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Abstract
In the recent past, several popular failures of black box AI systems and regulatory requirements have increased the research 
interest in explainable and interpretable machine learning. Among the different available approaches of model explanation, 
partial dependence plots (PDP) represent one of the most famous methods for model-agnostic assessment of a feature’s effect 
on the model response. Although PDPs are commonly used and easy to apply they only provide a simplified view on the 
model and thus risk to be misleading. Relying on a model interpretation given by a PDP can be of dramatic consequences in 
an application area such as forensics where decisions may directly affect people’s life. For this reason in this paper the degree 
of model explainability is investigated on a popular real-world data set from the field of forensics: the glass identification 
database. By means of this example the paper aims to illustrate two important aspects of machine learning model develop-
ment from the practical point of view in the context of forensics: (1) the importance of a proper process for model selection, 
hyperparameter tuning and validation as well as (2) the careful used of explainable artificial intelligence. For this purpose, 
the concept of explainability is extended to multiclass classification problems as e.g. given by the glass data.

Keywords  Interpretable machine learning · Multiclass classification · Hyperparameter tuning · Black box algorithms · 
Partial dependence plots · Explainability · Forensics

1  Introduction

State-of-the art machine learning algorithms in combina-
tion with a proper hyperparameter tuning have demonstrated 
superior performance compared to traditional modelling 
strategies such as linear or logistic regression or decision 
trees in many real-world classification and regression prob-
lems (cf. e.g. [5, 29]). In turn, the resulting models are often 
called to be of black box type, i.e. a user does not neces-
sarily understand the behaviour of a model. In the recent 
past, several popular failures of black box AI systems [21] 
and regulatory requirements [9, 10, 14] have increased the 

research interest in explainable and interpretable machine 
learning. In forensics the impact of decisions based on a 
failure of a predictive model can be huge as this can directly 
affect people’s life. This puts an even stronger emphasis not 
only on predictive power on one hand but also on the ability 
for plausibility checks on the other hand in order to ensure 
algorithmic fairness [17, 32].

An overview on available methodology of interpretable 
machine learning linked to specific requirements on the 
explanation is given in [6]. Moreover, in the paper a general 
process has been proposed in order to improve transparency, 
auditability and explainability of machine learning mod-
els where the first step of this process consists in a proper 
model selection and validation. Among the different avail-
able approaches of model explanation, partial dependence 
plots (PDP, [13]) represent one of the most famous methods 
for model-agnostic assessment of a feature’s effect on the 
model response.

Although PDPs are commonly used and easy to apply 
they only provide a simplified view on the model and thus 
risk to be misleading and and in consequence, resulting 
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interpretations should be undertaken carefully. For this rea-
son in this paper the degree of a model’s explainability is 
investigated on a popular real-world data set from the field 
of forensics: the glass identification database [8].

The remainder is based on the findings from [6] to the 
context of the field of forensics: After an introduction of 
the glass data in Sect. 2 the process of a proper simultane-
ous hyperparameter tuning and model validation empha-
sized. Afterwards partial dependence plots are introduced 
(Sect. 3.1) and applied in order to explain the variable’s 
effects in the model.

In addition, one of main goals of the paper is to high-
light the importance of a careful model interpretation. For 
this purpose the measure of explainability �  (Sect. 3.2) 
is introduced in order to quantify in how far we can trust 
the explanation given by a PDP. In Sect. 3.3 the concept is 
extended to multiclass classification problems as in the given 
example. As it is shown on the glass data in Sect. 4 methods 
of explainable artificial intelligence provide useful insights 
but should be used with care. A summary of the results is 
given in Sect. 5.

2 � Glass Identification Database

2.1 � Description of the data

The forensic glass identification database is a publicly 
available data set from the UCI machine learning reposi-
tory [8] and analyzed by many researchers. An overview 
of papers that have analyzed the data is given on the cor-
responding repository website. Most of them solely use the 
data in benchmark experiments on a broad collection of 
data sets without any focus on the explicit data set such as 
[15] (SVMs) and [16] (combined neural network ensemble 
with knn). In [1] the focus is restricted to the glass data: In 
addition to the training k nearest neighbour classifiers and a 
voting approach also some exploratory analysis of the input 
variables is conducted. Nonetheless, interpretability of the 
resulting models remains untreated.

The glass data consists of 214 observations collected at 
the Home Office Forensic Science Laboratory, Birmingham 
[11] containing examples of the chemical analysis of six dif-
ferent types of glass: 1 (building windows, float processed), 
2 (building windows, non float processed), 3 (vehicle win-
dows, float processed), 5 (containers), 6 (tableware) and 7 
(headlamps). Vehicle windows, non float processed are not 
contained were not in the collected data base. The problem is 

to predict the type of glass on basis of the chemical analysis 
as given by nine numeric attributes: RI (refractive index), Na 
(sosium), Mg (magnesium), Al (aluminum), Si (silicon), K 
(potassium), Ca (calcium), Ba (barium) and Fe (iron). The 
study of classification of types of glass was motivated by 
criminological investigation. At the scene of the crime, the 
glass left can be used as evidence, if it is correctly identi-
fied. Table 1 summarizes the frequencies of the six types of 
glass, i.e. classes. Note that the classes frequencies are dif-
ferent in the sample which should be taken into account in 
order to avoid biased predictions. The authors are not aware 
whether the proportions in the data base are representative 
and restrict to mentioning it here. A comprehensive study 
on class imbalance correction is given in [5].

2.2 � Learning models on the glass data

Proper modelling should to take into account for the follow-
ing three steps: 

1.	 Model specification selection and performance valida-
tion,

2.	 Parameter tuning and
3.	 Training of the final model with optimized parameters 

on the entire data.

For the purpose of this paper the state-of-the art machine 
learning framework mlr3 [18] has been used. The steps are 
described in the following paragraphs.

1. Performance validation benchmark using nested cross 
validation The first step consists in model selection and vali-
dation. For the purpose of this research three algorithms are 
compared: A single layer feed-forward neural network [25] 
is tuned w.r.t. the number of neurons in the hidden layer and 
the weight decay. Note that for reasons of the small number 
of observations the number of layers has been restricted to 

Table 1   Glass identification 
data base: frequencies of the 
classes

Class 1 2 3 5 6 7

Frequency 70 76 17 13 9 29

Table 2   Tuning parameters for both algorithms as well as their upper 
and lower bound for the hyperparameter optimization

Optimization on a log scale takes into account for different orders of 
magnitude in the tuning range

Algorithm Parameter Lower Upper Scale

nn Decay 0.00001 10 Log
nn Size 1 20 Linear
rf Num.trees 64 2048 Log
rf mtry 1 9 Linear
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one. This paper does not analyze deep learning this is done 
by others e.g [7]. As a competitor a random forest is trained 
as random forests turned out to provide good results in many 
benchmark studies (cf. e.g. [5, 12, 29]). In addition random 
forests turned out to be comparatively less sensitive to tuning 
[23] which is considered to be advantageous given the small 
number of obervartions in the glass data. Finally, a multi-
nomial log-linear model [25] is computed without tuning 
which provides a baseline for performance benchmarking.

For tuning of the models the popular hyperband tuning 
strategy [19] has been used. In contrast to traditonal grid 
search or random search [2] this strategy is more efficient 
given a fixed time budget by fastly dropping non-promising 
parameter combinations [4]. For reasons of the sample size 
no separate split into training and validation and test data 
has been undertaken but tenfold cross validation has been 
used for performance validation and an inner ninefold cross-
validation loop for parameter tuning [27]. The tuning param-
eters and their respective ranges have been chosen based on 
[24] and are given in Table 2.

Table 3 summarizes the results of the performance bench-
mark after tuning in terms of the average accuracy on both 
the (outer) training and validation folds. The results are in 
line with the conclusion from [6] with regard to the claim of 
[26] to rely on interpretable models where a proper bench-
mark is proposed to analyze the benefits of using black box 
models instead of interpretbable ones: For the glass data a 
notable gain in predictive power is obtained by using a ran-
dom forest which supports the results reported in a bench-
mark study1 on OpenML [31]. The results further support the 
hypothesis of random forests being a good baseline choice for 
benchmarks in many practical applications. All three models 
show some degree of overfitting the training data which is 
not unusual given the size of the data and even a natural phe-
nomenon for random forests. The observed accuracy on the 
validation data in our study is in line with results from other 
papers that also use tenfold cross validation.2

2. Final hyperparameter tuning Note that performance 
validation in the previous step using tenfold cross-validation 
combined with nested hyperparameter tuning does not result 
in a single set of tuned parameters but in a separate set of 
parameter values for each (outer) loop. For this reason, once 

provided with a proper estimation of the model’s perfor-
mance a final (unique) hyperparameter tuning is run on the 
entire data. For this purpose, once again tenfold cross valida-
tion is used but this time without nesting. Moreover, in order 
to allow for a subsequent analysis of the parameters’ effects 
on the performance of the model a 10 × 10 grid search is 
used. The resulting heat maps in Figure 1 show the average 
validation accuracy over the ten validation folds as a func-
tion of the underlying hyperparameter setting:

With regard to the tunability of the algorithms [22] the 
figure underlines that neural networks are more sensitive to 
tuning compared to random forests. For the forest the num-
ber of randomly offered variables at each split is the crucial 
parameter while the number of trees should not be chosen 
too small. These results are in concordance with [28]. For 
neural networks the appropriate choice of the weight decay 
parameter is of strong importance which should be chosen 
neither too large nor too small. Despite the small sample size 
the optimal number of 18 neurons in the hidden layer results 
in a comparatively high number of weights to be trained. 
Figure 2 shows rules for chosing the parameters as obtained 
by a regression tree [30] with the validation accuracy as 
target variable as a function of the hyperparameters. Table 4 
lists the tuned parameters.

3. Retraining the final model on the entire data In order to 
obtain the best performance final models are trained on the 
entire data of all 214 observations as a training set with the 
tuned parameters identified in the previous step.

3 � Explainability

3.1 � Partial dependence plots

As a central aim of the paper consists in investigating 
the explainability of machine learning models by partial 
dependence plots these plots are introduced here. Partial 
dependence plots (PDP) denote one of the most popular 
model-agnostic approaches for the purpose of understand-
ing feature effects and go back to [13]. These plots can be 
easily used to visualize how far one (or several) features 
impact the outcome of a model. Moreover, as they are 
model-agnostic PDPs can be computed for arbitrary mod-
els, here denoted by f̂ (x).

The vector of predictor variables x = (xs, xc) is subdi-
vided into two subsets xs and xc and the partial dependence 
function is given by

Table 3   Average accuracy of 
the performance benchmark

nn rf Multinomial [15] [16] [1]

Traininig 0.761 1.000 0.719 Not reported Not reported Not reported
Validation 0.650 0.791 0.632 0.663 0.682 0.804

1  https://​www.​openml.​org/t/​40.
2  Supplementary R code is available at https://github.com/g-rho/
explainability-glass.

https://www.openml.org/t/40
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i.e. it computes the average prediction given the variable 
subset Xs takes the values xs . In general, partial dependence 
functions can be computed for variable subsets xs of any 

(1)PDs(X) = PDs(Xs) = ∫ f̂ (Xs,Xc)dP(Xc),

dimension but their visualization however is limited to 1D or 
2D. For this reason, partial dependence plots are not able to 
uncover high order interactions and some relevant informa-
tion on the model may be missing in the plot.

In practise, for a data set with n observations the partial 
dependence curve is estimated by

For classification models the prediction f̂ (x) usually consists 
in the predicted posterior probabilities. Figure 3 shows the 
partial dependence profiles for a multiclass classification 
problem where each coloured line corresponds to one class.

(2)�PDs(x) =
�PDs(xs) =

1

n

n∑

i=1

f̂ (xs, xic).
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Fig. 1   Effect of the tuning parameters on the validation accuracy. Please note the different colour scales on both heat maps

Fig. 2   Rules for choosing the 
parameters: Regression trees of 
the predictive performance as a 
function of the tuning param-
eters trained on the data from 
the hyperparameter tuning

Random forest

mtry >= 7

num.trees < 369 mtry < 2

mtry >= 5

num.trees < 369 num.trees < 369

0.77
100%

0.76
33%

0.76
17%

0.77
17%
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67%

0.77
11%
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56%
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22%

0.77
11%

0.78
11%

0.78
33%

0.78
17%

0.79
17%

yes no

Neural net

decay >= 0.67

decay < −3.3

size < 6

decay < −4

decay >= −444e−18

size < 4

decay < −2.7

0.54
100%

0.34
10%

0.56
90%

0.48
30%

0.39
9%

0.52
21%

0.49
14%

0.57
7%

0.6
60%

0.51
10%

0.62
50%

0.57
10%

0.64
40%

0.6
8%

0.64
32%

yes no

Table 4   Optimal parameters 
after tuning

Algorithm Parameter Values

nn Decay 0.10
nn Size 18
rf Num.trees 138
rf mtry 2
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3.2 � A measure of explainability

In order to quantify in how far the representation given by a 
partial dependence function is able to explain a model we start 
with a perfect explanation: In this case for all points of the data 
the PD will be equal to the predictions by the model. A scat-
terplot of both will have all points on the diagonal (cf. Fig. 4).

The confidence in an explanation given by a partial depend-
ence plot can be measured by the differences between the par-
tial dependence function PDs(Xs) and the model’s predictions. 
A natural approach to quantify these differences is given by 
computing the average squared error:

Remarkably the ASE does not calculate the error between 
model’s predictions and the observations but between the 
PD and the model’s predictions.

Note that for Xs = X the partial dependence function 
PDs(X) corresponds to f̂ (X) and in the other extreme, for 
the variable subset s = � , i.e. Xc = X , this will end up in

(3)ASE(PDs) = ∫
(
f̂ (X) − PDs(X)

)2
dP(Xs).

(4)PD�(X) = PD� = ∫ f̂ (X)dP(X),
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which is independent of X and corresponds to the constant 
average prediction of the model as estimated by:

In order to allow for an interpretation a PDP’s ASE(PDs) can 
be benchmarked against the ASE(PD�) of the naive constant 
average prediction PD∅:

Finally, a comparison of both quantities, ASE(PDs) and 
ASE(PD�) can be used to define the explainability �  of 
any black box model f̂ (X) by a partial dependence function 
PDs(X) via the ratio

An �  close to 1 means that a model is well represented by a 
PDP and the smaller it is the less of the model’s predictions 
are explained in the PDP. Plug-in estimates can be used to 
calculate the ratio in (7) and quantify the explainability of a 
PDP for a given model:

where ASE(PDs) (3) is estimated by

and ASE(PD�) (6) by

Identification of the most explainable variables: The meas-
ure of explainability �  can be further used to compare 
different variables with regard to in how far they serve to 
explain a black box model by their PDP. In addition, a for-
ward variable selection can be used in order to maximally 
explain a model with as few variables as possible, as shown 
in Algorithm 1.

(5)�PD�(x) =
�PD� =

1

n

n∑

i=1

f̂ (xi).

(6)ASE(PD�) = ∫
(
f̂ (X) − PD�

)2
dP(Xs).

(7)� (PDs) = 1 −
ASE(PDs)

ASE(PD�)
.

(8)𝛶̂ (PDs) = 1 −
�ASE(PDs)

�ASE(PD�)

(9)�ASE(PDs) =
1

n

n∑

i=1

(
f̂ (xi) −

�PDs(xi)
)2

(10)�ASE(PD�) =
1

n

n∑

i=1

(
f̂ (xi) −

�PD�

)2

.

Algorithm 1 Υ̂ based forward variable selection to maximize explainability.
Initialize Xs = ∅ and Xc = X.
repeat

for all variables Xj ∈ Xc do
Xcandidate

s = Xs ∪Xj

Compute Υ̂ (Xcandidate
s )

end for
Determine Xj∗ that maximizes Υ̂ (Xcandidate

s ).
Set new Xs = Xs ∪Xj∗ and Xc = Xc \Xj∗

until Xc �= ∅

3.3 � Multiclass extension of explainability

The measure of explainability as introduced in the previous 
section has been proposed for scalar numeric predictions 
f̂ (x) . In the common case of binary classification these pre-
dictions are often given in terms of f̂ (x) ∶= P̂(Y = 1|x) the 
posterior probability of the event of interest Y = 1 such as e.g. 
the occurence of a disease or the churn of a customer. In case 
of multiclass classification f̂ (x) is no longer scalar but a vec-
tor consisting of different elements f̂k(x) ∶= P̂(Y = k|x) for 
each class k where 

∑K

k=1
f̂k(x) = 1 with K being the number of 

classes. In this case the explainabilty �  has to be computed for 
each class separately. In Sect. 4.2 it can be seen that the results 
for the different variables may differ considerably in terms of 
the explainability of a variable and the class of interest. For 
this purpose in the following an extension of explainability 
for multiclass classification is introduced which is computed 
simultaneously over all classes.

As a preliminary remark note that the interpretation of a dif-
ference of 

(
f̂k(X) − PDk,s(Xs)

)
 depends on the posterior prob-

ability f̂k(x) , where PDk,s(Xs) denotes the partial dependence 
function (Eq.1) for class k in a multiclass setting.

The �2 statistic X2 =
∑K

k=1

(f̂k(X)−PDk,s(Xs))
2

f̂k(X)
 compares the 

squared differences of expected and observed probabilities 
relative to their magnitude which can be used instead of the 
original squared differences 

(
f̂ (X) − PDs(X)

)2 for computation 
of the ASE (Eq. 3) if only one single prediction is considered. 
We use a �2

(K−1)
 distribution to quantify the observed 

differences:

This is a measure for the explanation of observation xi of 
the data where X2

i
 is the value that the �2 statistic takes for 

observation xi . �MC
i

= 1 represents perfect explanation of 
the model by the K PDPs and decreasing values correspond 
to lower explanation. Finally, the multiclass extension of 
explainability can be obtained by averageing over all indi-
vidual explanations 𝛶̂MC

i
:

(11)𝛶̂MC
i

= 1 − F𝜒2

(K−1)
(X2

i
).

(12)𝛶̂MC =
1

n

n∑

i=1

𝛶̂MC
i

.
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4 � Aplication to the glass data

4.1 � Partial dependence plots

For the remainder of the paper we restrict on the final forest 
model which showed to be of the best predictive accuracy. 
Figure 3 shows the partial dependence plots (cf. Sect. 3.1) 
for all variables and classes of the random forest model using 
the DALEX framework [3]. Note that all predictied posterior 
probabilities sum up to one which results in the observed 
scale of the plots.

It can be clearly recognized that the random forest identi-
fies nonlinear dependencies between the input variables and 
the target: The PDP identifies some prominent nonlineari-
ties, e.g. an increasing concentration of Aluminimum (Al) 
distinguishes float (blue) vs. non-float processed (cyan) glass 
from buildings and an increasing content of barium (Ba) 
strongly increases the probability of a glass to be of class 7 
(red, headlamps). A high concentration of natrium is com-
paratively less prominent in glass from buildings (class 1 
and 2) and containers (class 5) but enhance the chance of 
a glass to be to be tableware (class 6, yellow) or headlamp 
(class 7, red). High concentration of magnesium only sel-
domly occurs for both container glass (class 5, purple) and 
tableware (class 6, yellow). In the following we will ana-
lyze how confident we can be in these observed functional 
dependencies.

4.2 � Explainability of the plots

Table 5 shows the explainability 𝛶̂  of the partial dependence 
plots for all variables and all classes. It can be seen that e.g. 
for glass type class 1 the variable Aluminum has the most 
explainable PDP. Nonetheless it explains only 30.6% of the 
variation within the model’s predictions. Figure 4 illustrates 
this: For a perfect match of the partial dependence func-
tion and the model predictions all points should be on the 
diagonal or at least close to it which is clearly not the case 
here. Note that the abscissa covers a smaller range of values 

which is obvious as the partial dependence represents an 
average. Further note the differences between the classes in 
Table 5: Different classes are differently well explained by 
different variables.

An analysis of the PDPs in the previous subsection turned 
out that e.g. an increasing concentration of aluminimum (Al) 
distinguishes float vs. non-float processed glass from build-
ings (class 1 and 2). An additional consideration of the cor-
responding values of 𝛶̂  turns out that the PDP of aluminium 
is much more explainable for class 1 than for class 2. On 
the other hand the observed interpretation of the effect of 
Magnesium on the prediction of container glass and table-
ware (class 5 and 6) is supported by their comparatively high 
values of 𝛶̂  . So far, no thresholds or rules of thumb rules for 
explainability are available in the literature.

Table 6 contains a summary of the most explainable two-
dimensional PDP after variable selection as described in the 

Table 5   Explainability 𝛶̂  of 
the PDP for all variables and 
classes

Class 1 2 3 5 6 7

RI 0.240 0.108 − 0.171 0.037 0.034 0.018
Na 0.050 0.083 0.018 0.006 0.152 0.152
Mg 0.265 0.026 0.104 0.246 0.187 0.152
Al 0.306 0.084 − 0.006 0.103 − 0.010 0.186
Si 0.016 0.025 0.041 0.016 0.015 0.016
K 0.053 0.092 0.008 0.023 0.247 0.029
Ca 0.070 0.205 0.058 0.178 0.025 0.016
Ba 0.044 0.066 0.021 0.002 − 0.024 0.466
Fe − 0.001 0.022 0.000 0.002 0.007 0.007
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Fig. 4   Difference between PDP of aluminum and the model’s predic-
tions for class 1
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previous Section together with the resulting explainability. 
Some of the classes (1, 5, 7) are better explained 𝛶̂ ∼ 0.5 or 
greater while the other classes aren’t. Further note that the 
selected variables differ among the classes. So far there is 
no graphical representation for partial dependence functions 
of dim(Xs) > 2.

In addition, 𝛶̂MC based variable selection is used to sum-
marize the explainabilities of the PDPs for all classes. Fig-
ure 5 shows the results of the variable selection according 
to algorithm 1. With the two most explainable variables Mg 
(magnesium) and Al (aluminium) a multiclass explainabil-
ity of 0.5553 is obtained: The random forest model can be 
explained up to some extent but the explanation is not perfect 
so some information on the model is missing in the plots. 
For the two most explainable variables two-dimensional 
PDPs are computed for all classes using the iml framework 
[20]. The corresponding heat maps are given in Fig. 6. From 
the color scale it can be easily recognized that the classes 
have different prior probabilites. Such two-dimensional 
PDPs allow to detect interactions but unfortunately no visu-
alization for PDPs of dim(Xs) > 2 is possible and thus higher 
order interactions as they might have been identified by the 
underlying model stay hidden. Both measures 𝛶̂  and 𝛶̂MC 

help to quantify the degree of explanation of the model by 
its corresponding partial dependence plots.

5 � Summary

The impact of decisions based on the use of predictive mod-
els in forensics underlines the importance of both high accu-
racy as well as an available interpretation of the model. For 
this purpose, the use of state-of the art machine learning 
in the field of forensics has to circumvent two competing 
challenges: a proper model selection and validation as well 
as the explanation of the model for the sake of plausibility 
checks which are hard to achieve as the models are often of 
black box nature. By means of the example of the public 
glass identification data base both aspects are discussed: The 
process of model selection and validation has to cover the 
following steps: 

1.	 Model specification selection and performance valida-
tion,

2.	 Parameter tuning and

Table 6   Variable selection 
of the two most explainable 
variables for all classes

Class 1 2 3 5 6 7

Step 1 Al Ca Mg Mg K Ba
Step 2 Mg RI Ca Na Ba Al
𝛶̂ 0.523 0.350 0.226 0.470 0.324 0.643
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Fig. 5   Variable selection silmutaneously taking into account for all classes
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3.	 Training of the final model with optimized parameters 
on the entire data.

For the example within this paper random forests as well 
as neural networks have been tuned with respect to their 
hyperparameters. The results confirm those from [28] 
that random forests show good performance which is 
comparatively insensitive to tuning as compared to other 
algorithms. Compared to an interpretable linear base-
line model strong improvements in predictive power are 
achieved. These results do confirm the proposed approach 
in [6] of carefully investigating the benefits of tuned black 
box models vs. interpretable challengers. The small size of 
the glass data base has to be emphasized. Of course, with 
an increased amount of available data the best performing 
model class might be another one.

For the purpose of model interpretation partial depend-
ence plots provide a well-known and popular tool for 
model interpretation. As it has been shown in this paper it 
is important to be aware that the resulting plots only par-
tially explain the model. The measure of explainability can 
be used to quantify how much of the model’s predictions 
are visualized by a partial dependence plot. The specific 
situation of multiclass classification as it is given by the 
glass identification data base raises the need for a multi-
class extension of the concept of explainability. A measure 
that can be used for this purpose has been proposed based 
on the �2 statistic and applied to the random forest model 
on the glass data. So far there are no thresholds or thumb 
rules for the explainability to support the confidence in a 
model explanation. In application contexts as delicate as 
the field of forensics one should restrict to careful inter-
pretations and decisions.

5 6 7

1 2 3

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
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Fig. 6   2D PDPs for all classes and the two most explainable variables Mg (abscissa) and Al (ordinate). Each heat map visualizes the average 
predicted posterior probabilities for the corresponding class as given by the title
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