Rostalski7 · Ralf Möller1

Received: 21 June 2023 / Accepted: 9 September 2023
© The Author(s) 2024

Abstract
Failure mode and effects analysis (FMEA) is a systematic approach to identify and analyse potential failures and their effects
in a system or process. The FMEA approach, however, requires domain experts to manually analyse the FMEA model to
derive risk-reducing actions that should be applied. In this paper, we provide a formal framework to allow for automatic
planning and acting in FMEA models. More specifically, we cast the FMEA model into a Markov decision process which
can then be solved by existing solvers. We show that the FMEA approach can not only be used to support medical experts
during the modelling process but also to automatically derive optimal therapies for the treatment of patients.

1 Introduction

Failure mode and effects analysis (FMEA) is a widely used
framework to assess the risk of a system or process. In par-
ticular, FMEA breaks down a system into a hierarchy of
components, their functionalities, and potential failures
to allow for a systematic analysis of each component or
function and their potential failures [25]. Failures are then

prioritised according to their potential harm, that is, their
severity, their likelihood of occurrence, and their detect-
ability [9]. Based on the priorities of the failures, counter-
measures against the most critical failures can be developed
[30]. The FMEA approach is an industry standard in the
engineering and the manufacturing industry. The application
of FMEA helps to improve the design of the final product
and to detect and reduce the risk of failure [9, 16]. FMEA is

 * Malte Luttermann
 luttermann@ifis.uni-luebeck.de

 Edgar Baake
 baake@itm.uni-luebeck.de

 Juljan Bouchagiar
 juljan.bouchagiar@isp.uni-luebeck.de

 Benjamin Gebel
 Benjamin.Gebel@uksh.de

 Philipp Grüning
 ph.gruening@uni-luebeck.de

 Dilini Manikwadura
 DiliniTharindika.Manikwadura@uksh.de

 Franziska Schollemann
 franziska.schollemann@uni-luebeck.de

 Elisa Teifke
 Elisa.Teifke@uksh.de

 Philipp Rostalski
 philipp.rostalski@uni-luebeck.de

 Ralf Möller
 moeller@ifis.uni-luebeck.de

1 Institute of Information Systems, University of Lübeck,
Lübeck, Germany

2 Institute of Telematics, University of Lübeck, Lübeck,
Germany

3 Institute for Software Engineering and Programming
Languages, University of Lübeck, Lübeck, Germany

4 Department of Infectious Diseases and Microbiology,
University Hospital Schleswig-Holstein/ Campus Lübeck,
Lübeck, Germany

5 Institute for Neuro- and Bioinformatics, University
of Lübeck, Lübeck, Germany

6 Institute for Molecular Medicine, University of Lübeck,
Lübeck, Germany

7 Institute for Electrical Engineering in Medicine, University
of Lübeck, Lübeck, Germany

8 Department of Anesthesiology and Intensive Care, University
Hospital Schleswig-Holstein/ Campus Lübeck, Lübeck,
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-023-00810-z&domain=pdf
http://orcid.org/0009-0005-8591-6839

 KI - Künstliche Intelligenz

already applied during the manufacturing process of medical
devices [15] to increase their reliability and helps to satisfy
the quality requirements of particular medical processes
such as administering drugs to patients [1]. Our goal in this
paper is to automate planning and acting in FMEA mod-
els. In particular, we apply FMEA to the medical domain
to automatically derive optimal therapies for individual
patients.

Although there is a lot of work on using formal models
for diagnosis and treatment of patients, there are, to the best
of our knowledge, no applications of FMEA to model the
underlying cause-effect relationships in the human body
used in the decision making process of medical experts
for diagnosis and treatment. As the human body is with-
out doubt a highly complex system and all of these formal
models must be created manually by domain experts, the
FMEA approach has the potential to support medical experts
during the modelling process of cause-effect relationships in
the human body. FMEA ensures compliance with the model
hierarchy, thereby yielding a structured model approach that
helps to deal with the complexity of the model. Furthermore,
as the FMEA approach in its current form requires a lot of
manual work from domain experts even after the FMEA
model has been constructed because an FMEA model does
not provide any automated reasoning capabilities to derive
countermeasures (i.e., actions) against potential failures,
we propose to cast the FMEA model into a Markov deci-
sion process (MDP). An MDP provides a mathematical
framework to model sequential decision problems in a fully
observable, stochastic environment. In particular, we show
how an arbitrary FMEA model can be transformed into
an MDP such that existing MDP solvers can be applied to
automatically derive optimal policies, thereby allowing us to
use the transformation from FMEA model to MDP to fully
automate the computation of possible countermeasures for
potential failures in the FMEA model. Further, we demon-
strate that a policy obtained from the MDP solver can be
used to obtain an optimal therapy for an individual patient.

Related work. The FMEA approach is widely applied in
various industries such as the automotive industry [23], the
aerospace industry [32], and manufacturing industries in
general [20]. FMEA supports companies during the design
phase of their product and is especially prevalent during the
design phase of products with special reliability require-
ments in safety-critical application environments. In the
medical (healthcare) domain, the FMEA approach is com-
monly applied during the design phase of medical devices
[21] as these devices are often used in hospitals and other
health-critical environments that must fulfil extraordinary
safety requirements. The administration of drugs to patients
in a hospital as well as the evaluation of an automated treat-
ment planning tool for radiation are other safety-critical pro-
cesses in the medical domain where the FMEA approach

is already being used [1, 14]. However, to the best of our
knowledge, the FMEA approach is not yet applied to model
the decision-making process of a medical expert for diagno-
sis and treatment based on the cause-effect relationships in
the human body. All of the aforementioned industries rely
on manual work of domain experts to not only construct the
FMEA model but also to use it to derive actions serving as
countermeasures to the potential failures.

Decision support systems (DSSs) are approved by many
practitioners in the clinical routine for their support in find-
ing the best action while including a growing amount of
information and clinical data (“information overload”) [2,
6, 22, 27]. If the standard guidelines are integrated within a
DSS, the outcome is improved [19, 22]. Examples of DSS
applications, for instance within the mechanical ventilation
domain, are the calculation of initial ventilation param-
eters [13, 28], the construction of a weaning protocol for
children [10], or the ventilation of patients with acute res-
piratory distress syndrome [7]. Nevertheless, DSSs often
have a very specific and limited use case wherefore each
application requires an individual DSS to be elaborated and
implemented. In general, there are plenty of works using
various mathematical frameworks to establish medical deci-
sion support [29]—for example, partially observable MDPs
(a generalisation of MDPs) are already employed to support
in diagnosis and treatment [4, 11, 33].

Our contributions. We first extend the standard defini-
tion of an FMEA model by adding variables (parameters) to
functions. The variables and their qualitative relationships
among each other allow us to define a formal semantics of
failures and actions in an FMEA model, i.e., failures indicate
that the value of a variable is outside of its normal range and
an action restricts the set of possible values for the variables.
Having defined a formal semantics for an FMEA model, we
next show how such a model can be transformed into an
MDP such that all transition probabilities and rewards can
be directly derived from the FMEA model. To obtain the
possible successor states in the MDP, we apply qualitative
causal reasoning in the FMEA model. The MDP can then
be solved using existing MDP solvers to obtain an optimal
policy, which maps each possible state of the system to the
best possible action for that particular state. We present an
algorithm to automatically derive the best possible therapy
according to the initial FMEA model for a particular patient
using the optimal policy obtained by solving the MDP.

Structure of this paper. The remaining part of this paper
is structured as follows. Section 2 introduces the necessary
background information for the main part of this paper. We
first define FMEA models and then introduce MDPs as a
mathematical framework for modelling sequential decision
problems in a fully observable, stochastic environment.
Afterwards, in Sect. 3, we show how an FMEA model can
be transformed into an MDP which can then be used for

KI - Künstliche Intelligenz

automated planning and acting in an FMEA model. We
introduce qualitative causal reasoning to obtain an algorithm
that computes the possible successor states after applying
an action in the MDP. Section 4 introduces an algorithm to
compute the best possible therapy for a given patient accord-
ing to a given FMEA model. Finally, we discuss applica-
tions and limitations of our approach in Sect. 5 before we
conclude this paper in Sect. 6.

2 Preliminaries

In this section, we introduce the necessary background infor-
mation for the remainder of this paper. We begin by for-
mally defining the syntax of an FMEA model, which we then
extend by adding variables to the FMEA model to obtain an
extended FMEA model for which we can define a formal
semantics. Afterwards, we define MDPs as a framework to
model sequential decision problems in a fully observable,
stochastic environment.

2.1 Failure Mode and Effects Analysis

FMEA is a systematic approach to identify and analyse
potential failures in a system or process [25]. During the
FMEA process, the system is decomposed into its compo-
nents and functions and for each function, the possible fail-
ures are identified. Every failure is assigned its potential
severity, its likelihood of occurrence, and its detectability,
which are then combined into a risk priority number to
assess the risk of the failure. To be able to apply the FMEA
approach to the medical domain to automatically derive
therapies for particular patients, we begin by defining an
FMEA model.

Definition 1 (FMEA Model) An FMEA model is defined as
a tuple = (C,F,E,A,C2C, F2F,E2E,C2F,F2E,A2E,RP,AP) ,
where

– C is a finite set of components,
– F is a finite set of functions,
– E is a finite set of failures,
– A is a finite set of actions,
– C2C ⊆ C × C is the component hierarchy,
– F2F ⊆ F × F is the function hierarchy,
– E2E ⊆ E × E is the failure hierarchy,
– C2F ⊆ C × F assigns functions to components,
– F2E ⊆ F × E assigns failures to functions,
– A2E ⊆ A × E2E assigns actions to failure pairs,
– RP ⊆ E × {1,… , 10} × {1,… , 10} × {1,… , 10} assigns

each failure a severity, occurrence, and detectability
value, and

– AP ⊆ A × {d, p} specifies the type of each action (“d” for
detective or “p” for preventive).

Note that in its current form, an FMEA model is only
used by domain experts when thinking about potential risks
of a system or process, i.e., the model itself does not “do”
anything except for being visually displayed in some kind
of graphical user interface. The hierarchy of components,
functions, and failures, induced by C2C, F2F, and E2E,
respectively, is constrained to form a connected directed
tree (polytree), i.e., a directed acyclic graph (DAG) where
any two vertices are connected by exactly one path when
replacing the directed edges by undirected edges. Addition-
ally, each component is restricted to be a sub-component
of at most one other component but it is allowed for a com-
ponent to have multiple sub-components (analogously for
functions and failures)—that is, C2C, F2F, and E2E are left-
functional (1:N) relations. Further, the relations C2F, F2E,
and A2E are right-total (N:1), meaning that each function
is attached to exactly one component in C2F, each failure
is attached to exactly one function in F2E, and each action
is attached to exactly one pair of failure cause and failure
effect in A2E. Note that the other way around, there is no
restriction, e.g., every component can have arbitrarily many
(including zero) functions attached to it. In general, the idea
is that each component supplies one or more functionalities
(functions) and each function might go wrong in one or more
ways (failures). Actions are used as a remedy to deal with
failures (i.e., functions going wrong). The first entry in each
tuple in RP serves as a key such that there is exactly one
tuple contained in RP for each failure e ∈ E , assigning risk
parameters (severity, occurrence, and detectability) to e. By
sev(e) , occ(e) , and det(e) we denote the severity, occurrence,
and detectability of e, respectively. We refer to the causes
of a failure e by causes(e) = {e� ∈ E ∣ (e�, e) ∈ E2E} , and
denote its effects by effects(e) = {e� ∈ E ∣ (e, e�) ∈ E2E} .
Analogously to RP, there is exactly one tuple contained in
AP for each action a ∈ A , assigning a type (“d” for detective
or “p” for preventive) to a.

Example 1 (FMEA Model) Consider the FMEA model
illustrated in Fig. 1. There are two components “Perialveo-
lar interstitium” (denoted as c1) and “Respiratory system”
(c2), and the arrow c1 → c2 indicates that c1 is a sub-com-
ponent of c2 (analogously, f1 is a sub-function of f2 and e1
is a cause for e2). More specifically, the set of components
is given by C = {c1, c2} , the set of functions is given by
F = {f1, f2} , the set of failures is given by E = {e1, e2} ,
and the set of actions is given by A = {d1, p1} . The hier-
archies for components, functions, and failures are given
by C2C = {(c1, c2)} , F2F = {(f1, f2)} , and E2E = {(e1, e2)} ,
respectively. The remaining relations are given by
C2F = {(c1, f1), (c2, f2)} , F2E = {(f1, e1), (f2, e2)} , and

 KI - Künstliche Intelligenz

A2E = {(d1, (e1, e2)), (p1, (e1, e2))} . Finally, the risk param-
eters are given by RP = {(e1, 5, 4, 9), (e2, 7, 5, 9)} and the
action parameters are given by AP = {(d1, d), (p1, p)}.

As the FMEA model in its current form is not able to
do anything, we next extend an FMEA model by adding
variables (parameters) to functions and afterwards define
the semantics of the extended FMEA model.

D e f i n i t i o n 2 (E x t e n d e d F M E A M o d e l) A n
extended FMEA model is def ined as a tuple
F = (C,F,E,A,C2C,F2F,E2E,C2F,F2E,A2E,RP,AP, pre,

post,V ,F2V ,G) , where C, F, E, A, C2C, F2F, E2E, C2F,
F2E, A2E, RP, and AP form an FMEA model according to
Definition 1,

– pre assigns preconditions in form of Boolean expressions
to actions,

– post assigns postconditions in form of Boolean expres-
sions to actions,

– V is a finite set of variables,
– F2V ⊆ F × V assigns variables to functions, and
– G = (V ,E�) is a directed graph that encodes qualitative

relationships between the variables in V.

An action a ∈ A is called applicable in state s if s satis-
fies the preconditions of a. Sometimes, an action a might
invoke side effects which are captured by the postconditions
of a. The relation F2V is left-total (1:N), meaning that each
variable is attached to exactly one function. We require each
function to have at least one variable attached to it but there
is no limit of variables being attached to the same function.
The idea behind adding variables to functions is that each
function f (v1,… , vm) = (v�

1
,… , v�

k
) produces an output value

for each variable v�
1
,… , v�

k
 (k ≥ 1) attached to f. The purpose

of variables is that functions are characterised by the vari-
ables attached to them, allowing us to define a formal seman-
tics for failures and actions. A function f is not required to
take any variable as an input (i.e., m = 0 is allowed). If there
are input variables v1,… , vm for a function f, v1,… , vm are
outputs of sub-functions of f. Moreover, the associated graph
G = (V ,E�) models the qualitative relationships between all
variables in V. In particular, E� ⊆ V × V × {+,−, ?} is a set
of labelled edges, that is, there is an edge u

�

→ v in G if
(u, v,�) ∈ E� . An edge u

+
→ v encodes that increasing u will

yield an increase of v, u
−
→ v means that increasing u will

yield a decrease of v, and u
?
→ v entails that the effect of u on

v is unknown. If a label � is irrelevant in a specific context,
we omit it and simply write u → v instead of u

�

→ v . Vertices
that are connected by an edge are called adjacent and are
neighbours of each other. Pa(v) denotes the set of parents of
a variable v, i.e., Pa(v) = {u ∣ ∃� ∶ (u, v,�) ∈ E�} and the
children of v are given by Ch(v) = {u ∣ ∃� ∶ (v, u,�) ∈ E�} .
By range(v) we denote the set of possible values a
variable v ∈ V can take. For simplicity, we assume
t h a t range(v) ⊆ {tooLow, normal, tooHigh} a n d
normal ∈ range(v) for all variables v throughout this paper,
i.e., the value of each variable can either be in its nor-
mal range or deviate from its normal range in both direc-
tions. Consequently, each failure e ∈ E has either the form
e ∶= lef t_critical(vi) (i.e., implying that vi = tooLow) or
e ∶= right_critical(vi) (i.e., implying that vi = tooHigh),
where vi ∈ V is a variable attached to the function to which
e is attached. For example, if there is a variable vi called
“body temperature” and a failure e ∶= right_critical(vi)
(fever), then vi can either be assigned the value normal or
tooHigh , while vi = tooHigh triggers the failure e. However,
different ranges (and hence different failure semantics) are
also possible and do not affect our approach to automate
planning and acting in an FMEA model.

c1

Perialveolar
interstitium

c2

Respiratory
system

f1

Keeping interstitial fluid
volume physiological

f2

Gas
exchange

e1

Interstitial
pulmonary edema

e2

Impaired
gas exchange

S:5, O:4, D:9

S:7, O:5, D:9

d1

Lung
ultrasound

p1

Negative
fluid balance

Fig. 1 An example for an FMEA model. The components C are given
by the circles, the functions F by the rectangles, the failures E by the
triangles, and the actions A by the pentagons. The hierarchy relations
and assignment relations are indicated by the edges between the com-
ponents, functions, failures, and actions, respectively. The name of
the actions indicate the action parameters AP (“d” for detective and
“p” for preventive) and the risk parameters RP are given by the S, O,
and D values next to the failures

c1

Perialveolar
interstitium

c2

Respiratory
system

f1

Keeping interstitial fluid
volume physiological

f2

Gas
exchange

v1
Interstitial
fluid volume

v2
Diffusing

capacity of the lung

e1

Interstitial
pulmonary edema

e2

Impaired
gas exchange

S:5, O:4, D:9

S:7, O:5, D:9

d1

Lung
ultrasound

p1

Negative
fluid balance

−

Fig. 2 An example for an extended FMEA model building on the
FMEA model illustrated in Fig. 1. Now, there is a variable attached
to each function in the model and the qualitative relationship between
the two variables is encoded by the labelled edge between them

KI - Künstliche Intelligenz

Example 2 (Extended FMEA Model) Take a look at the
extended FMEA model depicted in Fig. 2 which builds
on the FMEA model from Fig. 1. There are now variables
V = {v1, v2} attached to the functions f1 and f2 , respec-
tively. In particular, the assignments of variables to func-
tions are given by F2V = {(f1, v1), (f2, v2)} . The qualita-
tive relationships between the variables in V are encoded
by the graph G = (V , {(v1, v2,−)}) . To apply p1 , there is a
precondition that an interstitial pulmonary edema must be
detected first, i.e., pre = {(p1, v1 = tooHigh)} . There are no
side effects (postconditions) for both of the actions, that is,
post = � . The model states that too much interstitial fluid
volume results in an interstitial pulmonary edema, i.e.,
e1 = right_critical(v1) , and too little diffusing capacity of
the lung impairs the gas exchange, i.e., e2 = lef t_critical(v2) .
The edge v1

−
→ v2 implies that if the interstitial fluid volume

is too high, the diffusing capacity of the lung will eventually
become too low.

From now on, we focus on extended FMEA models and
simply write FMEA model instead of extended FMEA
model to refer to an FMEA model as defined in Definition
2. Next, we define the semantics of an FMEA model whose
goal is to assess the risk of a system. It is important to dif-
ferentiate between the risk at class level (e.g., the risk of the
human body itself) and the risk at instance level (e.g., the
risk of a specific human individual). At class level, we are
interested in reducing the risk of the system by changing the
model itself, e.g., by adding actions to it. For example, if a
system contains a severe failure that cannot be detected at
all, the total risk of the system decreases as soon as a detec-
tion action is added to the model to make that failure detect-
able. The semantics of an FMEA model F at class level can
therefore be defined as

where � ∶ {1,… , 10} × {1,… , 10} × {1,… , 10} → {green, orange, red} is
a total function (i.e., � is defined for all possible combina-
tions of severity, occurrence, and detectability values) map-
ping the severity, occurrence, and detectability of a failure to
a risk value for that failure. We require {green, orange, red}
to be an ordered set (given in ascending order), i.e.,
max{green, orange} = orange and max{orange, red} = red .
The risk of an FMEA model at class level is therefore the
risk of the most critical failure in the model. Other defini-
tions for the semantics of an FMEA model are possible as
well.

For the remaining part of this paper, we focus on assess-
ing the risk of an FMEA model at instance level. At instance
level, we are interested in determining a sequence of actions
that are actually executed to reduce the risk of a particu-
lar instance. For example, in the medical domain, we aim

risk(F) = max
e∈E

�(sev(e), occ(e), det(e)),

to compute a therapy (sequence of actions) for a particular
patient (instance). Instantiating an FMEA model for a par-
ticular instance yields a state s determined by the possible
values each variable v ∈ V can take. For example, if it is
known that a patient has fever, the variable “body tempera-
ture” is assigned the value “ tooHigh ”. Applying an action
yields a new state and each state is assigned a risk value
based on failures that can possibly occur in that state. The
goal is to minimise the risk by performing a sequence of
actions to reach a state having a low risk value (i.e., a state
corresponding to the patient being healthy). Before we for-
mally define states and the risk of a state in Sect. 3, we lay
the foundations to automate planning and acting in an FMEA
model—that is, to automatically compute the best possible
therapy for a specific patient according to the FMEA model.

2.2 Markov Decision Processes

An MDP [5] is a mathematical framework for modelling a
sequential decision problem with discrete time and a fully
observable, stochastic environment with a Markovian tran-
sition model and additive rewards (i.e., there is a reward in
each state and these rewards are added up for the sequence
of states that have been visited).

Definition 3 (MDP) We define an MDP as a tuple
M = (S,A, s0,P,R, �) , where

– S is a finite set of states,
– A is a finite set of actions,
– s0 ∈ S is the initial state,
– P ∶ S × A × S → [0, 1] is the transition function, i.e.,

P(s, a, s�) yields the probability of transitioning into state
s′ when taking action a in state s,

– R ∶ S × A × S → ℝ is a reward function, i.e., R(s, a, s�) is
the reward for transitioning to state s′ when taking action
a in state s, and

– � ∈ [0, 1] is the discount factor.

The discount factor � indicates how much future rewards
should be discounted, e.g., � = 1 weights all rewards equally
while smaller values for � render future rewards less sig-
nificant. We write P(s� ∣ s, a) to refer to the probability
of transitioning to state s′ when taking action a in state s
(
∑

s�∈S P(s
� ∣ s, a) = 1).

Example 3 (MDP) Figure 3 shows an exemplary MDP with
states S = {s1, s2} and actions A = {a1, a2} , depicted as a
state-transition system. The initial state is s1 . In each state,
both actions can be applied and the transition probabilities
are written next to the edges. For example, when applying
action a1 in state s1 , the probability to remain in state s1 is
0.3 and the probability to transition to state s2 is 0.7. In this

 KI - Künstliche Intelligenz

particular example, 2 ⋅ 2 ⋅ 2 = 8 rewards need to be specified
to define the reward function (R(s1, a1, s1) , R(s1, a1, s2) , and
so on). We omit the discount factor and the exact specifica-
tion of the reward function for brevity.

A policy � ∶ S → A is a total function which maps each
state to an action, i.e., �(s) returns the action to take in state
s. Solving the MDP yields an optimal policy �∗ which maps
every state to the best possible action to take in that state. The
optimal sequence of actions is the one having the maximum
expected reward, i.e., the optimal policy depends on the choice
of the transition probabilities and reward function.

Example 4 (Policy) Consider again the MDP depicted in
Fig. 3. A possible policy is

The optimality of � depends on the choice of R.

In the next section, we show how an arbitrary FMEA model
can be transformed into an MDP, which can then be solved to
obtain an optimal policy, allowing us to automatically compute
the best possible action to take in a specific state of the model.
We also introduce qualitative causal reasoning to compute the
successor states after applying an action in a particular state.

3 Automated Planning and Acting in FMEA
Models Using MDP

In this section, we show how to automatically compute the
best possible sequence of actions for a specific instance of
an FMEA model. To automatically obtain the best possible
sequence of actions, we construct an MDP from an FMEA
model. The MDP can then be solved, yielding an optimal
policy for decision making.

3.1 Construction of the Markov Decision Process

Given an FMEA model F = (C,F,E,A,C2C,F2F,E2E,

C2F,F2E,A2E,RP,AP, pre, post,V ,F2V ,G) , we construct
an MDP M = (S,A, s0,P,R, �) as follows.

�(s) =

{
a1 if s = s1
a2 if s = s2.

State space. The state space S is defined by the possible
values each variable in V = {v1,… , vn} can take. More spe-
cifically, S ⊆ ×n

i=1
2range(vi) with 2X denoting the power set of

X without the empty set. As there is typically no evidence
available in the beginning, the initial state s0 defaults to
s0 = ⟨range(v1),… , range(vn)⟩ . However, it is also conceiv-
able to start with a different initial state if there is additional
evidence available. Note that we model the states in a way
such that every state is observable, even though there is
still uncertainty about the exact values of the variables. We
denote by posss(vi) the set of possible values for variable vi
in state s (that is, posss(vi) references the i-th component of
the state vector s).

Example 5 Consider the set of variables V = {v1} with
range(v1) = {tooLow, normal, tooHigh} . The state space
of the MDP then consists of seven different states and is given
by S = {s1,… , s7} where s1 = ⟨{tooLow}⟩ , s2 = ⟨{normal}⟩ ,
s3 = ⟨{tooHigh}⟩ , s4 = ⟨{tooLow, normal}⟩ ,
s5 = ⟨{tooLow, tooHigh}⟩ , s6 = ⟨{normal, tooHigh}⟩ , and
s7 = ⟨{tooLow, normal, tooHigh}⟩ . Each state indicates the
possible ranges of the variables in V, e.g., s1 is the state
where it is known that v1 = tooLow , s4 is the state where it
is known that v1 ≠ tooHigh but there is no information about
whether v1 = tooLow or v1 = normal , and so on. Without
any evidence, the initial state is s7 , where v1 may take any
value.

Action space and transition probabilities. The set
of actions A in the MDP is directly given by the set of
actions from the FMEA model. Both the preconditions
and the postconditions for the actions are directly trans-
ferred to the MDP as well, with an additional precondition
|posss(vi)| > 1 being added to each detection action a that
is used to detect the value of variable vi in state s, i.e., a is
only applicable if the value that should be detected is not
already known. If an action a ∈ A cannot be applied in state
s (i.e., its preconditions are not met), we set P(s� ∣ s, a) = 0
for all successor states s′ . Otherwise, let S′ ⊆ S be the
set of possible successor states after applying action a in
state s and let k = |S�| . Note that for a particular instance,
there is exactly one successor state when applying action
a in state s but in the general MDP, all possible succes-
sor states that are reachable for any instance need to be
considered. The computation of possible successor states
relies on the qualitative relationships encoded in the graph
G and is described in detail in Sect. 3.2. Given the set of
possible successor states and the probability p for an action
a to be applied successfully, we set P(s� ∣ s, a) = p∕k for
all successor states s� ∈ S� with s′ ≠ s (uniform distribu-
tion—can also be adjusted if additional information is
available). The probability p of a detection action a (i.e.,
(a, d) ∈ AP) is given by prob(D) = (9 − (D − 1))∕9 where

s1 s2
a1: 0.3,
a2: 0.4

a1: 0.7, a2: 0.6

a1: 0.2, a2: 0.9

a1: 0.8,
a2: 0.1

Fig. 3 An example for an MDP with states S = {s1, s2} and actions
A = {a1, a2} . The transition probabilities are given by the numbers
written next to the edges. Rewards and the discount factor are omitted
for brevity

KI - Künstliche Intelligenz

D ∈ {1,… , 10} is the detectability of the failure e′ such
that (a, (e�, e)) ∈ A2E (i.e., a is attached to the failure pair
(e�, e) ∈ E2E). Note that other probability measures are pos-
sible as well (e.g., prob(D) = (10 − D)∕10). For a preven-
tion action a (i.e., (a, p) ∈ AP), we set p = prob(O) where
O ∈ {1,… , 10} is the occurrence of the failure e′ such that
(a, (e�, e)) ∈ A2E . Moreover, if the application of an action
a in state s is not successful, the system remains in state
s, i.e., P(s ∣ s, a) = 1 − p , given that a has no postcondi-
tions attached to it. In case an action has postconditions
attached to it, they are incorporated into the state regardless
of whether the action has been successful, i.e., if an action
fails, only the effect of the action itself is not incorporated
into the new state whereas the postconditions are. Finally,
for all states s�� ∉ S� that are not reachable when applying
action a in state s, we set P(s�� ∣ s, a) = 0.

Example 6 Consider an FMEA model with two fail-
ures e1 ∶= right_critical(v1) and e2 ∶= right_critical(v2)
(i .e. , range(v1) = range(v2) = {normal, tooHigh}) with
(e1, e2) ∈ E2E and a prevention action a attached to (e1, e2)
(without preconditions). Let s = ⟨{tooHigh}, {normal}⟩ .
Then, the set of possible successor states after apply-
ing action a to prevent e1 is given by S� = {s�} with
s� = ⟨{normal}, {normal}⟩ . Assuming that a always suc-
ceeds, applying a sets occ(e1) = 1 as a prevents e1 from
occurring (more details on the exact definition of action
semantics are given in Sect. 3.2). In consequence, we obtain
P(s� ∣ s, a) = prob(1)∕1 = (9 − (1 − −1))∕9 = 1 as well as
P(s ∣ s, a) = 0 , i.e., the action sets v1 = normal while v2 is
left unchanged.

Reward function. The reward for entering the initial
state s0 is set to zero, i.e., R(s, a, s0) = 0 for all actions a
and states s. For all successor states s′ ≠ s0 , we define the
reward R(s, a, s�) for going from state s to successor state
s′ with action a as described below. Each state s′ induces
a set of failures that cannot be ruled out in s′ , e.g., if
tooLow ∈ posss� (vi) , a failure e ∶= lef t_critical(vi) corre-
sponding to vi being too low cannot be ruled out (analo-
gously for tooHigh and failures being right_critical). Let
Es′ denote the set of failures that cannot be ruled out in state
s′ and let 0 ≤ RPNe ≤ 1000 denote the risk priority number
for the failure e. Then, we define the reward for going from
any state s to successor state s′ with action a as

where pe is the failure probability for the failure e (if failure
probabilities are unknown, pe can be set to one for every
failure e). If |Es� | = 0 , we set R(s, a, s�) = ∞ . Note that nei-
ther s nor a occur in the right-hand side of the equation, i.e.,

R(s, a, s�) =
1

|Es� |
∑
e∈Es�

pe ⋅ (1000 − RPNe),

the reward for changing into state s′ does not depend on the
previous state s and the performed action a. However, we
include both s and a into the left-hand side of the equation to
demonstrate that a more fine-grained definition of the reward
function is also conceivable if the necessary information is
available. The maximum value for the risk priority number
RPNe is 1000 and RPNe is defined as

where the risk priority number for each cause e′ of e is a
product of severity, occurrence, and detectability values.
More specifically, for a cause-effect pair (e�, e) , we have
RPNe� = sev(e) ⋅ O�

⋅ D� with D� = det(e�) if there exists a
detection action for (e�, e) which is applicable in s′ and oth-
erwise D� = 10 , and O� = occ(e�) if there exists a prevention
action attached to (e�, e) whose effect is already manifested
in s′ and otherwise O� = 10 (recall that 10 is the maximum
possible number both for the detectability and the occur-
rence). The idea is that the risk of each state s′ depends on
the detectability and the treatability of the failures that can-
not be ruled out in s′ , i.e., if a failure can neither be detected
nor treated, it has a high risk priority number assigned to it.
The minimum operator corresponds to a conjunction (AND)
of failure causes. Clearly, other operators such as a disjunc-
tion (OR) of failure causes could be used as well (i.e., max
instead of min for the computation of RPNe). The choice of
the discount factor � is not part of the transformation from
FMEA model to MDP as � is set by the user independent of
the FMEA model.

Example 7 Consider again the FMEA model con-
sisting of two failures e1 ∶= right_critical(v1) and
e2 ∶= right_critical(v2) with (e1, e2) ∈ E2E . It holds
t h a t range(v1) = range(v2) = {normal, tooHigh} a n d
there is a detection action a attached to (e1, e2) (with
the default precondition |posss(v1)| > 1 in each state s).
Fur ther, let sev(e1) = 6 , occ(e1) = 5 , det(e1) = 9 ,
sev(e2) = 8 , occ(e2) = 4 , and det(e2) = 9 and pe1 = pe2 = 1
for simplification. Then, we have, for example,
R(s, a, ⟨{tooHigh}, {tooHigh}⟩) = 1

2
⋅ ((1000 − −0) + (1000

− − 8 ⋅ 10 ⋅ 10)) (note that D� = 10 as a is not appli-
cable due to its precondition and O� = 10 because
there exists no prevention action in this example) and
R(s, a, ⟨{normal}, {normal}⟩) = ∞ for all states s.

Before we continue to present an algorithm to auto-
matically compute the best therapy for a patient using the
optimal policy of the MDP, we first describe how the pos-
sible successor states after the application of an action are
computed using qualitative causal reasoning.

RPNe =

{
min

e�∈causes(e)
RPNe� if causes(e) ≠ �

0 otherwise,

 KI - Künstliche Intelligenz

3.2 Computation of Successor States

As failures influence other failures, an action might have an
effect not only on the failure e it acts on, but also on other
failures that are effected by e. Therefore, we propagate the
effect of an action through the failure hierarchy to determine
the possible successor states after applying an action a in
state s. Before we describe how the effect of an action is
propagated through the failure hierarchy using qualitative
causal reasoning, we first define the semantics of an action.

We begin by defining the semantics of a detection action
a in state s, assuming that a is applicable in s. Action a is
attached to a failure pair (e�, e) ∈ E2E and detects whether
the failure cause e′ is present. Let e� = lef t_critical(vi)
(right_critical(vi) , respectively). Then, it holds that
posss� (vi) = {tooLow} ({tooHigh}) or posss� (vi) = {normal}
after transitioning into state s′ by applying action a in state
s—that is, a detection action determines the value of a vari-
able vi if it succeeds (a always succeeds if det(e�) = 1). In
case det(e�) > 1 , a might fail occasionally as we have seen
earlier at the construction of the transition probabilities.
Consequently, after applying a detection action a in state
s, it holds that posss� (vi) ⊆ posss(vi) for all variables vi and
successor states s′ because the detection action reduces the
uncertainty about the values of the variables. Note that in
the real world, it might be possible for a detection action
a to return an incorrect value (false positive or false nega-
tive) if there is a measurement error. In its current form, the
MDP does not account for such measurement errors, i.e., the
measured value defines the successor state without taking
into account that the measured value might be erroneous.

A prevention action a is attached to a failure pair
(e�, e) ∈ E2E as well and prevents the failure cause e′
from occurring. More specifically, if e� = lef t_critical(vi)
(right_critical(vi) , respectively), then applying action a in
state s ensures that posss� (vi) = {normal} after transitioning
into state s′ . In other words, a prevention action a elimi-
nates the failure cause e′ by assigning the value of the cor-
responding variable vi to its normal range and hence, we set
occ(e�) = 1 after applying action a (that is, we assume that
the application of a is always successful in preventing e′—it
is also conceivable that a might fail sometimes which can
be modelled by setting occ(e�) to a value greater than one).

Whenever an action is applied successfully, it might affect
not only the failure it directly operates on but also other
failures in the failure hierarchy. For example, if we have
(e1, e2) ∈ E2E (i.e., e1 causes e2) and an action is applied that
prevents e1 from occurring, then e2 cannot occur as well if
there are no other causes for e2 other than e1 . Analogously, if
a detection action determines that e1 is not present in a par-
ticular state s, then e2 cannot occur in s as well if there are no
other causes for e2 other than e1 . As the presence or absence
of a failure might influence the information available about

its effects, we employ qualitative reasoning [8] to obtain the
possible successor states after applying action a in state s.
However, we cannot just apply qualitative reasoning as it is
proposed in the literature [8, 31] because the propagation
does not take into account the causal structure of the failure
hierarchy.

Instead, we introduce qualitative causal reasoning to
propagate changes only along the causal directions of the
edges in the failure hierarchy. In particular, when interven-
ing on a specific failure e, all incoming edges of e must be
cut off before the changes are propagated through the graph
[17, 18].

Algorithm 1: Compute Successor States

1 function succ states(G = (V,E′), a, s)
2 S′ ← ∅;

// vi is the variable a acts on
3 foreach possible outcome vi = ri of a do
4 s′ ← s;
5 if ri = tooLow then
6 σ ← ’−’;
7 else if ri = tooHigh then
8 σ ← ’+’;
9 else

10 σ ← ’0’;
11 E′′ ← E′ \ {(u, vi, �) | ∃� : (u, vi, �) ∈ E′};
12 signs ← propagate(G′ = (V,E′′), s, vi, σ);
13 foreach (v, σ′) ∈ signs do
14 if σ′ = ’−’ ∧ tooLow ∈ range(v) then
15 s′[v] ← {tooLow};
16 else if σ′ = ’+’ ∧ tooHigh ∈ range(v)

then
17 s′[v] ← {tooHigh};
18 else if σ′ = ’0’ then
19 s′[v] ← {normal};
20 push(s′, S′);
21 return S′;

Algorithm 1 depicts the algorithm that is used to com-
pute the set of possible successor states S′ when applying an
action a in state s. The algorithm considers every possible
outcome of the action a in state s. For a prevention action,
there is a single outcome per definition, i.e., the value of
the corresponding variable is set to a specific value in its
range. The outcome of a detection action, however, is not
known when solving the MDP as multiple outcomes are
possible in practice (e.g., detecting the value of a variable
might either yield “ tooLow ” or “ normal ” and we do not
know in advance which of these will be detected for a par-
ticular instance). We denote by ri the outcome of action a
on variable vi , i.e., a acts on vi and we have ri = normal if a
is a prevention action, otherwise ri equals the detected value
(ri ∈ {tooLow, normal, tooHigh}). Thus, it holds that vi = ri
after applying action a, i.e., the i-th component of the suc-
cessor state vector is set to {ri} . We abuse notation and write
s�[vi] instead of s�[i] in the following to refer to the position

KI - Künstliche Intelligenz

of a variable vi in the state vector. The value ri of vi is con-
verted to a sign (‘−’ for “ tooLow ”, ‘ + ’ for “ tooHigh ”, and
‘0’ for “ normal ”) which is then propagated through a modi-
fied version of the graph G (which encodes the qualitative
relationships between the variables using edges labelled with
signs ‘ + ’, ‘−’, and ‘?’) where the edges between the parents
of vi and vi are removed. The removal of edges between the
parents of vi and vi in G yields a modified graph G′ which
is then used as an input for the qualitative reasoning algo-
rithm illustrated in Algorithm 2 to avoid the propagation of
changes against the causal edge direction.

Algorithm 2: Qualitative Reasoning (based
on the qualitative sign propagation algorithm
proposed by Druzdzel and Henrion [7])

1 function propagate(G = (V,E′), s, u, σ)
2 signs ← empty dictionary;
3 vis ← ∅;
4 foreach v ∈ V do
5 signs[v] ← signs(v);
6 propagate rec(G, u, u, σ, signs, vis);
7 return signs;
8 function propagate rec(G, u, v, σ, signs, vis)
9 msgs = {σ};

10 signs[v] ← ’0’;
11 foreach w ∈ Pa(v) \ {u} do
12 � ← label of the edge between w and v;
13 msgs ← msgs ∪ {signs[w]⊗ �};
14 σ′ ← signs[v];
15 foreach m ∈ msgs do
16 σ′ ← σ′ ⊕m;
17 signs[v] ← σ′;
18 vis ← vis ∪ {v};
19 foreach w ∈ Ch(v) do
20 � ← label of the edge between v and w;
21 m ← signs[v]⊗ �;
22 if w /∈ vis ∧ signs[w] �= m then
23 propagate rec(G, v, w,m, signs, vis);

The algorithm for qualitative reasoning builds on the
qualitative sign propagation algorithm proposed by Druzdzel
and Henrion [8]. It starts by assigning each variable v ∈ V a
sign in Line 5, depending on the possible values v can take
in state s. In particular, we define

The sign of the variable vi on which the action a has been
applied is updated first by calling propagate_rec with
u = v = vi as parameter in Line 6. The propagated informa-
tion (i.e., the signs of the variables) is stored in a dictionary
signs and already visited variables are stored in a set vis
such that each variable is visited at most once. During the

signs(v) =

⎧⎪⎨⎪⎩

‘+’ if posss(v) = {tooHigh}

‘-’ if posss(v) = {tooLow}

‘0’ if posss(v) = {normal}

‘?’ otherwise.

propagation procedure, we make use of the sign multiplica-
tion (⊗) and sign addition (⊕) operators [31], which are
defined in Table 1.

In every call of propagate_rec , u propagates its sign to
v. During the propagation from u to v, all other parents of v
are also considered (Line 9 to Line 17). More specifically,
the algorithm computes a message from all parents of v to
v (note that the message from u is already given by �) and
afterwards uses the sign addition operator to combine the
messages of the parents into a new sign for v. After the
sign of v has been updated, v propagates its new sign to
its children that have not been visited yet by recursively
calling propagate_rec (Line 19 to Line 23).

Example 8 Consider the graph shown in Fig. 4 with edges
v1

+
→ v3 and v2

−
→ v3 and assume that v1 is assigned the

sign ‘ + ’ which is then propagated to its children, i.e., to v3 .
If we also have evidence for v2 suggesting that its value is
“ tooHigh ” (i.e., the sign of v2 is ‘ +’), however, we cannot
assign v3 the result of the propagation from v1 to v3 (i.e.,
‘+’⊗ ‘+’ = ‘+’) because there is another influence of v2
on v3 (i.e., ‘+’⊗ ‘-’ = ‘-’). Consequently, we know that v3
both increases (due to v1) and decreases (due to v2) at the
same time and we cannot infer whether v3 will eventually

Table 1 Definition of the sign multiplication (⊗) and sign addition
(⊕) operators according to Wellman [31]

⊗ + − 0 ?

+ + − 0 ?
− − + 0 ?
0 0 0 0 0
? ? ? 0 ?

⊕ + − 0 ?

+ + ? + ?
− ? − − ?
0 + − 0 ?
? ? ? ? ?

v1

v3

v2+ +

’+’⊕ ’−’ = ’?’

+ −
’+’⊗ ’+’ = ’+’ ’+’⊗ ’−’ = ’−’

Fig. 4 An example for propagating the sign of v1 to v3 . During the
propagation, all other parents of v3 (here only v2) are also taken
into account. Both v1 and v2 are assigned the sign ‘ + ’ and therefore
v3 receives the two messages ‘+’⊗ ‘+’ = ‘+’ and ‘+’⊗ ‘-’ = ‘-’ ,
which are then combined using the sign addition operator to obtain
‘+’⊕ ‘-’ = ‘?’ as a new sign for v3

 KI - Künstliche Intelligenz

become “ tooLow ” or “ tooHigh ” in this situation. The algo-
rithm therefore uses sign addition on all messages from the
parents of v3 , such that the new sign for v3 is ‘+’⊕ ‘-’ = ‘?’.

After the propagation of signs is finished, the new
signs are returned and converted back to values in
{tooLow, normal, tooHigh} (in Algorithm 2). The new state
s′ obtained from the propagation is then added to the list
of possible successor states. Performing qualitative causal
reasoning instead of just setting the value of the variable
vi decreases the number of reachable states, i.e., states that
contain inconsistent information cannot be reached and
hence the state space is smaller than it would be without the
propagation of information.

Example 9 For a more comprehensive example of the
qualitative causal reasoning algorithm to compute pos-
sible successor states, take a look at the FMEA model
depicted in Fig. 5. The FMEA model contains three fail-
ures e1 ∶= right_critical(v1) , e2 ∶= right_critical(v2) , and
e3 ∶= right_critical(v3) with failure hierarchy e1 → e2 → e3 ,
i.e., (e1, e2) ∈ E2E and (e2, e3) ∈ E2E . It holds that
range(v1) = range(v2) = range(v3) = {normal, tooHigh} .
Further, let a be a prevention action attached to (e2, e3)
and G = ({v1, v2, v3}, {(v1, v2,+), (v2, v3,+)}) be the cor-
responding graph encoding the qualitative relationships
between v1 , v2 , and v3 . When applying action a in state
s = ⟨{tooHigh}, {tooHigh}, {tooHigh}⟩ , the successor states
are computed as follows. As a sets v2 = normal , � = ’0’ is
propagated starting from v2 . During initialisation in Line 5,
the algorithm assigns signs[v1] = signs[v2] = signs[v3] = ‘+’
(because v1 = v2 = v3 = tooHigh in s). In the first call of
propagate_rec , it holds that u = v = v2 and hence there
are no parents of v (because the ingoing edges of v2 have

been removed before calling propagate). Hence, after ini-
tially setting signs[v2] = ‘0’ , the first update being made
is signs[v2] = signs[v2]⊕ 𝜎 = ‘0’⊕ ‘0’ = ‘0’ . Then, v2 is
marked as visited and in the next call of propagate_rec ,
it holds that u = v2 , v = v3 , and 𝜎 = signs[v2]⊗ ‘+’ = ‘0’ .
As v3 has no other parents apart from v2 , the next update
being made after initially setting signs[v3] = ‘0’ is
signs[v3] = signs[v3]⊕ 𝜎 = ‘0’⊕ ‘0’ = ‘0’ . Afterwards, v3
is marked as visited and the propagation algorithm termi-
nates as there are no children for v3 . Finally, the signs of the
variables are translated back to values in their range such
that the new state is s� = ⟨{tooHigh}, {normal}, {normal}⟩ .
As v2 = normal is the only possible outcome of a, there are
no other successor states apart from s′ . Note that the value
of v1 is left unchanged as the prevention action performed
on v2 has no effect on v1.

If additional information about quantitative relation-
ships between variables is available, it is also possible to
use quantitative causal reasoning [18] instead of qualita-
tive causal reasoning. Before we show how solving the
MDP of an FMEA model yields optimal therapies for
patients in the medical domain, we note that it is also con-
ceivable to employ a partially observable MDP [3, 12]
instead of an MDP to formalise the FMEA model. How-
ever, the transformation from FMEA model to partially
observable MDP is not immediately clear and dealing with
partially observable MDPs is far more complex than deal-
ing with MDPs, which is a major drawback especially in
the medical domain where acquiring the observation prob-
abilities required by a partially observable MDP is a highly
difficult task (as these probabilities are usually not known).

Next, we give a full algorithm taking as input an FMEA
model and patient data of a specific patient to return an
optimal therapy for that patient.

4 Automated Computation of Optimal
Therapies in the Medical Domain

Solving the MDP from Sect. 3 yields an optimal policy
�∗ which maps every state to an optimal action. The opti-
mal policy �∗ can then be used to compute therapies for
patients. Executing an action a = �∗(s) in state s for an
individual patient yields a specific successor state s′ for
which �∗ also returns the best possible action to take.
Thus, the optimal policy �∗ directly corresponds to an
optimal therapy. By adding a goal state to the MDP or a
threshold on the reward, we can formulate an algorithm
that computes the optimal therapy according to a given
FMEA model.

c1

c2

c3

f1

f2

f3

v1

v2

v3

+

+

+

e1

e2

e3

a

+

+

Fig. 5 A visualisation of an FMEA model with current state
s = ⟨{tooHigh}, {tooHigh}, {tooHigh}⟩ (the variable assignments
v1 = v2 = v3 = tooHigh are indicated by the ‘ + ’ signs next to the
variables). Action a is a preventive action for e2 , i.e., applying a sets
v2 = normal . The effect of a is then propagated according to the fail-
ure hierarchy such that the successor state after applying a in s is
s� = ⟨{tooHigh}, {normal}, {normal}⟩

KI - Künstliche Intelligenz

Algorithm 3: Compute Optimal Therapy

1 function optimal therapy(F , s0, sg, θ,D)
2 M ← fmea to mdp(F , s0);
3 π∗ ← solve mdp(M);
4 therapy ← [];
5 s′ ← s0;
6 repeat
7 s ← s′;
8 a ← π∗(s);
9 push(a, therapy);

10 s′ ← a(s,D);
11 until s′ = sg ∨R(s, a, s′) > θ;
12 return therapy;

Algorithm 3 outlines how to compute the optimal therapy
for a specific patient according to a given FMEA model F .
The initial state s0 is given by the available evidence for
the patient. First, the algorithm transforms F into an MDP
M and then solves M to obtain the optimal policy �∗ . The
algorithm then iteratively applies the optimal policy to the
current state s until either the goal state sg (it is also conceiv-
able to have a set of goal states instead of a single goal state)
is reached or the reward R(s, a, s�) reaches a user-defined
threshold � . All actions that have been applied as part of
the optimal policy are appended to the resulting therapy.
Whenever an action a is applied, the patient data D are
taken into account to determine the unique successor state
s′ (the patient data contains the information about the exact
result of the applied action, e.g., the outcome of a detection
action).

Example 10 Take a look again the example shown in
Fig. 2. The model states that too much interstitial fluid
volume results in an interstitial pulmonary edema, i.e.,
e1 = right_critical(v1) , and too little diffusing capacity of
the lung impairs the gas exchange, i.e., e2 = lef t_critical(v2) .
In particular, it holds that range(v1) = {normal, tooHigh}
and range(v2) = {normal, tooLow} and the edge v1

−
→ v2

implies that if v1 increases, it causes v2 to decrease, i.e., if
the interstitial fluid volume is too high, the diffusing capacity
of the lung will eventually become too low. Moreover, we
have pre = {(p1, v1 = tooHigh)} , i.e., the action p1 can only
be applied if an interstitial pulmonary edema is detected.
For the sake of this example, let sev(e1) = 5 , occ(e1) = 4 ,
det(e1) = 9 , sev(e2) = 7 , occ(e2) = 5 , det(e2) = 9 , pe1 = 0.4 ,
and pe2 = 0.5 . The corresponding MDP to this FMEA model
consists of the action space A = {d1, p1} and the state space
S = {s1,… , s9} , where

– s1 = ({normal}, {normal}),
– s2 = ({normal}, {tooLow}),
– s3 = ({tooHigh}, {normal}),

– s4 = ({tooHigh}, {tooLow}),
– s5 = ({normal, tooHigh}, {normal}),
– s6 = ({normal, tooHigh}, {tooLow}),
– s7 = ({normal}, {normal, tooLow}),
– s8 = ({tooHigh}, {normal, tooLow}) , and
– s9 = ({normal, tooHigh}, {normal, tooLow}).

The initial state for a patient without evidence is s9 and
the goal state in this example is s1 . Solving the MDP cor-
responding to the given FMEA model then yields a pol-
icy �∗ that returns appropriate actions for each state, e.g.,
�∗(s4) = p1 such that the goal state is reached immediately
after applying p1 in s4 (due to the propagation of the effect
of p1). If we consider a patient arriving at a hospital who has
an interstitial pulmonary edema and thus an impaired gas
exchange (but this diagnosis is not known beforehand), the
optimal therapy computed by Algorithm 3 would be ⟨d1, p1⟩
(because the patient data D tells us that applying d1 in state
s9 results in a transition to state s4). In other words, the rec-
ommended therapy would be to first apply the detection
action d1 (which then finds out about the patient’s interstitial
pulmonary edema) and afterwards to apply the prevention
action p1 (whose preconditions are then satisfied) to treat the
disease accordingly.

Before we conclude this paper, we discuss further appli-
cations and limitations of our proposed approach.

5 Discussion

The general approach of transforming an FMEA model
into an MDP to automatically compute the best sequence
of actions to reduce the risk as much as possible is obvi-
ously not restricted to the medical domain. Hence, industries
such as the automotive industry, the aerospace industry, and
manufacturing industries in general, which commonly apply
the FMEA approach, can also vastly benefit from the auto-
matic planning and acting capabilities provided by the MDP.

However, the presented approach to transform an FMEA
model into an MDP clearly has its own limitations and can
be further refined, e.g., by integrating different ranges of
variables and hence additional failures having semantics that
are different from lef t_critical(vi) and right_critical(vi) , by
adding costs to actions, by handling erroneous measure-
ments obtained from detection actions, and so on. It is also
possible to incorporate a probability distribution over the
variables in V to allow for probabilistic (quantitative) causal
inference [18] instead of merely using qualitative causal
inference. Obtaining more fine-grained FMEA models,
however, is a serious challenge in the medical domain—and
most likely also in other domains—as obtaining the addi-
tionally required information involves a lot of effort. Another
limitation of the MDP is its scalability. As we have seen in

 KI - Künstliche Intelligenz

Example 10, the state space of the MDP becomes quite large
even for a small FMEA model. Even though the propagation
of action effects during the computation of successor states
results in many states not being reachable at all (and hence
they could be omitted from the MDP after an initial reach-
ability check), the size of the state space is still a limitation
when it comes to solving the MDP for large FMEA models.
To encounter the scalability problem induced by large state
spaces, reinforcement learning [26] might be applied as a
remedy. Similar to the AlphaZero program [24] (which has
been developed to master the games of chess, shogi, and go
where the state spaces are also huge), one could use rein-
forcement learning to learn an approximation of the optimal
policy. The idea is to sample an initial state and random
sequences of actions for which then the reward of the result-
ing state is used as a measure of quality for that particular
action sequence. By repeating the sampling procedure for
various initial states and action sequences, an approximation
of the optimal policy can be obtained. The development of
such a reinforcement learning approach, however, is out of
the scope of this paper and hence an interesting direction
for future work.

Before we conclude this paper, we give an outlook on
possibilities to augment large language models (LLMs) with
formalised domain knowledge represented in formal models
such as FMEA models and their corresponding MDP. We
believe that formal models can be used to generate train-
ing data for the fine-tuning step of an LLM by sampling
the model. The MDP allows us to generate training data for
LLMs by computing therapies for a lot of different initial
states, thresholds, and patient data. Given the generated data,
the computed therapies can be verbalised (i.e., translated
to natural language) and afterwards, the verbalised data
can be used to fine-tune a pre-trained LLM. By integrating
the knowledge of domain experts represented in the formal
model into the LLM, the LLM might produce less hallucina-
tions. Furthermore, it is conceivable to use a formal model
again to validate the output of the LLM by translating the
output of the LLM into the syntax of the formal model and
then using the formal model to check whether the input–out-
put pair of the LLM matches the computed optimal therapy.

6 Conclusion

We present a formal framework to conduct automated plan-
ning and acting in FMEA models. In particular, we apply
FMEA to the medical domain and transform the result-
ing FMEA model into an MDP to automatically compute
optimal therapies for individual patients. Further, we intro-
duce qualitative causal reasoning to compute the successor
states in the MDP after applying an action, yielding a fully

automated algorithm to compute a therapy for a particular
patient.

Future work includes the application of reinforcement
learning to encounter the state space explosion of the MDP,
as well as the augmentation of general LLMs with formal-
ised domain knowledge.

Acknowledgements This work is part of the Medical Cause and Effects
Analysis (MCEA) project. The authors also thank the anonymous
reviewers for their insightful comments.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Adachi W, Lodolce AE (2005) Use of failure mode and effects
analysis in improving the safety of i.v. drug administration. Am J
Health Syst Pharm 62:917–920

 2. Akbulut FP, Akkur E, Akan A, Yarman BS (2014) A decision sup-
port system to determine optimal ventilator settings. BMC Med
Inform Decis Mak 14:3

 3. Åström KJ (1965) Optimal control of Markov processes with
incomplete state information. J Math Anal Appl 10:174–205

 4. Battefeld D, Kopp S (2022) Formalizing cognitive biases in medi-
cal diagnostic reasoning. In: Proceedings of the Eighth Work-
shop on Formal and Cognitive Reasoning (FCR-22). pp 102–118.
CEUR

 5. Bellman R (1957) A Markovian decision process. J Math Mech
6:679–684

 6. Berner ES (2007) Clinical decision support systems. Springer
 7. Bottino DA, Giannella-Neto A, David CMN, Melo MFV (1997)

Decision support system to assist mechanical ventilation in the
adult respiratory distress syndrome. Int J Clin Monit Comput
14:73–81

 8. Druzdzel MJ, Henrion M (1993) Efficient reasoning in qualitative
probabilistic networks. In: Proceedings of the Eleventh National
Conference on Artificial Intelligence. pp 548–553. AAAI Press

 9. García Aguirre PA, Pérez-Domínguez L, Luviano-Cruz D, Solano
Noriega JJ, Martínez Gómez E, Callejas-Cuervo M (2021) PFDA-
FMEA, an integrated method improving FMEA assessment in
product design. Appl Sci 11:1406

 10. Hartmann SM, Farris RW, Yanay O, DiBlasi RM, Kearney CN,
Zimmerman JD, Carlin K, Zimmerman JJ (2020) Interaction of
critical care practitioners with a decision support tool for weaning
mechanical ventilation in children. Respir Care 65:333–340

http://creativecommons.org/licenses/by/4.0/

KI - Künstliche Intelligenz

 11. Hauskrecht M, Fraser H (2000) Planning treatment of ischemic
heart disease with partially observable Markov decision processes.
Artif Intell Med 18:221–244

 12. Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and
acting in partially observable stochastic domains. Artif Intell
101:99–134

 13. Karbing DS, Spadaro S, Dey N, Ragazzi R, Marangoni E, Dalla
Corte F, Moro F, Lodahl D, Hansen NS, Winding R, Rees SE,
Volta CA (2018) An open-loop physiologic model-based decision
support system can provide appropriate ventilator settings. Crit
Care Med 46:642–648

 14. Kisling K, Johnson JL, Simonds H, Zhang L, Jhingran A, Beadle
BM, Burger H, du Toit M, Joubert N, Makufa R, Shaw W, Trau-
ernicht C, Balter P, Howell RM, Schmeler K, Court L (2019) A
risk assessment of automated treatment planning and recommen-
dations for clinical deployment. Med Phys 46:2567–2574

 15. Liu L, Shuai M, Wang Z, Li P (2012) Use-related risk analysis for
medical devices based on improved FMEA. Work 41:5860–5865

 16. Najafpour Z, Hasoumi M, Behzadi A, Mohamadi E, Jafary M,
Saeedi M (2017) Preventing blood transfusion failures: FMEA,
an effective assessment method. BMC Health Serv Res 17:1–9

 17. Pearl J (1995) Causal diagrams for empirical research. Biometrika
82:669–688

 18. Pearl J (2009) Causality: models, reasoning and inference, 2nd
edn. Cambridge University Press

 19. Pelletier JH, Horvat CM (2020) Can computer decision support
help us follow our own rules in pediatric acute respiratory distress
syndrome? Pediat Crit Care Med 21:1000–1001

 20. Press D (2003) Guidelines for Failure Mode and Effects Analysis
(FMEA), for automotive, aerospace, and general manufacturing
industries. CRC Press

 21. Press D (2018) Guidelines for failure modes and effects analysis
for medical devices. CRC Press

 22. Rudowski R, East TD, Gardner RM (1996) Current status of
mechanical ventilation decision support systems: a review. Int J
Clin Monit Comput 13:157–166

 23. Segismundo A, Miguel PAC (2008) Failure Mode and Effects
Analysis (FMEA) in the context of risk management in new prod-
uct development: a case study in an automotive company. Int J
Qual Reliabil Manage 25:899–912

 24. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A,
Lanctot M, Sifre L, Kumaran D, Graepel T, Lillicrap T, Simon-
yan K, Hassabis D (2018) A general reinforcement learning algo-
rithm that masters Chess, Shogi, and go through self-play. Science
362:1140–1144

 25. Stamatis DH (2003) Failure Mode and Effect Analysis: FMEA
from theory to execution. Quality Press

 26. Sutton RS, Barto AG (2018) Reinforcement learning: an introduc-
tion. MIT Press

 27. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak
RN, Kroeker KI (2020) An overview of clinical decision support
systems: benefits, risks, and strategies for success. NPJ Digit Med
3:17

 28. Sward KA, Newth CJL (2016) Computerized decision support
systems for mechanical ventilation in children. J Pediatric Inten-
sive Care 5:95–100

 29. van Baalen S, Boon M, Verhoef P (2021) From clinical decision
support to clinical reasoning support systems. J Eval Clin Pract
27:520–528

 30. Viscariello N, Evans S, Parker S, Schofield D, Miller B, Gardner
S, Fong de los Santos L, Hallemeier C, Jordan L, Kim E, Ford E
(2020) A multi-institutional assessment of COVID-19-related risk
in radiation oncology. Radiother Oncol 153:296–302

 31. Wellman MP (1990) Fundamental concepts of qualitative proba-
bilistic networks. Artif Intell 44:257–303

 32. Yazdi M, Daneshvar S, Setareh H (2017) An extension to Fuzzy
Developed Failure Mode and Effects Analysis (FDFMEA) appli-
cation for aircraft landing system. Saf Sci 98:113–123

 33. Zhang W, Wang H (2022) Diagnostic policies optimization for
chronic diseases based on POMDP model. Healthcare 10:283

	Automated Computation of Therapies Using Failure Mode and Effects Analysis in the Medical Domain
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Failure Mode and Effects Analysis
	2.2 Markov Decision Processes

	3 Automated Planning and Acting in FMEA Models Using MDP
	3.1 Construction of the Markov Decision Process
	3.2 Computation of Successor States

	4 Automated Computation of Optimal Therapies in the Medical Domain
	5 Discussion
	6 Conclusion
	Acknowledgements
	References

