Skip to main content
Log in

Reduction of m-chlorophenacyl chloride coupled with regeneration of NADPH by recombinant Escherichia coli cells co-expressing both carbonyl reductase and glucose 1-dehydrogenase

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Both Sys1 and Sygdh, two codon-optimized genes encoding SyS1 and SyGDH, were synthesized based on the carbonyl reductase (S1) and glucose 1-dehydrogenase (GDH) gene sequences, respectively, from Candida magnoliae and Thermoplasma acidophilum, and co-expressed in Escherichia coli BL21(DE3) using two strategies. One strategy involved a recombinant E. coli strain (E. coli/Sygdh-Sys1) constructed by transforming a recombinant plasmid, pETDuet-Sygdh-Sys1, into E. coli BL21. The other strategy involved another recombinant E. coli strain (E. coli/Sys1/Sygdh) obtained by co-transforming the recombinant plasmids pET-22b-Sys1 and pET-28a-Sygdh into E. coli BL21. The enzyme activity assays indicated that the activities of recombinant SyS1 and SyGDH (3.7 and 56.3 U/g wet cells) expressed in E. coli/Sygdh-Sys1 were higher than those (2.8 and 44.1 U/g wet cells) in E. coli/Sys1/Sygdh. Accordingly, E. coli/Sygdh-Sys1 was chosen, and its whole cells were used as catalysts for the asymmetric reduction of m-chlorophenacyl chloride (m-CPC) to the corresponding (R)-2-chloro-1-(3-chlorophenyl)ethanol [(R)-CCE] coupled with the regeneration of NADPH in situ. Under the optimized reaction conditions of 30 mM m-CPC, 50 mg/ml wet cells, 40 mM glucose and 0.2 mM NADP+ at pH 7.0 and 35 °C for 3 h, (R)-CCE was obtained with a molar yield of 99.2 % and an enantiomeric excess (e.e.) value of more than 99 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berenguer-Murcia A, Fernandez-Lafuente R (2010) New trends in the recycling of NAD(P)H for the design of sustainable asymmetric reductions catalyzed by dehydrogenases. Curr Org Chem 14:1000–1021

    Article  CAS  Google Scholar 

  • Bloom JD, Dutia MD, Johnson BD, Wissner A, Burns MG, Largis EE, Dolan JA, Claus TH (1992) Disodium (R, R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316,243). A potent β-adrenergic agonist virtually specific for β3 receptors. A promising antidiabetic and antiobesity agent. J Med Chem 35:3081–3084

    Article  PubMed  CAS  Google Scholar 

  • Hamada H, Miura T, Kumobayashi H, Matsuda T, Harada T, Nakamura K (2001) Asymmetric synthesis of (R)-2-chloro-1-(m-chlorophenyl)ethanol using acetone powder of Geotrichum candidum. Biotechnol Lett 23:1603–1606

    Article  CAS  Google Scholar 

  • Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17:284–292

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Matsuda M, Mabuchi M, Dairi T, Wang JC (2002) Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Eur J Biochem 269:2394–2402

    Article  PubMed  CAS  Google Scholar 

  • Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55:590–595

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Lalonde J, Borup B, Mitchell V, Mundorff E, Trinh N, Kochrekar DA, Cherat RN, Pai GG (2010) Development of a biocatalytic process as an alternative to the (−)-DIP-Cl-mediated asymmetric reduction of a key intermediate of montelukast. Org Process Res Dev 14:193–198

    Article  CAS  Google Scholar 

  • Lin H, Chen YZ, Xu XY, Xia SW, Wang LX (2009) Preparation of key intermediates of adrenergic receptor agonists: Highly enantioselective production of (R)-α-halohydrins with Saccharomyces cerevisiae CGMCC 2.396. J Mol Catal B Enzym 57:1–5

    Article  CAS  Google Scholar 

  • Ni Y, Xu JH (2012) Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols. Biotechnol Adv 30:1279–1288

    Article  PubMed  CAS  Google Scholar 

  • Ni Y, Zhang BH, Sun ZH (2012) Efficient synthesis of (R)-2-chloro-1-(3-chlorophenyl)ethanol by permeabilized whole-cells of Candida ontarioensis. Chin J Catal 33:681–687

    Article  CAS  Google Scholar 

  • Ohkuma T, Tsutsumi K, Utsumi N, Arai N, Noyori R, Murata K (2007) Asymmetric hydrogenation of α-chloro aromatic ketones catalyzed by η 6-arene/TsDPEN–Ruthenium(II) complexes. Org Lett 9:255–257

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Dong WY, Yu BQ, Wu QQ, Zhu DM (2012) Synthesis of optically active α-bromohydrins via reduction of α-bromoacetophenone analogues catalyzed by an isolated carbonyl reductase. Tetrahedron Asymmetry 23:497–500

    Article  CAS  Google Scholar 

  • Smith LD, Budgen N, Bungard SJ, Danson MJ, Hough DW (1989) Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Biochem J 261:973–977

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Solano DM, Hoyos P, Hernáiz MJ, Alcántara AR, Sánchez-Montero JM (2012) Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour Technol 115:196–207

    Article  CAS  Google Scholar 

  • Su YN, Ni Y, Wang JC, Xu ZH, Sun ZH (2012) Two-enzyme coexpressed recombinant strain for asymmetric synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate. Chin J Catal 33:1650–1660

    Article  CAS  Google Scholar 

  • Wu XR, Jiang JP, Chen YJ (2011) Correlation between intracellular cofactor concentrations and biocatalytic efficiency: coexpression of diketoreductase and glucose dehydrogenase for the preparation of chiral diol for statin drugs. ACS Catal 1:1661–1664

    Article  CAS  Google Scholar 

  • Xia SW, Lin H, Chen YZ (2012) Preparation of (R)-2-chloro-1-(m-chlorophenyl)ethanol by Lipozyme TL IM-catalyzed second resolution. Chin Chem Lett 23:289–292

    Article  CAS  Google Scholar 

  • Yasohara Y, Kizaki N, Hasegawa J, Wada M, Kataoka M, Shimizu S (2000) Molecular cloning and overexpression of the gene encoding an NADPH-dependent carbonyl reductase gene from Candida magnoliae, invoved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate. Biosci Biotechnol Biochem 64:1430–1436

    Article  PubMed  CAS  Google Scholar 

  • Zhang JD, Li AT, Yu HL, Imanaka T, Xu JH (2011) Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes. J Ind Microbiol Biotechnol 38:633–641

    Article  PubMed  CAS  Google Scholar 

  • Zhang HM, Wang JQ, Wu MC, Gao SJ, Li JF, Yang YJ (2014) Optimized expression, purification and characterization of a family 11 xylanase (AuXyn11A) from Aspergillus usamii E001 in Pichia pastoris. J Sci Food Agric 94:699–706

    Article  PubMed  CAS  Google Scholar 

  • Zhou CY, Bai JY, Deng SS, Wang J, Zhu J, Wu MC, Wang W (2008) Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresour Technol 99:831–838

    Article  PubMed  CAS  Google Scholar 

  • Zhu DM, Yang Y, Hua L (2006) Stereoselective enzymatic synthesis of chiral alcohols with the use of a carbonyl reductase from Candida magnoliae with anti-Prelog enantioselectivity. J Org Chem 71:4202–4205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Nature Science Foundation of China (No. 31271811), Fundamental Research Funds for the Central Universities of China (JUSRP51412B), and Postgraduate Innovation Training Project of Jiangsu, China (No. CXZZ13_0757). We are grateful to Prof. Xianzhang Wu (School of Biotechnology, Jiangnan University) for providing technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Chen Wu.

Additional information

Tao Yu and Jian-Fang Li, the two first authors, contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Li, JF., Zhu, LJ. et al. Reduction of m-chlorophenacyl chloride coupled with regeneration of NADPH by recombinant Escherichia coli cells co-expressing both carbonyl reductase and glucose 1-dehydrogenase. Ann Microbiol 66, 343–350 (2016). https://doi.org/10.1007/s13213-015-1114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1114-1

Keywords

Navigation