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Abstract Object segmentation of unknown objects with

arbitrary shape in cluttered scenes is still a challenging task

in computer vision. A framework is introduced to segment

RGB-D images where data is processed in a hierarchical

fashion. After pre-segmentation and parametrization of

surface patches, support vector machines are used to learn

the importance of relations between these patches. The

relations are derived from perceptual grouping principles.

The proposed framework is able to segment objects, even if

they are stacked or jumbled in cluttered scenes. Further-

more, the problem of segmenting partially occluded objects

is tackled.
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1 Introduction and Related Work

Wertheimer [22, 23], Köhler [7], Koffka [6] and Metzger

[9] were the pioneers of studying Gestalt psychology.

Gestalt principles (also called Gestalt laws) aim to for-

mulate the regularities according to which the perceptual

input is organized into unitary forms, also referred to as

wholes, groups, or Gestalten. The principles are much like

heuristics, which are mental short-cuts for solving prob-

lems. Perceptual organization can be defined as the ability

to impose structural organization on sensory data, so as to

group sensory primitives arising from a common underly-

ing cause [2]. In computer vision this is more often called

perceptual grouping.

Perceptual grouping has a long tradition in computer

vision, but many especially of the earlier approaches suf-

fered from susceptibility to scene complexity. Accordingly

scenes tended to be ‘‘clean’’ or the methods required an

unwieldy number of tunable parameters and heuristics to

tackle scene complexity. A classificatory structure and a

list of representative work for perceptual grouping methods

in computer vision was introduced by Sarkar and Boyer [2,

18].

Generic object segmentation from 3D-data or from

RGB-D images was in the past less popular, but a few

methods exist [1, 3, 8, 19, 20]. Recently two methods have

been published: The method of Mishra et al. [10] is an

attention-driven active segmentation algorithm, designed to

extract boundaries of (freestanding) simple objects, and the

method by Ückermann et al. [21], which is an edge-based

segmentation approach using pre-defined heuristics to end

up with object hypotheses.

This article summarizes the work of Richtsfeld et.al.

published in [12, 14–17]. Compared to other image seg-

mentation work, a hierarchical grouping process over sev-

eral levels of data abstraction is proposed using the structure

of Sarkar and Boyer. Input data is organized in bottom-up

fashion, stratified by layers of abstraction: signal, primitive,

structural and assembly level, see Fig. 1. Raw sensor data is

grouped in the signal level to surface patches, before the

primitive level produces parametric surfaces and associated

boundaries. Perceptual grouping principles are learned in

the structural and assembly level to infer a value repre-

senting the connectivity between patches. Finally, a glob-

ally optimal segmentation is achieved using Graph-Cut on a

graph consisting of the surface patches and the connectivity

values between these patches.

The main contribution of the work is the combination of

perceptual grouping with SVM learning following a
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designated hierarchical structure. The learning approach of

the framework enables segmentation for a wide variety of

different objects in cluttered scenes, even if objects are

partially occluded. Figure 2 shows segmentation of a

complex scene, processed with the proposed framework.

2 Pre-Segmentation

3D cameras, such as Microsoft’s Kinect or Asus’ Xtion

provide RGB-D data, consisting of a color image and the

associated depth information for each pixel. The task of the

pre-segmentation module is twofold: First the sensor

characteristics are modelled and considered during normal

calculation. Second, neighbouring pixels are clustered to

uniform patches without discontinuities using the estimated

normals.

A classic way to calculate the normals of a point-cloud

is to locally fit planes to neighbouring 3D points. RGB-D

sensors deliver organized point-clouds and a kernel is used

to define the neighbourhood of a certain point. There are

two parameters that influence the normal calculation: the

kernel radius kr and the inlier distance din to account for

high deviations that would distort the local plane. The

former one defines the number of points used and thus the

smoothing of the normals, the latter the maximum allowed

euclidean distance of the points within the window to the

centre point to be considered for the normal calculation.

Recursive clustering of normals is controlled by the

maximum allowed angle between normals ccl and by the

maximum allowed normal distance of points dcl to a

hypothesized plane, defined by the mean of the already

clustered point normals and the mean position.

3 Parametrization and Model Selection

In the last section uniform patches without discontinuities

were extracted from RGB-D data. Parametrization of these

patches to certain surface models reduces data size and

leads to more meaningful abstractions. Two parametric

models are chosen, a plane model to represent simple

planar patches and B-spline surfaces which can model free-

form surfaces allowing representation of difficult surfaces.

B-splines could also represent planes makine explicit plane

superfluous. But B-splines are more expensive in terms of

data size, computation and and especially for further pro-

cessing. More details of the used B-spline fitting approach

can be found in [11].

To reduce the number of patches after parametrization

neighbouring patches get merged after parametrization, if a

joint parametric model fits better than the two individual

models. To come to a decision, model selection with

minimum description length (MDL) [8] is used.

4 Parametric Surface Grouping

After the first two levels parametric surfaces are available

for further processing in the structural and in the assembly

level. A crucial task for surface grouping is to find relations

between surface patches, indicating that they belong to the

same object and to define them in a way that relations are

valid for a wide variety of different objects.

Inspired by the already discussed Gestalt principles, the

following relations between neighbouring surface patches

are introduced, which will be used for the structural level:

– rco ... Similarity of patch colour

– rrs ... Similarity of patch size

– rtr ... Similarity of texture quantity

– rga ... Similarity of texture: gabor filter

– rfo ... Similarity of texture: fourier filter

RGB-D or 3D data

Signal level

Primitive level

Structural level

Assembly level

Parametric model fitting
and Model selection

Pre-segmentation: Surface
Normals Clustering

Global Decision Making:
Graph Cut

Grouping of non-neighbouring
patches (SVM)

Grouping of neighbouring
patches (SVM)

Point clusters,
surface patches

Parametric surfaces
and boundaries

Parametric surface
combinations

Large arrangements of
parametric surfaces

DATA STRUCTURES PROCESSING

Fig. 1 Hierarchical perceptual grouping over four levels of data

abstraction and associated processing methods

Fig. 2 Original image, pixel

clusters, parametric surface

patches, segmented scene.

(more examples in [12, 16])
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– rco3 ... Similarity of color on patch border

– rcu3 ... Mean curvature on patch border

– rcv3 ... Curvature variance on patch border

– rdi2 ... Mean depth on patch border

– rvd2 ... Variance of depth on patch border

– r2d3 ... 3D-2D boundary ratio

The assembly level is the last level of grouping and is

responsible to group spatially separated surface groupings.

Similar to the structural level, relations between patches

are introduced. The first five relations are equal to the

relations used at the structural level and the following are

added:

– rmd ... Minimum distance between patches

– rnm ... Similarity of mean of surface normals direction

– rnv ... Similarity of variance of surface normals

direction

– rac ... Diff. of normals direction of nearest contour

points

– rdn ... Mean (normal) distance of nearest contour points

– rcs ... Collinearity continuity

– roc ... Mean collinearity occlusion

– rls ... Closure line support

– ras ... Closure area support

– rlg ... Closure lines to gaps

A feature vector rst for the structural level is defined,

containing all relations between neighbouring patches and

a feature vector ras for the assembly level, containing all

relations between non-neighbouring patches.

Now one has to decide, whether two surface patches

belong together or not. This decision is based on the

relations of the feature vector. Setting thresholds for clas-

sification is getting more complex the more relations are

used and would not be manually adjustable any more. A

solution to this problem lies in learning of the grouping

rules using a learning method which classifies feature

vectors to single decision values.

In this approach we use a support vector machine

(SVM) to learn to classify the given feature vectors. SVMs

are maximum margin classifiers, i.e. they try to find a

separating hyperplane between different classes in the data

with the maximum margin. SVMs support non-linear

classification by using a kernel, mapping input data from a

general set S into an inner product space V , which is of

higher dimension than the input space. This is done in the

hope that the data will gain meaningful linear structure.

For the offline training and online testing phase the

freely available libsvm package [4] is used. After training

the SVM is not only capable to provide a binary decision

same or notsame for each feature vector r, but also a

probability value pðsame j rÞ for each decision, based on

the theory introduced by Wu et al. [24]. As solver we use

C-support vector classification (C-SVC) with C ¼ 1, c ¼
1=n and n ¼ 9 and as kernel the radial basis function

(RBF):

Kðxi; xjÞ ¼ ecjjxi�xjjj2 ð1Þ

Hand-annotated ground truth segmentation from a set of

RGB-D images is used with the estimated feature vectors

rst and ras to train a SVM for each level during an offline

training phase. Feature vectors of patch pairs from the

same object represent positive training examples and vec-

tors of pairs from different objects or objects and back-

ground represent negative examples. With this strategy, not

only the affiliation of patches to the same object, but also

the disparity of object patches to other objects or back-

ground is learned.

After the learning phase the SVMs are able to classify

the feature vectors, delivering a probability value for each

patch pair. When using the estimated probabilities, groups

of neighbouring surface patches could be formed by

applying a threshold [e.g., pðsame j rÞ ¼ 0:5]. With this

strategy, a single wrong decision of the SVM (e.g.,

p ¼ 0:51) would probably lead to wrongly connected

objects. Hence, an optimal object hypotheses can not be

created by simply thresholding these values. Instead, a

globally optimal solution can be found by building a graph

and performing Graph-Cut segmentation.

5 Global Decision Making

After SVM classification in the structural and assembly

level some probability estimates may contradict when

trying to form object hypotheses. A globally optimal

solution has to be found to overcome vague or wrong

local predictions from the SVMs at the structural and

assembly level. To this end a graph is defined, where

surface patches represent nodes and edges are repre-

sented by the probability values of the SVMs. Graph-cut

segmentation method introduced by Felzenszwalb et al.

[5] is emplyed, using the probability values as the

pairwise energy terms to find a global optimum for

object segmentation.

6 Evaluation

After all parts of the framework are introduced, evaluation

of the proposed object segmentation method is shown.

Because of the limited space only a part of the evaluation

of [12] can be presented. The proposed object segmentation

method is compared with the method of Mishra et al. [10]

and the method by Ückermann et al. [21].
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Evaluation is done on the object segmentation database

(OSD) [13] as well as on the Willow Garage dataset 1

Table 1 shows PrecisionP and RecallR of segmentation

from the OSD for the algorithms of Mishra and Ückermann

and for both methods, when using just the support vector

machine of the structural level SVMst or when using also

the SVM of the assembly level SVMstþas to build relations

between estimated patches. The SVMs are trained with the

four learning sets of the OSD for all experiments, even for

the evaluation of the Willow Garage dataset. This shows

the generalization of the presented approach with respect to

other objects and scenes during training.

The results in Table 1 show that the presented method

works significantly better than the approach by Mishra for

all sets of the OSD as well as for the Willow Garage

dataset. In contrast the results of Ückermann are almost

similar to this method. A closer look on the values shows a

higher precision P but at the same time a lower recall R.

This indicates that their approach avoids wrong assign-

ments of surfaces, but at the cost of sometimes over-seg-

menting the objects.

The benefit of using the assembly level can be seen for

the occluded objects set of the OSD. Recall is much higher

when additionally using the assembly level, while precision

remains almost constant on a high level. This demonstrates

that occluded parts have been connected without wrongly

assigning surface patches.

Evaluation of the method by Mishra on the Willow

Garage dataset shows better performance compared to the

OSD dataset, because of the reduced complexity of scenes.

Objects in the dataset are mainly free-standing on a ground

plane and there are no occluded objects. Segmentation with

the proposed approach performs also well on such exam-

ples, but the benefit when using the assembly level is not

evident any more in this case. But when considering that

the SVMs have been trained with data of the OSD, this can

be interpreted as an evidence that perceptual grouping rules

act in a generic manner and are portable into different

situations with different types of objects.

7 Conclusion

A framework was presented for segmenting unknown

objects of reasonably compact shape in cluttered table top

scenes of RGBD-images. Raw input data is abstracted in a

hierarchical framework. Instead of matching geometric

object models, more general perceptual grouping rules are

learned with support vector machines (SVMs) to group

parametric surfaces. Experiments have shown the generic

manner of the learned rules on different datasets with dif-

ferent objects and a comparison with state of the art meth-

ods show the good performance compared to other methods.
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