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Abstract
One of the most critical infrastructures during the COVID-19 pandemic are intensive care units (ICU). ICU’s crucial task 
is to preserve the lives of patients and mitigate the pandemic’s impact on the population. However, most ICUs plan only 
one day ahead. This short-term planning becomes an obstacle during disaster situations since physicians need to decide 
efficiently and ensure the timely treatment of high-risk patients. Integrating machine learning (ML) systems for clinical 
decision support could improve this process by predicting the mortality risk of critically ill patients. Several ML approaches 
tackling this problem have already shown promising results. However, these systems mostly neglect the integration of explicit 
domain knowledge, which is crucial to ensure prediction quality and adaptability. Otherwise, black-box systems might base 
their decision on confounding variables and improper relationships. Following design science research, we utilize a unique 
dataset of patients diagnosed with SARS-CoV-2 in ICU care to design a clinical decision support system by combining ML 
and expert knowledge in the form of a severity score. We show that by augmenting the system with expert knowledge, its 
overall performance improves compared to the baseline approach.
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1  Introduction

The healthcare sector faces tremendous challenges: Costs 
continue to rise, and physicians have less time available for 
their patients compared to recent years [5, 36]. Global crises 
such as the COVID-19 pandemic increase the tremendous 
time pressure on physicians even further. To cope with such 
limited resources, using technologies like Artificial Intelli-
gence (AI) seems to be a promising approach to relieve the 

burden on physicians. Recent literature in the COVID-19 
pandemic has shown the success of clinical decision support 
systems (CDSS) which yield high predictive performance 
[3, 10, 14]. However, focusing solely on the predictive per-
formance of respective systems bears the danger of overfit-
ting and the lack of adaptability to other data sources [39]. 
The COVID-19 pandemic demonstrated the need for more 
flexible approaches. Early datasets available only included 
a limited and likely skewed study population. In addition, 
rising infections in the population as well as changing virus 
variants and mutations require fast adaptability for poten-
tial predictive approaches. Therefore, we propose including 
explicit expert domain knowledge in the prediction process 
[22] to overcome this limitation. Experts could identify rel-
evant information and help remove biases in the datasets and 
improve the generalizability of such CDSS.

One of the most critical infrastructures during the 
COVID-19 pandemic are intensive care units (ICU). Their 
crucial task is to preserve the lives of patients and mitigate 
the pandemic’s impact on the population. However, most 
ICUs plan only one day ahead [23]. In this regard, CDSS 
could help physicians to make better and more efficient 
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decisions for each patient by predicting the critical state of 
a patient. When physicians know the severity of a disease in 
advance, they may be able to treat the patient in time. There-
fore, we present the design of a data-centric clinical decision 
support system that integrates expert knowledge and predicts 
the mortality risk on the patient level to increase the quality 
of care in ICUs. With our CDSS design, we aim to support 
the decision-making process and reduce staff workload in 
ICUs.

We use a unique dataset of patients diagnosed with 
SARS-CoV-2 in ICU care of a German university hospital 
for the evaluation of our system design. The dataset consists 
of time-variant data during the entire stay of patients includ-
ing monitoring data, laboratory values and treatments such 
as artificial ventilation. Additionally, we augment the dataset 
with expert knowledge from on-site physicians. Relying on 
this expert knowledge enables us to integrate decision pro-
cesses of ICUs into our system and prevent the integration 
of misleading confounders [15].

The majority of the mortality risk prediction systems in 
the literature lack the integration of explicit domain expert 
knowledge into clinical decision support systems. Therefore, 
we want to answer the following research question: How to 
design clinical decision support systems predicting the mor-
tality risk of COVID-19 patients that benefit from explicit 
expert knowledge?

To answer this RQ, we follow a design science research 
approach to first define our problem and derive generic 
design requirements (DR) for a CDSS based on a litera-
ture review. Second, we suggest and develop our solution 
as an IT artifact, and third, evaluate the performance of the 
artifact in comparison to a baseline system without explicit 
expert knowledge to finally draw our conclusion [19, 29, 
31]. Design science aims to create and evaluate IT artifacts 
to solve a problem [19]. Vast research methodologies define 
iterative design processes built on a commonly understood 
framework [29]. We will elaborate on the problem formula-
tion based on the theoretical background in more detail and 
explain our design as a suggestion to cope with the problem 
in the following section. We describe our methodological 
approach in the third section and evaluate it based on our 
use case of mortality risk prediction of patients in the ICU 
in light of the COVID-19 pandemic. Finally, we conclude 
the design science process of our artifact.

2 � Background

2.1 � Clinical Decision Support Systems

Integrating data science methods, such as machine learning 
(ML), into the clinical decision process can support physi-
cians in multiple applications and tasks [5]. Since physicians 

cannot manually inspect and process large quantities of data, 
they require algorithms to handle big data [36]. ML algo-
rithms can extract knowledge from large datasets and find 
patterns in the data hidden from human experts [22]. These 
algorithms often outperform humans regarding predictive 
performance and have been adopted for healthcare already 
in the late 1980s for clinical reasoning [13, 24]. Nowadays, 
improved algorithms and reduced costs for computational 
resources foster the applicability and predictive performance 
of such algorithms. The application of ML in the healthcare 
sector covers a wide range of use cases, e.g., cost prediction 
[32], risk profiling [30], or even the identification of suicidal 
people in online social media [7]. Additionally, there is a 
wide range of approaches for supporting clinical decision-
making for critically ill patients, such as patients in the ICU. 
Current research shows promising performances by using 
different ML algorithms to make decisions. Thus, we pro-
pose the first DR 1: Ensure high predictive performance.

The literature on ML adoption in the ICU range from the 
prediction of a patient’s mortality risk [10, 16, 34], length 
of stay [23, 34], and subgroup identification [37]. These sys-
tems often rely on decision trees [10, 16, 23, 40], Bayesian 
inference [30], neural networks [23, 34], or support vector 
regressions [23]. For the COVID-19 pandemic, there has 
been enormous interest in applying ML on patient-level 
prognostics. For instance, Gao et al. [14] built an early warn-
ing system for COVID-19 mortality prediction based on the 
data of the first COVID-19 patients. Assaf et al. [3] utilize 
ML to predict the risk for the critical state of 162 hospital-
ized patients based on data available at hospital admission. 
Similarly, Cheng et al. [9] predict the ICU transfer of hospi-
talized patients. A few publications provide easy-to-use risk 
scores for the prediction task that can handle missing data 
without requiring complex computations (e.g., [28]). How-
ever, most approaches assume that all variables included in 
their models are available to other hospitals, a shortcoming 
addressed in our work. Consequently, we propose DR 2: 
Ensure the integration of adaptable and easily interpretable 
features.

2.2 � The Role of Human Experts

Physicians using ML-based decision support systems should 
be aware of their development and limitations; otherwise, 
their usage may lead to ethical problems and potential medi-
cal errors [6]. Since humans are the decision-makers in the 
end, they need to take responsibility and compensate for 
technological errors [26]. Incorporating a physician in the 
system development process and integrating expert knowl-
edge into an ML-based system may be beneficial, especially 
for complex tasks [22]. Because humans and computers have 
complementary capabilities that can augment each other 
[11], an efficient combination of humans and ML systems 
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could result in better predictions compared to the perfor-
mance of the individual parts [13]. A human can interact 
with the ML component in different ways, e.g., by provid-
ing input data to the ML system, preprocessing the data, or 
checking the ML system’s results [21]. This “human in the 
loop” (HITL) setting enables human experts to constantly 
audit and alter ML systems [17]. Accordingly, a human can 
learn from the ML system, and the ML system can learn 
from a human [1, 11]. This complementarity is especially 
beneficial to overcome limitations in the available data for 
ML training [38]. Human experts can help reduce the search 
space [21] and decrease the data required for ML models 
while increasing the reliability and robustness of the models 
[12]. However, most approaches in the healthcare context 
do not integrate features that rely on expert knowledge and 
hence, miss complementary information outside the dataset. 
Thus, we will focus on the initial altering phase of HITL and 
propose our last DR 3: Integrate domain expert knowledge 
in CDSS.

To the best of our knowledge, there is no COVID-19 
related mortality risk CDSS demonstrating the benefit of 
expert-based risk scores as additional input for CDSS. In 
this paper, we will therefore focus on the additional value 
of integrating expert knowledge while satisfying our design 
requirements. We present our clinical decision support sys-
tem design for mortality risk prediction based on expert 
knowledge in the following.

3 � Methodology

3.1 � Data

Our datasets consist of time-variant data of 439 patients 
diagnosed with SARS-CoV-2 in ICU care from 2020 to 2021 
of a German university hospital.1 The three datasets, namely 
patient meta, monitoring, and laboratory data, were retrieved 
from the hospital’s electronic health record (EHR). To be 
precise, we have minute-wise monitoring data of patients’ 
stay in the ICU with approximately 9.17 million observa-
tions and laboratory data with 82.788 observations for our 
set of 439 patients. For each patient, the patient meta data-
set contains information about gender, age, admission and 
discharge date (of both the hospital and the ICU), detailed 
ventilation information, and whether they survived or passed 
away during their ICU stay. The monitoring dataset con-
tains the minute-wise values of each patient’s vital condi-
tion, including – among others – heart rate, blood pressure 
(arterial and/or non-invasive), oxygen saturation (SpO

2
 ), and 

temperature. Notably, not every value is available for each 
patient and each timespan (e.g., all patients have either an 
entry for the systolic arterial blood pressure or the systolic 
non-invasive blood pressure, but only half of the patients 
have an entry for both). This incompleteness is a common 
issue with EHR data, and we will address it in our preproc-
essing. Furthermore, not all entries are subject to high data 
quality. For instance, we had to omit temperature since 88% 
of the values available were below 30◦ C, including negative 
values. The laboratory dataset captures a wide range of labo-
ratory values for the patients measured at different irregular 
points in time, such as IL6, albumin, or pCO

2
.

Figure  1 shows the distribution of age in our data-
set. Around 76% of the patients are male and the average 
age is 62 years (around 3% of the patients are less than 30 
years old, 82% are 50 years or older, and around 11% are 80 
years or older). Around half of the patients received inva-
sive ventilation via endotracheal intubation, 14% received 
an ECMO, and around 39% passed away.

Fig. 1   Age and length of stay of all patients in the meta dataset

1  We obtained the data retrospectively. Thus, our CDSS results did 
not influence any medical decisions.
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3.2 � Preprocessing

While each patient is identifiable through a unique ID, the 
monitoring and laboratory datasets additionally contained a 
time attribute. Therefore, we merged the different datasets 
by first, merging monitoring and laboratory datasets on the 
unique ID and time values, and second, merging this dataset 
with the meta dataset. As a result, our new dataset contains 
the entire monitoring history of each patient recorded in 
the meta dataset. After merging the data, we checked for 
missing values in the laboratory attributes. Thus, variables 
were excluded from further processing steps if they were not 
measured once for at least 20% of patients. Figure 2 sum-
marizes the datasets and the workflow of our preprocessing 
and evaluation method.

Afterwards, we calculated the length of stay for each 
patient in the ICU with the available admission date and 
discharge date or date of death. As Fig. 1 illustrates, many 

patients only stayed for a few days in the ICU (on average 
14 days). The figure also shows that there are a few outliers 
which we excluded in our analysis. In total, we removed 15 
patients in this preprocessing step, which left us with 424 
patients.

To deal with potential outlier values originating from 
monitoring and laboratory data due to measurement errors, 
we acquired additional information from the on-site physi-
cians regarding ranges of physiological possible values. If 
a value was either above or below the respective maximum 
or minimum range value, we replaced it with the respective 
number. We imputed missing data by forward filling avail-
able values on the patient-level. We repeated this step with 
backward filling if necessary. Finally, we applied a rolling 
mean with a ten-minute window for each numerical value 
to smooth the data and mitigate the impact of outliers which 
potentially occur through measurement errors since we are 
interested in the forecast of a more extended period. After-
wards, we reduced our dataset to the tenth record of every 
patient (i.e., a data record every 10 min per patient).

Furthermore, we selected attributes to evaluate our sys-
tem and removed patients who were missing these attributes. 
This additional step reduced the number of patients that we 
included in our dataset to 323. By utilizing expert guidance 
and statistical correlation analysis, we selected the follow-
ing features: age, arterial blood pressure medium, heart 
rate, FiO

2
 , SpO

2
 , positive end-expiratory pressure (PEEP), 

C-reactive protein, albumin, pCO
2
 , thrombocytes, IL-6, 

aspartate aminotransferase (GOT), and HCO
3−

 . In addition, 
we defined two binary variables indicating when a patient 
received invasive ventilation via endotracheal intubation 
or was treated with ECMO, respectively. We used the intu-
bation and ECMO time frame provided through the meta 
dataset. As we have time-variant data, we did not include 
any complications that occurred during the later stages of 
the patients’ ICU stay as features that could potentially leak 
information to a previous time period. Finally, we created 
lags for our set of features. To be precise, we created lags 
of six hours, i.e., 36 lags for each observation and variable.

For the outcome variable of our prediction task, we 
defined the mortality risk as low if a patient survived their 
stay in the ICU and high if a patient did not. Our dataset 
indicates the mortality with the binary attribute “death” for 
each patient. We assume that the (last) two days before the 
death of a patient are the most indicative of their mortality 
risk. Therefore, each patient in the final dataset had to stay 
at least two days in the ICU. Since most ICUs only plan one 
day ahead [23] and in order to predict the mortality risk at 
least one day ahead of a patient’s death, we also removed the 
last day from the dataset. Thus, the dataset only contains the 
penultimate day of each patient. Our final cohort of patients 
that we utilized for evaluation consisted of 306 patients, of 

Fig. 2   Workflow diagram of our evaluation method
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which 168 (55%) survived their stay in ICU care and 138 
(45%) did not.

We enabled the integration of explicit domain knowledge 
into the system of our IT artifact with our implementation 
of the severity score. Concretely, we incorporated expert 
knowledge in the form of severity thresholds (see appendix). 
For this purpose, the on-site physicians provided information 
on the severity threshold of multiple variables. We encoded 
this information as a binary variable, only for the respec-
tive longitudinal variable at each point in time to prevent 
temporal leakage. The severity of a variable equals one if 
the current value of the patient exceeds or goes below the 
threshold and zero otherwise. The severity score is the sum 
of these binary severity features. In total, we encoded nine 
severity features to produce the severity score. Importantly, 
we note that the severity score only includes severity fea-
tures, whose (continuous) features were available in evaluat-
ing both expert-augmented and baseline systems.

3.3 � Evaluation

We evaluated two clinical decision support system designs: 
One baseline approach without additional information by 
medical domain experts as a benchmark and another expert-
augmented system with encoded domain knowledge. In 
order to predict the mortality risk of each patient, we used a 
long short-term memory (LSTM) network [20]. LSTM is a 
class of recurrent neural networks that performs particularly 
well on sequential and multidimensional time-series data 
[34] and is commonly used in healthcare (e.g., [8, 33–35]). 
We created the following network architecture for the LSTM 
model: One LSTM input layer with 32 units, one hidden 
dense layer with 128 units, and a single unit output layer. 
We added one dropout layer with a 0.75 rate after each layer 
except for the output layer for regularization purposes and 
to prevent overfitting.

Moreover, we used the ReLU activation function for our 
hidden layer and the sigmoid function for our output layer, 
as our prediction problem is a binary classification task. 
To compile our LSTM model, we chose the recommended 
binary cross-entropy loss function, Adam optimizer, and the 
metric accuracy. Additionally, we used a batch size of 32 and 
five training epochs. These hyperparameters are commonly 
used in previous literature and we did not optimize them in 
this case [8].

To get a more reliable estimate of the performance of both 
systems, we performed repeated cross-validation. Specifi-
cally, we repeated cross-validation by using the same five 
random seeds for both systems and stratified group k-fold 
with five splits for both sets of features – one including the 
severity score and one excluding it. In total, we conducted 25 
different evaluations of both system performances. First, we 
utilized stratified group k-fold to ensure that each patient’s 

data is either in the training or the validation set to pre-
vent data leakage. Second, each set contains approximately 
the same percentage of samples of both outcome classes. 
Finally, we scaled each fold using min-max normalization to 
fit on and transform the training set and transform the valida-
tion set with the fitted scaler. In the following section, we 
compare the mean performance of both systems by reporting 
binary classification metrics.

In addition, we evaluated the severity score separately 
without utilizing a ML model in two ways. First, we set dif-
ferent values of the severity score as thresholds to compute 
the same set of metrics that we used to compare our system 
designs. The thresholds indicate whether a patient will sur-
vive their stay or not. We evaluate these thresholds to show 
the added benefit of our system design in comparison to 
standalone expert knowledge. Second, we plotted the mean 
severity score of the patients that we used for our system and 
added a 95% confidence interval to the scores to compare 
patients that survived their stay in the ICU and those that 
did not.

3.4 � Results

Overall, the performance of the expert-augmented system 
is better than the baseline system based on the chosen clas-
sification metrics. Figure 3 shows the area under the receiver 
operating characteristic (AUROC) for the expert-augmented 
system. In Table 1, we observe that the AUROC, accuracy, 
recall and F1 metric show improved results compared to 
the baseline approach. Notably, the highest increase is in 

Fig. 3   Area under the receiver operating characteristic (AUROC) of 
the expert-augmented system
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recall (bold).2 The results are comparable to the high pre-
dictive performance of other CDSS in the literature, which 
used cross-sectional data of COVID-19 patients to predict 
the mortality risk (e.g. [2, 4, 14, 27]).

With respect to the standalone severity score, we show 
the evaluation in Table 2. This table presents classification 
metrics for different values of severity score thresholds 
ranging from the minimum zero to the maximum nine. For 
each threshold value, we implemented the binary decision 
rule that a patient will survive their stay in the ICU if their 
severity score is below the threshold value. Afterwards, we 
computed different metrics to compare them with our system 
performance. With increasing threshold value, the precision 
of the severity score increases, while the recall decreases 
indicating the trade-off between precision and recall for 
different values of the threshold. Notably, for the threshold 
equaling 5, we find the most balanced performance of the 
severity score across the specified metrics. In particular, F1 
score and accuracy have the highest values, while precision 
and recall have similar values in comparison to other thresh-
olds. When we compare these values with the metrics of 
our expert-augmented CDSS design, our results show that 
the system design has a better performance overall. Figure 4 
shows the mean severity score with a confidence interval of 
95% of the last 48 h of all patients we have evaluated (48 on 
the x-axis represents the last point in time of patients in ICU 
care). Moreover, the two graphs represent the two classes of 
patients that we are interested in for our expert-augmented 
system, i.e., surviving and deceased patients. The figure 
illustrates that patients who survived their stay in the ICU 
have a much lower score than the patients who deceased. 
Distinctively, in the group of deceased patients, we observe 
that the mean severity score increases over time, whereas 
the score decreases for the surviving patients. This result 

suggests that the severity score can serve as an indicator for 
the vulnerable state of a patient in the ICU.

4 � Discussion

The results of our evaluation show the potential of integrat-
ing expert knowledge into clinical decision support systems. 
Following the integration of an iterative search process from 
the design science methodology [29], we considered the per-
formance difference and interplay of the different metrics. 
We evaluated our three design requirements by comparing 
(DR 1) the predictive performance of the baseline system 
and the expert-augmented system based on (DR 2) adapt-
able and easily interpretable features derived from (DR 3) 
domain experts.

Since the baseline system already performs quite well, 
one can expect minor overall improvements in the expert-
augmented system. However, we argue that these improve-
ments can still contribute substantially to better decision-
making. To be precise, we looked at designing CDSS to 
predict the mortality risk of COVID-19 patients in the ICU. 
A CDSS built for this task is, in fact, used for a matter of life 
or death. Hence, any performance increase can potentially 
lead to better treatment of patients by the attending physi-
cians, possibly detecting their deteriorating condition earlier 
and preserving their lives.

Most importantly, we emphasize that the highest perfor-
mance increase of the expert-augmented system compared 
to the baseline system was recall (for a tradeoff in preci-
sion performance). We argue that recall is the most relevant 
metric for our use case. Specifically, it is more important to 
avoid false negatives, i.e., systems falsely predicting patients 
to have a low mortality risk than false positives. Failing to 
recognize patients with high mortality risk has drastic con-
sequences, as they are actually at risk of dying. Moreover, 
we compared our system design with the standalone severity 

Table 1   Metrics of baseline and expert-augmented system

Statistic Metric Baseline (%) Expert-
augmented 
(percent-
age points)

Mean AUROC 94.47 +0.23

Accuracy 88.16 +0.55

F1 87.19 +0.61

Precision 88.53 −0.38

Recall 85.89 + 1.56

Table 2   Metrics of standalone severity score with different threshold 
values

Threshold Precision (%) Recall (%) F1 (%) Accuracy (%)

0 45.10 100.00 62.16 45.10
1 45.22 100.00 62.28 45.37
2 46.36 100.00 63.35 47.82
3 51.29 99.58 67.71 57.17
4 63.98 95.55 76.64 73.73
5 83.18 86.02 84.58 85.85
6 93.31 67.37 78.24 83.10
7 94.90 39.60 55.88 71.80
8 92.41 8.71 15.91 58.51
9 100.00 0.30 0.60 55.04

2  Since some researchers expressed concerns about learning weights 
from past values with LSTMs, we repeated our evaluation with a 
temporal convolutional network [25]. As  we show in the appendix, 
our evaluation produced the same trends in all performance metrics. 
However, our LSTM model performs better for most evaluation met-
rics.
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score at different threshold values. Our results showed that 
the expert-augmented system performs better than the sever-
ity score by itself which demonstrates the added benefit of 
using the expert-augmented system instead of expert knowl-
edge alone. In sum, the expert-augmented system better pre-
dicts the relevant group of high-risk patients, satisfying DR 
1.

As the results showed, the mean severity score increases 
over time for deceased patients, while it decreases for sur-
viving patients. Intuitively, this makes sense, as the health 
condition of the deceased patients worsens until their death. 
In contrast, the health condition of patients that survive 
improves as they are discharged, and thus, their severity 
score decreases. Therefore, we argue that the severity score 
derived from expert knowledge has utility as an IT artifact in 
and of itself because it clearly differentiates the health condi-
tion of patients at high risk of mortality from those that are 
not. Furthermore, the severity score can be a general indica-
tor of a patient’s health condition. Therefore, any medical 
personnel can quickly and efficiently interpret the sum of 
severity features as a decision support tool. This ease of 
use becomes increasingly important when time is a crucial 
factor as physicians have to make many decisions efficiently 
and need to avoid information overload. The score can also 
prompt physicians to investigate the relevant variables fur-
ther and make appropriate decisions based on their value, 
e.g., a high severity score can urge personnel to act more 
quickly. Additionally, researchers and practitioners can adapt 
the score to different hospitals’ needs based on the available 
variables of each hospital and the thresholds that they choose 
to utilize. This adaptability is essential because not every 

hospital has the same resources available to them.3 Thereby, 
we offer an adaptable and easily interpretable feature based 
on domain expertise, satisfying DR 2 and DR 3.

Moreover, physicians may feel more comfortable using 
expert-augmented systems due to the inclusion of domain 
experts in the ML model development process. The literature 
suggests that trust is the main hindrance to ML adoption in 
healthcare [15]. However, the inclusion of medical profes-
sionals in ML system development and implementation as 
part of the “human in the loop” process might increase their 
adoption rates [18].

Finally, we may even further extend the use case of the 
severity score if we assume that a variable that was not 
measured during a specific point in time (the observation 
being N/A) is not severe. This idea follows the assumption 
that hospitals often only measure different variables for a 
patient’s health condition if they deem the condition to be 
harmful or severe. Using this assumption allows system 
designers to use multiple variables that have many missing 
values and, as a result, more patients’ data to potentially 
improve the system’s performance. Evaluating this perfor-
mance is crucial in the design process to ensure the artifact’s 
utility, quality, and efficacy [19].

5 � Limitations and Conclusion

In this paper, we designed a clinical decision support system 
to predict the mortality risk of ICU patients diagnosed with 
SARS-CoV-2 by integrating domain expert knowledge into 
the system. We utilized design science research to formu-
late our problem definition based on the theoretical back-
ground and identified as well as satisfied the three design 
requirements: high predictive performance (DR 1), use of 
adaptable and easily interpretable features (DR 2), and inte-
gration of domain expert knowledge (DR 3). Furthermore, 
we followed design science to implement an IT artifact and 
evaluate its performance compared to the baseline approach 
through a design search process [19]. The results indicate 
that domain expert knowledge has the potential to improve 
the performance of systems. It also enables a more adapt-
able and transparent use of CDSS. We note that although 

Fig. 4   Mean severity score of all patients in the last 48 h (with confi-
dence interval of 95 %)

3  To assess adaptability and generalizability, we conducted an abla-
tion study to evaluate the predictive performance with or without 
each feature such that only one feature was removed during each eval-
uation. If the feature that we removed is part of the severity score, 
then we also removed its occurrence in the score. In the end, the 
expert-augmented system yielded a similar predictive performance on 
average compared to the full set of features  suggesting adaptability 
and generalizability.
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the performance of our baseline system is comparable to the 
literature, we were able to show that our expert-augmented 
approach outperformed this system and thus enabled a bet-
ter forecasting of the relevant group of people: patients at 
high risk of deceasing. Consequently, we argue that other 
CDSS applying our adaptable expert-augmented approach 
can benefit from the increased performance and improved 
interpretability of features.

We implemented our design by imputing N/A values with 
the rolling average of each value. We acknowledge that other 
promising imputation strategies are also feasible. However, 
the results of the baseline approach indicate that using this 
imputation strategy performs sufficiently well to predict our 
target variable. We have also used the assumption that the 
severity score is additive with a limited set of binary severity 
threshold-based features. Future research could explore other 
scoring methods such as different weighting approaches or 
test other severity feature combinations and more sensitive 
(multiclass) thresholds to improve the scoring mechanism.

Additionally, we note that there is a potential selection 
bias in the variables integrated into the CDSS. We selected 
the variables based on their availability in our dataset, the 
current state of research and expert guidance. We also only 
used a single dataset relying on the patients of one hospi-
tal only. This limitation stems from the fact that large-scale 
time-variant datasets of COVID-19 patients were almost 
nonexistent at the time of analysis, and data privacy regula-
tions hamper critical health-related data aggregation. Future 
work can follow a multicenter approach to integrate multiple 
datasets from different hospitals.

With this paper, we contribute to the literature on clini-
cal decision support systems and the integration of expert 
knowledge from the healthcare domain into the system of 
our IT artifact following design science research method-
ology [19]. We defined design requirements for expert-
augmented CDSS and showed with our evaluation that by 
augmenting CDSS with expert knowledge, the system’s per-
formance increases compared to the baseline approach and 
standalone expert knowledge. In addition, we created the 
severity score as an adaptable measure of a patient’s health 
condition. The severity score serves two purposes: First, it 
improves the general performance of the ML-based CDSS, 
and second, physicians can use it as an adjustable standalone 
decision support tool by combining different available attrib-
utes and thresholds if machine learning know-how is not 
available to the user. Incorporating domain expert knowl-
edge in CDSS can aid medical decision-makers in a very 
critical environment.

Appendix

List of Severity Thresholds

We used the following severity thresholds to calculate the 
severity score of each patient:

–	 pCO
2
 > 50 mmHg

–	 SpO
2
 ≥ 93%

–	 Thrombocytes < 100/nl
–	 C-reactive protein ≥ 10 mg/l
–	 IL-6 ≥ 10 pg/ml
–	 GOT > 40 U/l
–	 Albumin < 3.5 g/dL
–	 ARDS*: PO

2
/FiO

2
 ≤ 100 mmHg with PEEP ≥ 10 cm H 

2

O
–	 Severe metabolic acidemia*: pH

t
 < 7.20, HCO

3−
 < 22 

mmol/L, aBE ≤ 5 mmol/L, pCO
2
 = 1.5 ∗ (HCO

3−
 ) + 8 ± 

2 mmHg

*) We simplified these rules in an iterative manner to ensure 
higher predictive performance.

Classification Metrics of Temporal Convolutional 
Network (TCN)

Table 3 shows the classification metrics of baseline and 
expert-augmented designs based on temporal convolutional 
network [25] with the same set of metrics as our LSTM 
model. While the direction of the performance differ-
ences is the same between LSTM and TCN model for each 
metric when comparing baseline and expert-augmented 
designs with recall being the highest increase (bold), our 
LSTM model yields greater overall performance in all met-
rics but precision.

Table 3   Classification Metrics of Baseline and Expert-augmented 
System using Temporal Convolutional Network

Statistic Metric Baseline (%) Expert-
augmented 
(percent-
age points)

Mean AUROC 94.28 +0.06

Accuracy 88.53 +0.13

F1 86.91 +0.23

Precision 89.76 −0.45

Recall 85.20 + 0.81
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