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Abstract
Street view imagery databases such as Google Street View, Mapillary, and Karta View provide great spatial and temporal 
coverage for many cities globally. Those data, when coupled with appropriate computer vision algorithms, can provide an 
effective means to analyse aspects of the urban environment at scale. As an effort to enhance current practices in urban flood 
risk assessment, this project investigates a potential use of street view imagery data to identify building features that indicate 
buildings’ vulnerability to flooding (e.g., basements and semi-basements). In particular, this paper discusses (1) building 
features indicating the presence of basement structures, (2) available imagery data sources capturing those features, and (3) 
computer vision algorithms capable of automatically detecting the features of interest. The paper also reviews existing meth-
ods for reconstructing geometry representations of the extracted features from images and potential approaches to account 
for data quality issues. Preliminary experiments were conducted, which confirmed the usability of the freely available Map-
illary images for detecting basement railings as an example type of basement features, as well as geolocating the features.
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1 Introduction

Of all natural disasters, flooding has the greatest potential of 
causing damage and affecting the greatest number of peo-
ple worldwide [1]. Flooding cannot be completely prevented 
but its consequences can be mitigated. Recent advances in 

computer science, and particularly in artificial intelligence 
(AI) are being employed to improve flood risk management 
and preparedness. For example, Lopez-Fuentes et al. [2] 
and Ergani et al. [3] introduced deep learning approaches to 
detect floods and segment water bodies from social media 
images to aid flood emergency handling. Another example 
is the application of Convolutional Neural Network (CNN) 
on a fusion of digital elevation models, optical, and radar 
satellite images to map the spatial extents of floodings at a 
large scale [4].

Assessing flood risks is an important step in its manage-
ment. Assessment requires knowledge of the sources and 
flow paths of floodwaters, as well as the nature of receptors 
that may be impacted (e.g., residents, infrastructure assets 
and others). This project aims to explore AI approaches and 
large-scale, street-view imagery (SVI) datasets (i.e., images 
captured from the perspective of pedestrians or road vehi-
cles) to enhance flood risk assessment. In particular, the 
focus is on automatic identification of building basement 
structures from SVIs. While basements affect ground water 
and surface water flows, most flood assessment models omit 
them. Furthermore, basement inhabitants and properties are 
at a higher risk of flooding [5]. Basements are inundated 
early in a flooding event and can fill quickly due to their 
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limited volumes. Thus, information of basement spaces 
extracted in this project can improve flood risk assess-
ments for individual property owners and their surrounding 
communities.

Since multiple SVI datasets such as Google Street View, 
Mapillary, and Karta View are available for most towns 
and cities globally, this paper’s proposed methodology is 
designed to be readily transferable, wherever suitable data 
are available. However, every data source has its own limi-
tations. Section 2 of this paper provides a critical review of 
the SVI data sources with respect to their suitability for the 
project’s purpose. An area of approximately 2 km2 in the 
Dublin city centre in Ireland (Fig. 1) is selected as a study 
area for this project. Basement flooding is a known concern 
there. The 2005 Greater Dublin Strategic Drainage Study 
highlighted a number of issues with regard to basements 
and their flooding risks. Basement flooding risk was also 
identified in the Strategic Flood Risk Assessment (SFRA) 
conducted for the Dublin City Development Plan 2022–2028 
[6]. The area has a long history of past flood events1. For 
instance, during a single river overtopping incident on 
24/10/2011, 55 basements were reported to be flooded2.

Both the current absence of a database of basements for 
the Dublin region and the criticality of having such infor-
mation are confirmed in Sections 2.3 and 2.7 in Volume 

6 of the 2005 Greater Dublin Strategic Drainage Study 
report [7]. The most important information necessary for 
flood risk management includes the location, level, and use 
of basements. Dublin City Council has limited information 
of approximately 16,200 basement structures in the area 
between the Grand Canal and Royal Canal in the city centre. 
The report recognised that the actual number of basements 
in Dublin is far beyond what is currently captured. Basement 
information in South Dublin, Fingal, Dun Laoghaire-Rath-
down and Bray counties is absent. An AI model learning 
to detect basement structures from SVI data would be very 
useful in this context. Such a model can learn the visual rep-
resentation of basements in areas where basement informa-
tion is available and apply the model to predict the presence 
of basements in areas where the information is absent. This 
is especially feasible when the difference in the architectural 
styles is not significant so that the data available for training 
can sufficiently represent the target data.

The goal of the project is to exploit large scale SVI data 
sources and the latest computer vision algorithms to enrich 
information of basement structures and enhance knowledge 
of flood risk. To achieve that goal, the project seeks to pur-
sue the three questions:

• What features visible from the street level can indicate 
the presence of a basement in a building?

• Which SVI data sources are available and suitable for 
indicating the features?

• Which computer vision algorithms are capable of auto-
matically detecting the features of interest?

The project is motivated by the underuse of imagery data 
for the detection of basement structures. Searching the Sco-
pus database in November 2022 for research of all types 
matching three terms “basement”, “detection”, and “image” 
resulted in 196 items. However, none of the resulting items 
was relevant to the topic in question. While there were mul-
tiple studies related to detecting and extracting basement 
information, all employed 3D laser scanning data and/or 
ground-penetrating radar (GPR) data (e.g., [8–10]) which 
are more expensive and not as widely available as imagery 
data.

2  Presence of Basements as a Flood Risk 
Indicator

Flood risk is a function of hazard, exposure, and vulnerabil-
ity [11]. The presence of a basement structure in a building 
does not automatically mean that the building is at a risk of 
flooding. Other factors such as the probability of flooding in 
the area where the building locates, basement configuration, 
use, and surrounding built and natural features are critical 

Fig. 1  Study area in Dublin city, Ireland. Map data from OpenStreet-
Map

1 https:// www. flood info. ie/ map/ past_ flood_ event_ user_ guida nce_ 
notes/.
2 https:// www. flood info. ie/ map/ pf_ addin fo_ report/ 11703/.

https://www.floodinfo.ie/map/past_flood_event_user_guidance_notes/
https://www.floodinfo.ie/map/past_flood_event_user_guidance_notes/
https://www.floodinfo.ie/map/pf_addinfo_report/11703/
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in determining actual flood risk. Nevertheless, the presence 
of a basement is a factor in contributing to flood risk of a 
building [12–14]. Multiple existing flood assessment models 
account for the presence of basement structures. Examples 
include the HAZUS model by the US Federal Emergency 
Management Agency [15], the Multi-Coloured Manual by 
Penning-Rowsell et al. [16], and the US Army Corps of 
Engineers’ model [17]. While being necessary for flood risk 
assessment, basement information is not available in many 
places. The research presented in this paper aims to fill the 
gap by extracting basement information for flood assessment 
models such as those aforementioned.

Apart from being at risk of flooding themselves, base-
ment structures may also impact on the groundwater and 
surface water flows during a flood event [18]. A basement 
also affects the structural stability of buildings in its sur-
rounding. In Dublin, the development of basements is disal-
lowed in areas where the probability of flooding is higher 
than 0.1% for river flooding or 0.5% for coastal flooding 
[6]. A basement impact assessment is compulsory for any 
building development proposal that includes a basement. 
The priority risk posed by basements has been acknowl-
edged as part of flood evacuation models (e.g., [19–21]). 
However, the presence of basement structures has commonly 
not been implicitly accounted for in numerical flood predic-
tion models.

The presence of a basement in some buildings is vis-
ible from the street view. In some cases, the basements 
themselves can be directly seen from the street. Figure 2a 
shows an example of such a case, in which the Georgian 
terrace houses have exposed basement structures identifi-
able through the basement wells, basement windows, and 
protection railings. When not fully exposed, some base-
ments can be identified through features such as venti-
lation shafts, airbricks on the façades and skylights on 

the sidewalk. Those features are common and essential in 
providing air and natural lighting from the outside space 
to the subterranean spaces. The aforementioned visual 
features are present in many basements while not every 
basement structure has one of the features. This project 
will focus on identifying basements through their visual 
features exposed to the street view. However, even when 
no visual features exist on the exterior of a building, the 
existence of a basement can potentially be predicted from 
the architecture style, and other information such as con-
struction time and information of nearby buildings. Previ-
ous works such as [22] has proved that some information 
about a scene can be inferred from an image of the scene 
without explicit visibility of relevant objects in the image.

3  Street‑View Imagery Databases

Street view imagery data are available in many towns and 
cities around the world [23]. SVI images are captured from 
the street level and from much closer to the objects of inter-
est (i.e., building façades) compared to satellite and aerial 
images. Due to the favourable point of view and the high 
availability, SVI data allow capturing many features of inter-
est described in Section 2. SVI data have been successfully 
used in previous works to analyse different aspects of the 
built environment such as architectural style, building age, 
and building energy efficiency [24, 25].

There are a number of SVI data providers. Major pro-
viders include Google Street View, Apple Look Around, 
Mapillary, and KartaView which provide coverages in mul-
tiple countries. There are other providers offering data at 
a smaller scale such as CycloMedia which provides pan-
oramic SVI data for most of the Netherlands and several 
cities in Europe and the United States, Tencent Maps and 
Baidu Maps offering data mostly for China, and Kakao Maps 
offering SVI data in Korea. Based on primary screening, 
the data providers potentially suitable for this project are 
Google Street View and Mapillary. Apple Look Around does 
not provide an Application Programming Interface (API) 
for data download. CycloMedia data are not available for 
the area of interest (AOI) in Dublin and KartaView data are 
very sparse in the AOI.

The remainder of this section discusses the two top candi-
dates, GSV and Mapillary, in detail. In particular, GSV and 
Mapillary data and services are compared with respect to a 
set of criteria deemed important to the project. The seven 
recommended criteria for pre-screening the data sources are 
as follows. The word “must” indicates criteria deemed man-
datory while “should” indicates criteria that are desirable 
but not mandatory.

Fig. 2  Visual features indicating potential presence of a basement
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• Criterion 1—The data should be downloadable in batch 
such as via an API.

• Criterion 2—Necessary metadata must be available and 
contain sufficient information to identify and georefer-
ence objects in the images.

• Criterion 3—The spatial coverage must include the study 
area.

• Criterion 4—The temporal coverage should be as exten-
sive as possible to reflect the changes in the built infra-
structure configuration.

• Criterion 5—The image resolution and quality must be 
sufficient to allow extracting the necessary basement 
information.

• Criterion 6—Permission must be obtainable from the 
data providers to use the data in this project.

• Criterion 7—Data acquisition costs should not be pro-
hibitive.

3.1  Overview of GSV and Mapillary

GSV is the most popular SVI data service. According to a 
survey by Biljecki and Ito [26], GSI is the dominant source 
of SVI data among urban studies research. The use of GSV 
images has been seen in hundreds of academic papers.

While also offering geo-tagged, street-level imagery simi-
lar to GSV, Mapillary sources data from volunteer contribu-
tors. Due to the data’s origin, Mapillary images are very 
diverse in terms of capturing equipment (e.g., mobile phone 
cameras, dashcams, action cameras), moving platforms (e.g., 
cars, buses, bicycles, pedestrians), as well as image quality.

3.2  APIs and Data Offered Through APIs

Both GSV and Mapillary provide APIs for downloading 
images as well as image metadata. Both services satisfy 
Criterion 1 regarding data download-ability. The majority 
of GSV data are panoramic while most Mapillary images are 
flat. The Google’s Street View Static API supports queries 
by either location or street address. The capability to support 
queries by street address is especially useful in this project 
given the objects of interest are buildings and their features. 
Valuable information in the metadata response include the 
capture date and the geographic coordinates of the platform 
at the time the image was captured. The largest image size 
available through the Google Street View Static API is 640 
× 640 pixels. Despite the image size restriction, retrieving a 
higher resolution view of smaller parts of an image is pos-
sible by reducing the FOV.

Mapillary provides an API as well as a Python Software 
Development Kit (SDK) to interact with its data. The current 
Mapillary API version 4 only supports window queries for 
image search. With the Python SDK, we can also search for 
images within a non-rectilinear AOI, search for images near 

a given location, and search for images looking at a given 
location. The last type of query is especially useful when we 
need to retrieve images of a building. While Mapillary does 
not support search by street address like GSV, the available 
search functionalities together with a third-party geo-coding 
service should allow search by address.

Mapillary images can be downloaded at the original sizes 
or normalised sizes (e.g., 256, 1024, 2048 pixels). The origi-
nal image sizes are highly diverse as they are dependent on 
the capturing equipment. Image metadata offered by Mapil-
lary are very comprehensive and consist of more than 23 
metadata fields, including spatial information (coordinates, 
altitude, compass angle, orientation), temporal information 
(captured time), camera type and camera parameters. In 
addition to the spatial information originally recorded in the 
uploads, Mapillary performs its internal processing of the 
information and makes available the corrected values (e.g., 
corrected geometry, corrected altitude, corrected compass 
angle, etc.). Notably, the position and orientation informa-
tion provided by Mapillary is of the cameras and not of the 
objects appearing in the images.

Mapillary also processes images uploaded on its platform 
using semantic segmentation, object detection as well as 
Structure from Motion (SfM) [27] to reconstruct 3D repre-
sentations of the captured scenes. Some of the derived infor-
mation, such as the SfM point cloud and entities detected 
by Mapillary object detection, can be accessed through the 
image metadata. Among over 60 classes of objects offered 
by Mapillary, building, wall, fence, guard rail, road, road 
curb, and sidewalk are potentially useful for our project. 
Objects of those classes when detected can provide a context 
to understand the image and can potentially be incorporated 
into the detection of the features of interest in our project. 
In summary, with respect to Criterion 2 (Metadata), Mapil-
lary is more comprehensive even though the georeference 
information can be less accurate.

3.3  Spatial and Temporal Coverage

The APIs described in Section 3 allow checking the data 
metadata for the coverage of each service. As of the time 
of writing, there were 6,800 GSV panoramic images and 
17,613 Mapillary images within the area.

The locations of GSV and Mapillary images are plot-
ted in Fig. 3a and b. In general, both datasets cover most 
major roads in the AOI (i.e., satisfying Criterion 3 - Spatial 
coverage). GSV better covers smaller roads thereby captur-
ing more buildings. The colours in the figures represent the 
distance of each data point to its nearest neighbour. The dis-
tance from a point to its nearest neighbour is inversely pro-
portional to the local data density at that point. Darker col-
ours in the images represent higher density values and vice 
versa. Mapillary image data points are more closely spaced. 
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The median distance to the nearest neighbour is 1.8 m for 
the Mapillary data and 6.8 m for the GSV data. The temporal 
distribution of the two datasets are shown in Fig. 3c and d. 
A significant proportion of GSV images currently accessible 
through the API (i.e., 34.5%) are less than one year old (i.e., 
captured on or after 7/9/2022). The first significant batch of 
Mapillary uploads in the AOI occurred in 2015. Since then, 
new images have been contributed almost continuously to 
the platform except for the period from early 2020 to mid-
2021. In general, the temporal distribution of the Mapillary 
dataset is more even compared to the GSV dataset i.e., better 
satisfies Criterion 4—Temporal coverage.

3.4  Image Quality and Field of View

To be useful for the purpose intended in the project, an image 
should capture enough information of the objects of interest 
(i.e., buildings and their features) without being obstructed. 
The captured information should not be affected too much 
by issues such as blurriness, noise, inappropriate contrast, 

colour inaccuracy, distorsion, and flare. Being acquired by 
professional camera teams using specialised equipment, 
GSV images usually have sufficient quality (i.e., satisfying 
Criterion 5). In addition, the panoramic support allows set-
ting and tuning the FOV post acquisition to achieve a favour-
able view of a building or specific building features.

In contrast, Mapillary images are contributed primarily 
by amateurs using a wide variety of equipment and plat-
forms. Similar to other sources of Volunteered Geographic 
Information (e.g., Open Street Map), Mapillary data do not 
come with a high level of consistency in data quality. The 
data quality of Mapillary imagery is highly diverse. There 
are high quality images suitable for the intended purpose 
such as those shown in Fig. 4. The technical quality and 
the FOV allow capturing basement identification features 
such as basement skylights, ventilation windows, basement 
wells and iron railings. However many Mapillary images 
suffer from various data quality issues such as motion blur 
(e.g., Fig. 5a), incorrect focus (e.g., Fig. 5b), incorrect cam-
era exposure settings leading to images too bright or too dark 

Fig. 3  Spatial and temporal distributions of GSV and Mapillary data in the area of interest. Map data from Carto
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(e.g., Fig. 5c), and incorrect colour settings or image colours 
altered post capture (e.g., Fig. 5d).

There are also other issues that hinder the usefulness of 
Mapillary imagery data in this project. For example, the 
object of interest (i.e., the building façade) in Fig. 5e was 
obstructed. In Fig. 5f, while the basement wells and raillings 
were captured, they occupy only small parts of the image. 
The latter issue is common as many Mapillary images were 
captured with the cameras aiming in the street direction. 
Ultimately, while working with the Mapillary dataset of 
the AOI, we encountered a considerable number of cor-
rupted image files. There are also duplicate image files and 
nearly identical images (e.g., consecutive images captured 
while the camera is stationary) in the database. While those 
various issues do not completely impede the use of Mapil-
lary data in the project, the issues should be considered/
addressed in the data analysis strategy.

3.5  Data Usage Permissions

Mapillary data are free of charge and are licensed under the 
Creative Commons Attribution-ShareAlike 4.0 International 
Licence (CC BY-SA 4.0). The highly permissive license 
allows copy, redistribute and build upon the licensed data 
for any purpose including commercial purposes. The licence 
gives all the permissions necessary for the purpose intended 
in the project (i.e., satisfying Criteria 6 &7). The licence 
requires proper attribution to the data source, indication of 
any changes made to the data, and distribution of derived 
data under the same licence.

Unlike Mapillary data, GSV data are commercial. At 
the time of writing, the cost for requesting a set of 1000 
panoramic images through the GSV Static API is 5.6–7.0 
US dollars, depending on the number of requests calcu-
lated monthly. Requests of metadata only are free of charge. 

Fig. 4  Examples of mapillary images with suitable quality and FOV for capturing basement features

Fig. 5  Example of mapillary images that suffer from quality issues
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Importantly, the Terms of Service do not allow deriving new 
information from GSV data or making offline copy of the 
data3. The restrictions apply to academic as well as commer-
cial uses of the service. Deriving basement information from 
GSV imagery, therefore, is not an option in the project (i.e., 
mandatory Criterion 7 cannot be met). Nevertheless, we 
find the discussion of GSV data valuable for the following 
reasons. Firstly, GSV data represent an almost ideal street 
view data source. Analysing the characteristics of GSV data 
helps identify issues in other street-view data sources and 
identify possible solutions to address the issues. Secondly, 
while GSV’s Terms of Service do not allow downloading the 
images, the images accessible online are still very valuable 
as a reference for annotating other data sources. Thirdly, the 
restrictions in GSV’s Terms of Service are misinterpreted by 
many researchers. The discussion on the restrictions can be 
helpful to people who consider GSV data in future projects. 
That also highlights the barrier posed by proprietary datasets 
and emphasises the importance of open data.

4  Developing a Data Analysis Strategy

As discussed in  Section  3, GSV cannot be used as an 
imagery data source for extracting basement features due to 
the Terms of Service. Mapillary is the only possible dataset. 
Comparing the accuracy achievable with data from different 
SVI services is not possible. There are 17,613 Mapillary 
images available in the AOI at the time of writing. The data 
quality is highly heterogeneous with issues ranging from 
inappropriate camera settings, unfavourable FOV, to data 
corruption and duplication. Nevertheless, many Mapillary 
images have sufficient quality and provide valuable informa-
tion of building basement features. This section discusses 
the development of a data analysis strategy to use Mapillary 
data as a means to achieve the project aim stated in Sec-
tions 1, 2 with considerations of the data quality issues men-
tioned in Section 3.

4.1  Formulating the Target Tasks

The image analysis needs to identify basement features from 
an input geo-tagged image (i.e., Task 1) and reconstruct the 
shape, size, and location of the identified features in the real 
world (i.e., Task 2). Since we do not only need to detect the 
presence of the objects of interest (i.e., basement features) 
and locate them in an image but also need to delineate the 
objects at the pixel level, the first task should be formu-
lated as either an image segmentation problem as opposed to 

classification, or object detection. Either semantic segmenta-
tion, instance segmentation, or panoptic segmentation could 
be sufficient for the project’s purpose. The second task is 
known as image-based scene reconstruction, or sometimes 
depth reconstruction or 3D reconstruction. Scene recon-
struction allows consolidating information about any object 
detected in the first tasks. At the end of this task, basement 
information is available at the object level (e.g., building A 
has basement features visible in images 1, 2, 3) instead of 
at the image level at the end of Task 1 (e.g., images 1, 2, 3 
contain features indicating a possible presence of a basement 
structure). Without performing the second task, one cannot 
attribute the detected features to specific buildings. Instance 
segmentation and scene reconstruction are common topics 
in computer vision.

4.2  Task 1: Image Segmentation

There are numerous algorithms available for image segmen-
tation. Traditional methods rely on hand-crafted features and 
rules such as thresholding [28], region growing [29], graph-
cuts [30], and sparsity-based methods [31]. The advances 
in deep learning (DL) have created major breakthroughs in 
image segmentation. DL methods often well surpass tra-
ditional methods with respect to accuracy. Minaee et al. 
[32] and Ulku et al. [33] provided recent reviews of over 
100 DL-based image segmentation methods. Such com-
prehensive reviews are valuable for selecting segmentation 
algorithms in this project. While a decision on which algo-
rithm to use has not been reached at this stage, selection 
criteria have been discussed. What matters most to the task 
considered in the project is the segmentation accuracy, the 
capability to handle small object sizes, and the robustness 
against data heterogeneity and quality issues. Training and 
inference time requirements are not as critical because the 
project only deals with relatively static datasets and does not 
require real-time processing. In addition, the project favours 
DL methods that can exploit the global context information 
in an image (e.g., Pyramid Attention Network [34] and vari-
ous extensions of YOLO (You Only Look Once) algorithm) 
over those that ignore the global context (e.g., conventional 
Fully Convolutional Networks [35]). The basement features 
(i.e., target objects) described in Section 2 are integral com-
ponents within the surrounding environment including the 
buildings and the streetscape. The global context in an image 
is potentially useful in the project. Methods that are accom-
panied by well-maintained implementations, such as Mask 
RCNN [36], Panoptic FPN [37], Panoptic-DeepLab [38], 
YOLOv54, and DetectoRS [39], may be given priority.

3 https:// www. google. com/ intl/ en- GB_ ALL/ permi ssions/ geogu ideli 
nes/. 4 https:// github. com/ ultra lytics/ yolov5.

https://www.google.com/intl/en-GB_ALL/permissions/geoguidelines/
https://www.google.com/intl/en-GB_ALL/permissions/geoguidelines/
https://github.com/ultralytics/yolov5
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Given that Mapillary imagery data will be used, attention 
will be given to segmentation methods previously evaluated 
using Mapillary data. The Mapillary teams have carried out 
AI research and development. The company published the 
well-known Mapillary Vistas dataset for the first time in 
2017. The current Mapillary Vistas version 2.05 contained 
25,000 SVIs annotated with 124 semantic object catego-
ries. The images are heterogeneous and represent different 
weather conditions, seasons, time, cameras and viewpoints. 
Together with the Cityscapes dataset [40], Mapillary Vis-
tas is popular for benchmarking algorithms for segmenting 
images of urban scenes. Mapillary conducted and published 
its own research on image segmentation (e.g, [41]). The 
company has also co-organised multiple image segmenta-
tion competitions and workshops since 2017. Many teams 
participating in those competitions published their results in 
academic publication venues (e.g., [42]). While basement 
features as desired in the project are not part of the Vis-
tas dataset or the Cityscapes dataset, the publications from 
Mapillary and the teams participating in the competitions 
are valuable resources.

4.3  Task 2: Scene Reconstruction

Subsequent to detecting and delineating the objects of inter-
est in Task 1, we need to infer the real world geometries 
of the objects. The task is known as scene reconstruction. 
A common scenario is that an object (e.g., a building or a 
basement feature) appears in multiple images. We can use all 
images of an object as long as the object is sufficiently vis-
ible in the image. Redundancy can help improve reliability 
of the detection. The scene reconstruction task helps auto-
matically register different images of the same object so that 
we obtain information at the object level instead of the image 
level. Automatically reconstructing depth information and 
real world geometry of an object from a single, monocular 
image of the object is not impossible but is significantly 
challenging. Mertan et al. [43] provided a recent review on 
the topic. Available methods range from those that rely on 
hand-crafted features and rules (e.g., [44, 45]) to modern 
supervised ML (e.g., [46–48]) and unsupervised ML meth-
ods (e.g., [49, 50]).

When multiple images of a scene are available, the depth 
information can be estimated more easily and accurately 
by performing SfM [27] and Multi-view Stereo (MVS). 
SfM recovers the relative poses of the images while MVS 
generates a dense depth map for each image. While many 
Mapillary data were captured in sequence, Mapillary data 
are sub-optimal for SfM analysis due to the low overlap-
ping ratio between images, complex motion trajectories, 

under-constrained camera parameters, and the presence of 
non-stationary objects (e.g., pedestrians, vehicles). Off-the-
shelf SfM algorithms have limited success in reconstructing 
objects from Mapillary data. However, with appropriate cali-
bration and tuning, the Mapillary Research team and collab-
orators had successfully demonstrated that scene reconstruc-
tion from Mapillary data is possible [51]. The research led 
to the publication of a set of 750,000 Mapillary images with 
depth information. Antequera et al. [51] also showed that 
such a dataset can be used to train single-image-depth net-
works to predict depth information from individual images. 
The methodology and data introduced in [51] will poten-
tially be the basis for scene reconstruction in this project.

4.4  Incorporating Quality Assessment as Part 
of the Data Analysis

The diversity in Mapillary data quality as described in Sec-
tion 3.4 creates opportunities as well as challenges. Together 
with the large amount of data available, the data diversity 
provides potential for creating models that have high degrees 
of generalisability and robustness [52, 53]. A high level of 
diversity means that the dataset captures a wider variety 
of representations. ML models trained with more diverse 
data have a better capability to generalise, as they capture a 
variety of representations and are less prone to overfitting 
[54]. However, low-quality and defected images may impede 
the performance of computer vision models. There are two 
general directions for addressing image quality issues. In 
the first direction, images from the initial data pool are fil-
tered by an image quality assessment before being inputted 
into the target analysis (e.g., Tasks 1 & 2 described in Sec-
tions 4.2–4.3). That will be a no-reference/blind image qual-
ity assessment [55] as higher quality references are not avail-
able. Many solutions are available for the task, including 
solutions based on DL, can be traced from review papers 
such as [56]. In the second direction, we can train an image 
selection neural network simultaneously with an image seg-
mentation neural network (i.e., Task 1) in a reinforcement 
learning process (e.g., [57]). The former network learns to 
select/reject images through maximising the performance of 
the latter network in performing the target task. The second 
direction is more sophisticated, potentially more complex 
and does not require image quality labels. In addition to data 
quality issues, data incompleteness is a known issue that can 
impact the analysis output. For example, false negatives are 
unavoidable where suitable input data are missing. Those 
must be taken into account when interpreting results from 
Mapillary data.

5 https:// www. mapil lary. com/ datas et/ vistas.

https://www.mapillary.com/dataset/vistas
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5  Preliminary Experiment

To demonstrate the data analysis approach presented in Sec-
tion 4 and investigate the suitability of Mapillary images for 
the intended purpose, a simplified, small scale experiment 
was conducted. As a preliminary experiment, the investiga-
tion is restricted to Mapillary data captured around the Mer-
rion Square area in Dublin city (see Fig. 1). Most buildings 
in the area are Georgian terraced houses which have front 
basements protected by railings visible from the street view. 
Basement railings are selected as the target object type for 
the image segmentation task in this experiment. The Mer-
rion Square park in the area is also surrounded by ion rail-
ings which have no relation to basement structures. That mix 
of basement and non-basement railings creates an interesting 
setting for the experiment.

5.1  Data Preparation

The sample dataset in Merrion Square consists of 217 
images belonging to nineteen sequences. An image sequence 
in the Mapillary database is a series of consecutive images 
captured by a unique user with a unique equipment in one 
session. A manual, subjective assessment was performed for 
the sample dataset. Each image was assessed by a human 
annotator on the basis of whether the image is sufficiently 
clear to indicate the presence or absence of basement fea-
tures. Notably, while many objective image quality metrics 
are available for quantifying blurriness, noise, and colour 
inaccuracies (e.g., [58]), subjective assessment is consid-
ered accurate and reliable. 157 images (i.e., 72.4% of the 
initial image set) were found sufficient for the target pur-
pose. Among the images deemed unsuitable, 90.0% were 
blurry, mostly due to motion blur. Motion blur is common 
for images taken in low light conditions (e.g., near dawns 
and dusks) and often affects multiple images in the same 
sequence. The two other issues identified in the sample batch 
are out of focus (6.7%) and being in a corrupted file (3.3%). 
While the assessment is subjective and has too few samples 
to represent the overall characteristics of Mapillary data, the 
results suggest that Mapillary data have the potential to be 
useful for basement feature detection.

Subsequent to passing the quality assessment, the images 
were manually annotated by drawing polygonal regions 
around basement railings. We deliberately included the 
background behind the railings (e.g., building façades) as 
part of the segment annotations since the background is 
likely helpful in distinguishing basement and non-basement 
railings. Non-basement railings (e.g., those around the park) 
were not annotated and are considered as a part of the back-
ground. Among the 157 images, 115 images contain a base-
ment railing feature and 42 images contain background only.

5.2  Training and Evaluating Basement Railing 
Segmentation Models

We adopted the YOLOv5 instance segmentation algorithm6. 
YOLOv5 provides a number of models at different sizes. 
Larger models provide higher levels of accuracy while 
requiring more memory as well as time for training and 
inference. YOLOv5l, the largest model that fits within our 
40GB GPU memory, was selected as accuracy is preferred 
over speed. The model was pre-trained with the COCO data-
set [59]. We exploited the low level features learned from 
the COCO dataset in the pre-trained model by freezing the 
first nine layers of the model and trained only the remaining 
layers. That technique is known as transfer learning [60] and 
is effective when the amount of data available for training is 
small. The model was trained with stochastic gradient decent 
for 100 epochs with a batch size of 16 images. YOLOv5 
automatically applies multiple data augmentation techniques 
including moisaic, cutout, and different geometric and col-
our transformations. The input image size for the model was 
set to 1280 pixels.

Since the number of sample images is small, the rigorous 
k-fold cross validation method with k = 4 was selected. The 
image set was randomly partitioned into four parts, each part 
has from 39 to 40 images. The model was trained in four 
runs. Each run was trained using a different set of three data 
parts and evaluated against the remaining part. The evalu-
ation results of the four runs are presented in Table 1. The 
precision, recall, and Average Precision (AP) scores in the 
table were calculated using an Intersection over Union (IOU) 
factor of 50%. The median precision, recall and AP scores 
of the four runs were all higher than 80%. Even though the 
experiment was conducted in a simplified context (i.e., sin-
gle class, small dataset from a restricted geographical area 
with builing style uniformity), the high performance scores 
achieved in the experiment demonstrated the feasibility of 
detecting basement features from Mapillary imagery data.

After the k-fold evaluation, we trained a final model with 
all 157 images available. The performance of the final model 

Table 1  Basement railing segmentation accuracy

AP Precision Recall

Run 1 86.7% 84.4% 80.8%
Run 2 86.3% 83.1% 81.3%
Run 3 82.4% 85.8% 80.5%
Run 4 80.7% 78.3% 77.7%
Median 84.4% 83.8% 80.6%
Std. Deviation 2.9% 3.3% 1.6%

6 https:// github. com/ ultra lytics/ yolov5.

https://github.com/ultralytics/yolov5
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is shown in Figs. 6 and 7. Notably, those images belong 
to Mapillary sequences never been exposed to the model 
during training. Namely, the images were captured by con-
tributors and equipment not previously seen by the model. 
In Fig. 6, the model demonstrated a high level of accuracy 
in detecting basement railings. In one instance (i.e., location 
[1] in Fig. 6a), a small segment of railing behind a cyclist 
was missed. In another instance (i.e., location [2] in Fig. 6b), 
an unclear segment of railing appearing at a distance was 
successfully detected by the model. In most cases, the model 
correctly recognised non-basement railings (e.g., location 
[1] in Fig. 7a and location [2] in Fig. 7b). However, in a few 
instances (e.g., location 3 in Fig. 7b), the model mistook 
non-basement railings for basement railings. In the particu-
lar case of location 3 in Fig. 7b, the building behind the 
railing segment may confuse the model.

5.3  Evaluation of Georeferencing Information

To evaluate the metadata offered by Mapillary for geolo-
cating objects in an image, we manually georeference one 
example image as shown in Fig. 8a. The API described 
in Section 3.2 allows retrieving the camera position (i.e., 

latitude and longitude) and orientation (i.e., compass angle) 
corresponding to that image. The exact script for retrieving 
the metadata is available in the Github reposition accom-
panying this paper (see Appendix A). The orientation and 
position of the camera were then plotted atop an Open 
Street Map basemap with buildings outlines (see Fig. 8b). 
The objects appearing in the FOV were then estimated by 
casting lines of sight from the camera position towards the 
directions on the left and right of the camera axis until the 
lines reach an obstruction such as a building. The shaded 
area in red colour in Fig. 8b is the estimated visible FOV.

While neither the Mapillary metadata or the building out-
lines in Open Street Map are perfectly accurate, the manual 
georeferencing did allow us to identify most buildings in 
Fig. 8a. Specifically, buildings denoted as A, B, C, and E in 
Fig. 8 were successfully identified through the line of sight 
casting. Building D does not appear in the image but was 
incorrectly located within the FOV in Fig. 8b. Neverthe-
less, the evidence obtained from the experiment suggests 
that the georeferencing information provided by Mapillary 
was useful for geolocating the objects in the image. Using 
the information, scene reconstruction such as that described 
in Section 4.3 can be carried out to automate the operation.

Fig. 6  Examples of prediction results of basement railings Fig. 7  Examples of prediction results of non-basement railings



51KI - Künstliche Intelligenz (2023) 37:41–53 

1 3

6  Concluding Remarks

This paper describes an ongoing project on extracting 
basement information from SVI data to enhance flood risk 
assessments. The paper provides justification for why base-
ment information is important to flood assessments and dis-
cusses basement features detectable from the street view. 
The features identified through data observations include 
basement railings, basement wells, skylights, ventilators, 
basement windows and doors. That list is not exhaustive 
and can be extended by consulting architecture archives. 
Two candidate SVI data sources, GSV and Mapillary, are 
available in the study area in Dublin. For the AOI in the pro-
ject, GSV data have better spatial coverage and are of high 
quality. The data quality of Mapillary data is heterogene-
ous. There are many images suitable for the project but also 
images that suffer from insufficient quality, unsuitable FOV, 
file corruption, among various issues. Mapillary data have 

a more even temporal distribution and much richer image 
metadata. However, GSV’s Terms of Service do not allow 
bulk download, make an offline copy of GSV data, or cre-
ate derived information products from the data. That makes 
Mapillary the only choice in the project.

The paper also discusses various considerations towards 
developing a data analysis strategy. The considerations 
include the formulation of the target tasks as a two step pro-
cedure consisting of image segmentation and scene recon-
struction. Discussions on available algorithms and resources 
(e.g., data, papers) for each task are also provided. As image 
quality issues likely cause a significant challenge, the paper 
explains two potential directions for incorporating image 
quality assessment in the data analysis pipeline. Despite 
the significant challenges caused by the inherent nature of 
crowdsourced data, the tasks defined in the project can be 
achieved thanks to the wealth of open data, source codes, 
and closely related research. While many potential tools 
have been identified, the exact capabilities of the tools have 
not been evaluated.

Preliminary experiments were conducted to evaluate 
the suitability of Mapillary data for the target tasks and to 
demonstrate the proposed data analysis strategy. The first 
experiment showed that a DL model trained using Mapillary 
images could detect and segment basement railings at an 
average precision of over 80%. Interestingly, the model was 
able to distinguish basement versus non-basement railings 
in most cases. In the second experiment, the image metadata 
provided by Mapillary was successfully used to geolocate 
buildings captured in an image. The evidence available from 
the preliminary experiments confirms the suitability of Map-
illary data and the feasibility of the presented approach in a 
simplified context (i.e., homogeneous architectural styles in 
a limited geographical region). The robustness of the solu-
tion in more complex, real-life scenarios will be investigated 
in future research.

Issues related to data quality remain a challenge to be 
addressed. For the preliminary experiment, data are manu-
ally filtered based on the annotator’s subjective judgement 
of whether the images show the presence or absence of base-
ment features. Another limitation of the proposed approach 
is that information obtainable from the street view may be 
incomplete. For example, not all buildings that have a base-
ment have relevant features viewable from the public right 
of way. In addition, important information such as base-
ment levels and volumes are less discernible from street-
view images. While SVI can provide useful information, its 
combination with other potentially available dataset (e.g., 
aerial images, laser scanning data, GPR data, building regis-
tries) would create a more complete knowledge of basement 
structures.

Nevertheless, compared to methods relying on laser scan-
ning or GPR data, the method proposed in this paper can be 

Fig. 8  Identify buildings and detected features by manual georefer-
encing
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more cost-effective and scalable. Street view imagery data 
are widely available at a low or no cost. When necessary, 
new data captures are relatively easy such as by setting up 
consumer-grade cameras and positioning equipment aboard 
a wide variety of vehicles such as buses, police cars, or vol-
unteer private cars. Valuable information about basement 
structures can be extracted from the available data using the 
wealth of free and open-source computer vision algorithms 
and tools. In addition, as SVI data are ubiquitous in many 
urban areas, SVI datasets capture a large range of basement 
indicators for different building types. Due to the signifi-
cantly higher availability of SVI data, analyses based on 
SVI data are expected to be more robust compared to those 
relying on LiDAR or GPR data. We acknowledge that the 
research is in its early stages, and the methodology may need 
further refinement in light of evidence appearing from more 
systematic evaluations.

Appendix A Coding scripts

The scripts for downloading Mapillary data and for training 
the basement railing segmentation model are available at 
https:// github. com/ av- vo/ basem ent- raili ng- segme ntati on. git.
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