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Abstract
Inference on common parameters in panel data models with individual-specific fixed
effects is a classic example of Neyman and Scott’s (Econometrica 36:1–32, 1948) inci-
dental parameter problem (IPP). One solution to this IPP is functional differencing
(Bonhomme in Econometrica 80(4):1337–1385, 2012), which works when the num-
ber of time periods T is fixed (and may be small), but this solution is not applicable to
all panel data models of interest. Another solution, which applies to a larger class of
models, is “large-T ” bias correction [pioneered by Hahn and Kuersteiner (Economet-
rica 70(4):1639–1657, 2002) and Hahn and Newey (Econometrica 72(4):1295–1319,
2004)], but this is only guaranteed toworkwell when T is sufficiently large. This paper
provides a unified approach that connects these two seemingly disparate solutions to
the IPP. In doing so, we provide an approximate version of functional differencing,
that is, an approximate solution to the IPP that is applicable to a large class of panel
data models even when T is relatively small.
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1 Introduction

Panel data offer the potential to account for unobserved heterogeneity, typically
through the inclusion of unit-specific parameters; see Arellano (2003) and Arel-
lano and Bonhomme (2011) for reviews. Nonlinear panel data models, however,
remain challenging to estimate, precisely because in many models the presence of
unit-specific—or “incidental”—parameters makes the maximum likelihood estimator
(MLE) of the common parameters inconsistent when the number of observations per
unit, T , is finite (Neyman and Scott 1948). The failure of maximum likelihood has
prompted two kinds of reactions.

One approach is to look for point-identifyingmoment conditions that are free of inci-
dental parameters. Suchmoment conditions can come from a conditional or amarginal
likelihood (e.g., Rasch 1960; Lancaster 2000), an invariant likelihood (Moreira 2009),
an integrated likelihood (Lancaster 2002), functional differencing (Bonhomme 2012),
or from some other reasoning to eliminate the incidental parameters, for example,
differencing in linear dynamic models (e.g., Arellano and Bond 1991). This approach
is usually model-specific and is “fixed-T ”, i.e., it seeks consistent estimation when T
is fixed (and usually small). However, point-identifying moment conditions for small
T may not exist because point identification simply may fail; see Honoré and Tamer
(2006) and Chamberlain (2010) for examples.

The other main approach is motivated by “large-T ” arguments and seeks to reduce
the large-T bias of the MLE or of the likelihood function itself or its score function
(e.g., Hahn and Kuersteiner 2002; Alvarez and Arellano 2003; Hahn and Newey 2004;
Arellano andBonhomme 2009; Bonhomme andManresa 2015; Dhaene and Jochmans
2015b; Arellano and Hahn 2016; Fernández-Val and Weidner 2016). This approach is
less model-specific and may also be applied to models where point identification fails
for small T .

The functional differencing method of Bonhomme (2012) provides an algebraic
approach to systematically find valid moment conditions in panel models with inci-
dental parameters—if such moment conditions exist. Related ideas are used in Honoré
(1992), Hu (2002), Johnson (2004), Kitazawa (2013), Honoré and Weidner (2020),
Honoré, Muris and Weidner (2021), and Davezies, D’Haultfoeuille and Mugnier
(2022). In this paper, we extend the scope of functional differencing to models where
point identification may fail. In such models, exact functional differencing (as in
Bonhomme 2012) is not possible, but an approximate version thereof yields moment
conditions that are free of incidental parameters and that are approximately valid in the
sense that their solution yields a point close to the true common parameter value. Bon-
homme’s method relies on the existence of (one or more) zero eigenvalues of a matrix
of posterior predictive probabilities (or a posterior predictive density function) defined
by the model. Our extension considers the case where all eigenvalues are positive and,
therefore, point identification fails, but where some eigenvalues are very close to zero.
This occurs as the number of support points of the outcome variable increases. Eigen-
values close to zero then lead to approximate moment conditions obtained as a bias
correction of an initially chosenmoment condition. The bias correction can be iterated,
possibly infinitely many times. In point-identified models, the infinitely iterated bias
correction is equivalent to functional differencing. Therefore, approximate functional
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differencing can be viewed as finite-T inference in point-identified models, and as a
large-T iterative bias correction method in models that are not point-identified.

The construction of approximate moment conditions is our main focus. Once such
moment conditions are found, estimation follows easily using the (generalized)method
of moments, and the discussion of estimation is therefore deferred to later parts of the
paper (from Sect. 6).

We illustrate approximate functional differencing in a probit binary choice model.
The implementation, including the iteration, is straightforward, only requiring elemen-
tary matrix operations. Indeed, one of the contributions of this paper is to show how
to iterate score-based bias correction methods for discrete choice panel data relatively
efficiently.

After introducing the model setup in Sect. 2, we review the main ideas behind
functional differencing in Sect. 3. In Sect. 4we introduce our novel bias corrections and
explain how they relate to functional differencing. Section5 examines the eigenvalues
of the matrix of posterior predictive probabilities in a numerical example. Section6
briefly discusses estimation. Further numerical illustration of the methods and some
Monte Carlo simulation results are presented in Sect. 7. Section8 discusses some
extensions, in particular, a generalization of the estimation method to average effects.
Finally, we provide some concluding remarks in Sect. 9.

2 Setup

We observe outcomes Yi ∈ Y and covariates Xi ∈ X for units i = 1, . . . , n. We
only consider finite outcome sets Y in this paper, but in principle all our results can be
generalized to infinite setsY . There are also latent variables Ai ∈ A, which are treated
as nuisance parameters. We assume that (Yi , Xi , Ai ), i = 1, . . . , n, are independent
and identical draws from a distribution with conditional outcome probabilities

Pr
(
Yi = yi

∣∣ Xi = xi , Ai = αi
) = f

(
yi
∣∣ xi , αi , θ0

)
, (1)

where the function f
(
yi
∣
∣ xi , αi , θ

)
is known (this function specifies “the model”), but

the true parameter value θ0 ∈ � ⊂ R
dθ is unknown. Our primary goal in this paper is

inference on θ0.
Let π0(αi | xi ) be the true distribution of Ai conditional on Xi = xi . Then, the

conditional distribution that can be identified from the data is

Pr
(
Yi = yi

∣∣ Xi = xi
) =

∫

A
f
(
yi
∣∣ xi , αi , θ0

)
π0(αi | xi ) dαi . (2)

No restrictions are imposed on π0(αi | xi ) nor on the marginal distribution of Xi , that
is, we have a semi-parametric model with unknown parametric component θ0 and
unknown nonparametric component π0(αi | xi ).

The setup just described covers many nonlinear panel data models with fixed
effects. There, we observe outcomes Yit and covariates Xit for unit i over time peri-
ods t = 1, . . . , T . For static panel models we then set Yi = (Yi1, . . . ,YiT ) and
Xi = (Xi1, . . . , XiT ), and the model is typically specified as
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f
(
yi
∣∣ xi , αi , θ

) =
T∏

t=1

f∗
(
yit

∣∣ xit , αi , θ
)
,

where f∗
(
yit

∣∣ xit , αi , θ0
) = Pr

(
Yit = yit

∣∣ Xit = xit , Ai = αi
)
. Here, f∗

(
yit

∣∣ xit ,
αi , θ) often depends on xit , αi , θ only through a single index x ′

i tθ + αi , where θ is a
regression coefficient vector of the same dimension as xit , and αi ∈ R is an individual-
specific fixed effect. Of course, θ may also contain additional parameters (e.g., the
variance of the error term in a Tobit model).

For dynamic nonlinear panelmodels,we usually have tomodel the dynamics explic-
itly. For example, we may include a lagged dependent variable in the model. In that
case, assuming that Yit at t = 0 is observed, we have Yi = (Yi1, . . . , YiT ) and
Xi = (Yi0, Xi1, . . . , XiT ), and the model is usually specified as

f
(
yi
∣∣ xi , αi , θ

) =
T∏

t=1

f∗
(
yit

∣∣ yi,t−1, xit , αi , θ
)
,

where f∗
(
yit
∣∣yi,t−1, xit , αi , θ

)=Pr
(
Yit = yit

∣∣Yi,t−1 = yi,t−1, Xit = xit , Ai = αi
)
.

Here, the initial observation Yi0 is included in the conditioning variable Xi . In this
way, the setup in Eqs. (1) and (2) also covers dynamic panel data models.

The setup may also be relevant for applications outside of standard panel data, e.g.,
pseudo-panels, network models, or games. But one typically needs Yi to be a vector
of more than one outcome to learn anything about θ0 since, in most models, the value
of αi alone can fully fit any possible outcome value if there is only a single outcome
per unit (i.e., if the sample is purely cross-sectional).

The main insights of our paper are therefore applicable more broadly, but our focus
will be on panel data. In particular, the following static binary choice panel data model
will be our running example throughout the paper.

Example 1A (Static binary choice panel datamodel) Consider a static panel datamodel
with Yi = (Yi1, . . . ,YiT ) and Xi = (Xi1, . . . , XiT ) where the outcomes Yit ∈ {0, 1}
are generated by

Yit = 1(X ′
i t θ0 + Ai ≥ Uit )

and the errorsUit are independent of Xi and Ai ∈ R, and are i.i.d. across i and t with
cdf F(u). This implies

f
(
yi
∣
∣ xi , αi , θ

) =
T∏

t=1

[1 − F(x ′
i t θ + αi )]1−yit [F(x ′

i t θ + αi )]yit .

For the probit model, we have F(u) = �(u), where � is the standard normal cdf,
and for the logistic model we have F(u) = (1 + e−u)−1. To make the example even
more specific, we consider a single binary covariate Xit ∈ {0, 1} such that for all
i = 1, . . . , n we have
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Xit = 1(t > T0),

for some T0 ∈ {1, . . . , T −1}, that is, Xit is equal to zero for the initial T0 time periods,
and is equal to one for the remaining T1 = T −T0 time periods. Here T0, and therefore
Xi , is non-random and constant across i , so we can simply write f

(
yi
∣∣αi , θ

)
instead

of f
(
yi
∣∣ xi , αi , θ

)
. The parameter of interest, θ0 ∈ R, is one-dimensional.

Example 1B (Example 1A reframed) Consider Example 1A, but denote the binary
outcomes now as Y ∗

i t ∈ {0, 1} and define the outcome Yi for unit i as the pair

Yi = (
Yi,0,Yi,1

) :=
⎛

⎝
T0∑

t=1

Y ∗
i t ,

T∑

t=T0+1

Y ∗
i t

⎞

⎠ ∈ {0, . . . , T0} × {0, . . . , T1} = Y . (3)

Here, Yi,0 = ∑T
t=1 Y

∗
i t (1−Xit ) is the number of outcomes for unit i for which Y ∗

i t = 1

within those time periods that have Xit = 0, while Yi,1 = ∑T
t=1 Y

∗
i t Xit is the number

of outcomes with Y ∗
i t = 1 for the time periods with Xit = 1. This implies that

f
(
yi
∣∣αi , θ

) =
(
T0
yi,0

)
[1 − F(αi )]T0−yi,0 [F(αi )]yi,0

(
T1
yi,1

)

×[1 − F(θ + αi )]T1−yi,1 [F(θ + αi )]yi,1 ,

where we drop xi from f
(
yi
∣
∣ xi , αi , θ

)
since it is non-random and constant across i .

The parameter of interest, θ0 ∈ R, is unchanged.

From the perspective of parameter estimation, Example 1B is completely equivalent
to Example 1A, because Yi in Example 1B is a minimal sufficient statistic for the
parameters (θ0, αi ) in Example 1A. Nevertheless, the outcome space in Example 1A
is larger (|Y| = 2T ) than the outcome space in Example 1B (|Y| = (T0 + 1)(T1 + 1)),
and this will make a difference in our discussion of moment conditions in these two
examples below.

3 Main idea behind functional differencing

We now explain the main idea behind the functional differencing method of Bon-
homme (2012). Our presentation is similar to that in Honoré and Weidner (2020).
However, our goal here is much closer to that in Bonhomme’s original paper because
we want to describe a general estimation method, one that is applicable to a very
large class of models, as opposed to obtaining an analytical expression for moment
conditions in specific models.

3.1 Exact moment conditions

Consider the model described by (1) and (2), where our goal is to estimate θ0. Func-
tional differencing (Bonhomme 2012) aims to find moment functions m(yi , xi , θ) ∈
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R
dm such that the model implies, for all xi and αi , that

E
[
m(Yi , Xi , θ0)

∣∣ Xi = xi , Ai = αi
] = 0 (4)

or, equivalently,

∑

y∈Y
m(y, xi , θ) f

(
y
∣∣ xi , αi , θ

) = 0,

since we want (4) to hold for all possible θ0 ∈ �. Verifying that m(yi , xi , θ)

satisfies this conditional moment condition only requires knowledge of the model
f
(
yi
∣∣ xi , αi , θ

)
, not of the observed data. Note that m(yi , xi , θ) does not depend on

αi , but nevertheless should have zero mean conditional on any realization Ai = αi .
This is a strong requirement, and we will get back to this below.

Once we have found such valid moment functions m(yi , xi , θ), we can choose an
arbitrary (matrix-valued) function g(xi , θ) ∈ R

dm×dm , and define

m(yi , xi , θ) := g(xi , θ)m(yi , xi , θ),

which is a vector of dimension dm . By the law of iterated expectations, we then obtain,
under weak regularity conditions, the unconditional moment condition

E [m(Yi , Xi , θ0)] = 0, (5)

which we can use to estimate θ0 by the generalized method of moments (GMM,
Hansen 1982). The nuisance parameters αi do not feature in the GMM estimation
at all, that is, functional differencing provides a solution to the incidental parameter
problem (Neyman and Scott 1948).

Of course, the key condition for consistentGMMestimation is thatE [m(Yi , Xi , θ)] �=
0 for any θ �= θ0. This identification condition is violated if m(yi , xi , θ) does not
depend on θ (a special case of which is m(yi , xi , θ) = 0, which is a trivial solution to
(4). Hence the moment functions must depend on θ to be informative about θ0.

Uninformative moment functions in Example 1A

To give an example of a moment function that is uninformative about θ0, consider
Example 1A. Let t and s be two time periods where Xit = Xis . Let Yi,−(t,s) ∈
{0, 1}T−2 be the outcome vector Yi from which the outcomes Yit and Yis are dropped.
Then, since Xit = Xis , the outcomes Yit and Yis are exchangeable and therefore

E
(
Yit

∣∣ Yi,−(t,s)
) = E

(
Yis

∣∣ Yi,−(t,s)
)
.

This implies that for any function g : {0, 1}T−2 → R the moment function

m(yi , xi , θ) := (yit − yis) g(yi,−(t,s)) (6)
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satisfies (4). This moment function does not depend on θ and is therefore not useful
for parameter estimation. (It is useful for model specification testing, but we will not
discuss this.)

Furthermore, one can show that everymoment functionm(yi , xi , θ) that satisfies (4)
in Example 1A is equal to a corresponding valid moment function in Example 1B plus
a linear combination of moment functions of the form (6).1 Thus, from the perspective
of constructing valid moment functions that are informative about θ0, without loss of
generality we can focus on Example 1B instead of Example 1A. Example 1A is useful
because it is a completely standard panel model and it gives a simple example of
valid moment functions that do not depend on θ . From here onward, however, we will
always use Example 1B as our running example.

Informative moment functions in Example 1B for logistic errors

Consider Example 1B with logistic error distribution, F(u) = (1 + e−u)−1. Then,
Yi,0 +Yi,1 is a sufficient statistic for Ai , so the distribution of Yi conditional on Yi,0 +
Yi,1 does not depend on Ai . It is well known that this implies that the corresponding
conditional MLE of θ0 is consistent as n → ∞, for any fixed T ≥ 2; see, e.g., Rasch
(1960), Andersen (1970), and Chamberlain (1980).

Here, instead of considering conditional maximum likelihood, we focus purely on
the existence of moment conditions. Let ȳ = (ȳ0, ȳ1) ∈ {0, . . . , T0} × {0, . . . , T1}
and ỹ = (ỹ0, ỹ1) ∈ {0, . . . , T0} × {0, . . . , T1} be two possible realizations of Yi such
that ȳ0 + ȳ1 = ỹ0 + ỹ1 and ȳ �= ỹ. Since Yi,0 + Yi,1 is a sufficient statistic for Ai , it
must be the case that the ratio

r(θ) := f
(
ȳ
∣∣αi , θ

)

f
(
ỹ
∣∣αi , θ

)

does not depend on αi . This implies that

m(yi , θ) := 1 {yi = ȳ} − r(θ) 1 {yi = ỹ} (7)

satisfies E
[
m(Yi , θ0)

∣∣ Ai = αi
] = 0. A short calculation gives

r(θ) =
(
T0
ȳ0

)(
T1
ȳ1

)(
T0
ỹ0

)−1(T1
ỹ1

)−1

exp[(ȳ1 − ỹ1)θ ].

Since we assume ȳ �= ỹ, the moment functionm(yi , θ) indeed depends on θ . Further-
more, m(yi , θ) is strictly monotone in θ when yi = ỹ and constant in θ otherwise,

1 Let yi = y(y∗
i ) be themapping between an outcome y∗

i in Example 1A and an outcome yi in Example 1B,
as defined by (3), and let Y∗(yi ) = {

y∗
i : yi = y(y∗

i )
}
be the set of outcomes y∗

i that map to yi . Starting
from a valid moment functionmA(y∗

i , θ) in Example 1Awe obtain a valid moment function in Example 1B

asmB (yi , θ) = ∣∣Y∗(yi )
∣∣−1∑

y∗
i ∈Y∗(yi )

mA(y∗
i , xi , θ). The null space of this linear mappingmA 
→ mB

is spanned bymoment functions of the form (6). This implies that the differencemA(y∗
i , θ)−mB (y(y∗

i ), θ)

is a linear combination of moment functions of the form (6).
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and all outcomes are realized with positive probability. Hence E [m(Yi , θ)] is strictly
monotone in θ and the condition E [m(Yi , θ0)] = 0 uniquely identifies θ0.

The observation that the existence of a sufficient statistic for the nuisance param-
eter Ai allows for identification and estimation of θ0 is quite old (e.g., Rasch 1960).
However, the reason that the functional differencing method is truly powerful is that
moment functions satisfying (4) and identifying θ0 may exist even in models where no
sufficient statistic for Ai is available. Examples of this are given by Honoré (1992), Hu
(2002), Johnson (2004), Kitazawa (2013), Honoré andWeidner (2020), Honoré,Muris
and Weidner (2021), and Davezies, D’Haultfoeuille and Mugnier (2022). Bonhomme
(2012) provides a computational method for obtaining moment functionsm(yi , xi , θ)

such that (4) holds in a large class ofmodels, whileHonoré andWeidner (2020) discuss
how to obtain explicit algebraic formulas for moment conditions in specific models.
Dobronyi, Gu andKim (2021) show that additional moment inequalities may exist that
contain identifying information on θ0 that is not contained in the moment equalities.

Our example of a moment function in (7) is convenient and easy to understand,
but it is not really representative of the potential complexity of more general moment
functions. The papers cited in the previous paragraph give a better view of the true
capability of the functional differencing method in more challenging settings.

3.2 Approximatemoment conditions

Functional differencing is a very powerful and useful method. Nevertheless, there are
many models to which it is not applicable. The reason is that the condition in Eq. (4) is
actually quite strong. It requires us to find a functionm(Yi , Xi , θ) that does not depend
on Ai at all, but that is supposed to have a conditional mean of zero for any possible
realization of Ai . In most standard panel data models Ai takes values in R (Ai can
also be a vector), implying that (4) imposes an infinite number of linear restrictions.

It is therefore perhaps unsurprising that there are many panel data models for which
(4) has no non-trivial solution at all. In Example 1B we have shown the existence of
valid moment functions for the logit model, but it turns out that no valid moment
function exists for the probit model when θ0 �= 0 (we have verified this non-existence
numerically for many values of T and T0).

Instead of trying to find moment functions satisfying (4), and hence (5), exactly,
we argue that it can also be fruitful to search for moment functions that satisfy these
conditions only approximately, i.e.,

E [m(Yi , Xi , θ0)] ≈ 0. (8)

For a given model f
(
yi
∣∣ xi , αi , θ

)
we might not be able to find an exact solution to

(5), but we might be able to find a very good approximate solution.
Examples of approximate moment conditions are provided by the “large-T ” panel

data literature, which considers asymptotic sequences where also T → ∞ (jointly
with n → ∞). To illustrate the insights of this literature, let α̂i (θ) be the MLE of αi

obtained from maximizing f
(
Yi
∣∣ Xi , αi , θ

)
over αi ∈ A, and let ψ(yi , xi , αi , θ)

be a moment function that satisfies E[ψ(Yi , Xi , Ai , θ0)] = 0 in model (1), e.g.,
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ψ(yi , xi , αi , θ) = ∇θ

[ 1
T log f

(
yi
∣∣ xi , αi , θ

)]
. Then, under standard regularity con-

ditions, α̂i (θ0) is consistent for Ai as T → ∞, and a useful approximate moment
function is therefore given by m(yi , xi , θ) = ψ(yi , xi , α̂i (θ), θ). In this example, the
vague approximate statement in (8) can be made precise, namely one can show that,
as T → ∞,

E [m(Yi , Xi , θ0)] = O(T−1), (9)

implying that the estimator of θ0 obtained from this approximate moment condition
also has a bias of order T−1. It is possible to correct this bias and obtain moment
functions where the right hand side of (9) is of order T−2 or smaller, implying an
even smaller bias for estimates of θ0 when T is sufficiently large; see, e.g., Hahn and
Newey (2004), Arellano and Hahn (2007, 2016), Arellano and Bonhomme (2009),
and Dhaene and Jochmans (2015b). In this paper, we aim for even higher-order bias
correction, where the remaining bias is only of order T−q , for some integer q >

0, because we expect better small-T estimation properties from such higher-order
corrections, and it allows us to connect the bias correction results with the functional
differencing method. However, by correcting the bias in this way, one might very well
increase the variance of the resulting estimator for θ0, as we will see in our Monte
Carlo simulations in Sect. 7. The question of how to optimally trade off the bias vs. the
variance (using, e.g., a mean squared error criterion function, as in Bonhomme and
Weidner 2022) is interesting and could lead to an optimal choice of the bias correction
order q, but we will not formalize this in the current paper.

4 Approximate functional differencing

In this section, we answer the following questions: In a model where exactly valid
moment functions as in (4) do not exist, is it still possible to construct useful moment
functions m(yi , xi , θ) that are approximately valid as in (8)? And if yes, how can we
construct such moment functions in a principled way?

4.1 Notation and preliminaries

Our discussion in this section is at the “population level”, that is, for one representative
unit i . In the following, we therefore drop the index i throughout. For example, instead
of Yi , Xi , Ai we simply write Y , X , A.

4.1.1 Prior distribution of the fixed effects

Let πprior(α | x) be a chosen prior distribution for A, conditional on X = x . The prior
should integrate to one, that is,

∫
A πprior(α | x) dα = 1, for all x ∈ X , but we do not

require πprior to be identical to π0. We require non-zero prior probability for all points
in the support of A, i.e.,

πprior (α | x) > 0, for all α ∈ A and x ∈ X . (10)
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The prior does not need to depend on x ; we may choose πprior (α | x) = πprior(α),
whichmay be easier to specify in practice, but we allow for general priorsπprior (α | x)
in the following.

4.1.2 Posterior distribution of the fixed effects

Given the chosen prior πprior, the posterior distribution of A, conditional on Y = y
and X = x , for given θ , is

πpost(α | y, x, θ) = f (y | x, α, θ) πprior(α | x)
pprior(y | x, θ)

, (11)

where pprior(y | x, θ) = ∫
A f (y | x, θ, α) πprior(α | x) dα is the prior predictive prob-

ability of outcome y.

4.1.3 Score function

Let s : Y ×X × θ → R
ds be some function, which we will call the “score function”.

In our numerical illustrations in Sect. 7 we choose the integrated score

s(y, x, θ) = ∇θ

[
log

∫

A
f (y | x, α, θ)πprior(α | x) dα

]

=
∫

A
[∇θ log f (y | x, α, θ)

]
πpost(α | y, x, θ) dα, (12)

where ds = dθ . However, for our construction of moment functions in the following
subsection, which is based on a chosen score function, we can actually choose almost
any function s(y, x, θ), as long as it is differentiable in θ and not identically zero. For
example, the profile score s(y, x, θ) = ∇θ

[
maxα∈A log f (y|x, α, θ)

]
would be an

equally natural choice.
Whatever the choice of s(y, x, θ), we now rewrite it using matrix notation. Let

nY = |Y| be the number of possible outcomes, and label the elements of the outcome
set as y(k), k = 1, . . . , nY , so that Y = {

y(1), . . . , y(nY )

}
. For y ∈ Y , let δ(y) =

(δ1(y), . . . , δnY (y))′ be the nY -vector with elements δk(y) = 1(y = y(k)), k =
1, . . . , nY , where 1(·) is the indicator function. Recall that s(y, x, θ) is a ds-vector.
Let S(x, θ) be the corresponding ds × nY matrix with columns s(y(k), x, θ), k =
1, . . . , nY . Now we can write s(y, x, θ) as

s(y, x, θ) = S(x, θ) δ(y), for all y ∈ Y . (13)

4.1.4 Posterior predictive probability matrix

Given x ∈ X and θ ∈ �, after observing some y ∈ Y , the posterior predictive
probability of observing any “future”ỹ ∈ Y is

Q(ỹ | y, x, θ) =
∫

A
f
(
ỹ
∣
∣ x, α, θ

)
πpost

(
α
∣
∣ y, x, θ

)
dα. (14)
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Let Q(x, θ) be the nY × nY matrix with elements Qk,	(x, θ) = Q(y(k) | y(	), x, θ).
The following lemma states some properties of the matrix Q(x, θ) that will be useful
later.

Lemma 1 Let x ∈ X and θ ∈ �. Assume that pprior(y | x, θ) > 0 for all y ∈ Y . Then
Q(x, θ) is diagonalizable and all its eigenvalues are real numbers in the interval
[0, 1].

The proof of the lemma is given in the “Appendix”.

4.2 Bias-corrected score functions

We consider the chosen score function s(y, x, θ) as our first candidate for a moment
function m(y, x, θ) to achieve (8). However, E[s(Y , X , θ0)] need neither be zero
nor close to zero. (As discussed above, there are choices of s(y, x, θ) such that
E[s(Y , X , θ0)] is close to zero for large T , but even for those choices E[s(Y , X , θ0)]
need not be close to zero for small T .)

Therefore, we aim to “bias-correct” the score by defining an improved score

s(1)(y, x, θ) := s(y, x, θ) − b(y, x, θ),

for some correction function b(y, x, θ). The goal is to choose b(y, x, θ) such that the
elements of E[s(1)(Y , X , θ0)] are smaller than those of E[s(Y , X , θ0)]. According to
the model we have

E
[
s(Y , X , θ0)

∣∣ X = x, A = α
] =

∑

y∈Y
s(y, x, θ0) f

(
y
∣∣ x, α, θ0

)
,

E
[
s(Y , X , θ0)

∣∣ X = x
] =

∑

y∈Y
s(y, x, θ0)

∫

A
f
(
y
∣∣ x, α, θ0

)
π0(α | x) dα.

(15)

Wewould achieve exact bias correction (i.e.,E[s(1)(Y , X , θ0)] = 0) ifwe could choose
b(y, x, θ) (or its conditional expectation) equal to E[s(Y , X , θ0)

∣∣ X = x, A = α] or
equal toE[s(Y , X , θ0)

∣
∣ X = x]. The first option is infeasible because A is unobserved.

The second option is infeasible because π0(α | x) is unknown.
However, even though A is unobserved, the posterior distribution πpost(α | y, x, θ)

should contain some useful information about A. Inspired by (15)we suggest choosing

b(y, x, θ) =
∑

ỹ∈Y
s(ỹ, x, θ)

∫

A
f
(
ỹ
∣
∣ x, α, θ

)
πpost(α

∣
∣ y, x, θ) dα ,

where we have replaced π0(α | x) by πpost(α | y, x, θ). This gives the bias-corrected
score
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s(1)(y, x, θ) := s(y, x, θ) −
∑

ỹ∈Y
s(ỹ, x, θ)

∫

A
f
(
ỹ
∣∣ x, α, θ

)
πpost(α

∣∣ y, x, θ) dα

= s(y, x, θ) −
∑

ỹ∈Y
s(ỹ, x, θ) Q(ỹ | y, x, θ)

= S(x, θ)
[
InY − Q(x, θ)

]
δ(y), (16)

where InY is the nY × nY identity matrix. Now, if the expected posterior distribution
E[πpost(α

∣∣ Y , X , θ0)
∣∣ X = x] is a good approximation to π0(α | x), then we expect

thatE[s(1)(Y , X , θ0)] is indeed smaller thanE[s(Y , X , θ0)], that is, s(1)(y, x, θ) should
be a better choice than s(y, x, θ) as a moment functionm(y, x, θ) satisfying (8). Note
also that in the very special case where the prior equals the true distribution of A (i.e.,
πprior = π0), E[πpost(α

∣∣ Y , X , θ0)
∣∣ X = x] = π0(α | x) and hence s(1)(Y , X , θ0) has

exactly zero mean regardless of the choice of initial score function.
Of course, generically we still expect that E[s(1)(Y , X , θ0)] �= 0. It is, there-

fore, natural to iterate the above procedure, that is, to apply the same bias-correction
method that we applied to s(y, x, θ) also to s(1)(y, x, θ), which gives s(2)(y, x, θ),
and to continue iterating this procedure. Since the bias-correction method applied to
s(y, x, θ) = S(x, θ) δ(y) gives (16), it is easy to see that after q ∈ {1, 2, . . .} iterations
of the same bias-correction procedure we obtain

s(q)(y, x, θ) := S(x, θ)
[
InY − Q(x, θ)

]q
δ(y). (17)

The bias-corrected functions s(q)(y, x, θ) are the main choices of moment function
m(y, x, θ) that we consider in this paper.

To our knowledge, the bias-corrected scores s(q)(y, x, θ) have not previously been
discussed in the literature. However, as will be explained in Sect. 8.1, these bias-
corrected scores are closely related to existing bias-correction methods. In particular,
if in (16) we replace the posterior distribution πpost(α

∣∣ y, x, θ) with a point-mass
distribution at the MLE of A for fixed θ , then the profile-score adjustments of Dhaene
and Jochmans (2015a) are obtained. In analogy to such existing methods, we make
the following conjecture, which is supported by our numerical results in Sect. 7 below
for the model in Examples 1A and 1B, and which we presume to hold more generally
under appropriate regularity conditions.

Conjecture 1 If we choose the original score function s(y, x, θ) to be the integrated
or profile score, then both E

[
s(q)(Y , X , θ0)

]
and θ∗ − θ0 are at most of order T−q−1,

as T → ∞ while q is fixed.

From the perspective of the large-T panel literature, we have simply provided
another way to achieve and iterate large-T bias correction. What is truly novel, how-
ever, is that in the limit q → ∞, our correction can be directly related to the functional
differencing method of Bonhomme (2012), which delivers exact (finite-T ) inference
results in models to which it is applicable. Our procedure, therefore, interpolates
between large-T bias correction and exact finite-T inference.
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Remark 1 If the initial score function s(y, x, θ) is unbiased, that is, if it satisfies the
exact moment condition (4) or, equivalently, (5), then the bias correction step (16) does
not change the score function at all.More generally, if at any point in the iteration proce-
dure (17)we obtain an unbiased score function, i.e., one for which

∑
y∈Y s(q)(y, x, θ)

f
(
y
∣∣ x, α, θ

) = 0 for some q, then we have s(r)(y, x, θ) = s(q)(y, x, θ) for all fur-
ther iterations r ≥ q. Hence, unbiased score functions correspond to fixed points in
our iteration procedure.

4.3 Relation to functional differencing

It turns out that exact functional differencing (Bonhomme 2012) corresponds to choos-
ing

s∞(y, x, θ) := lim
q→∞ s(q)(y, x, θ)

as moment functions for estimating θ0, and the lemma below formalizes this relation-
ship.

Before presenting the lemma, it is useful to rewrite the bias-corrected score function
in (17) in terms of the spectral decomposition of Q(x, θ). Let λ1(x, θ) ≥ . . . ≥
λnY (x, θ) be the eigenvalues of Q(x, θ) sorted in descending order, and let U (x, θ)

be the nY × nY matrix whose columns are the corresponding right-eigenvectors of
Q(x, θ). Lemma 1 guarantees that λk(x, θ) ∈ [0, 1], for all k = 1, . . . , nY , and that
Q(x, θ) can be diagonalized, that is,

Q(x, θ) = U (x, θ) diag[λk(x, θ)]k=1,...,nY U−1(x, θ).

Now let h : [0, 1] → R be a stem function and let h(·) be the associated primary
matrix function (Horn and Johnson 1994), so that

h[Q(x, θ)] = U (x, θ) diag {h[λk(x, θ)]}k=1,...,nY U−1(x, θ). (18)

That is, applying h(·) to the matrix Q(x, θ) simply means applying the stem function
separately to each eigenvalue of Q(x, θ) while leaving the eigenvectors unchanged.
Every stem function h defines a moment function

sh(y, x, θ) := S(x, θ) h[Q(x, θ)] δ(y), (19)

hence generalizing (17). In particular, the stem function hq(λ) := (1 − λ)q gives the
moment function s(q)(y, x, θ) = shq (y, x, θ) in (17). In the limit q → ∞ we obtain
limq→∞ hq(λ) = 1{λ = 0}, for λ ∈ [0, 1], and the limiting bias-corrected score
function can therefore be written as

s∞(y, x, θ) = S(x, θ) h∞[Q(x, θ)] δ(y), h∞(λ) := 1{λ = 0}. (20)
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Thus, s∞(y, x, θ) is obtained by applying the projection h∞[Q(x, θ)] to the original
score function s(y, x, θ). The projection matrix h∞[Q(x, θ)] is obtained according to
(18) bygivingweight only to eigenvectors ofQ(x, θ) accociatedwith zero eigenvalues.

Lemma 2 Let x ∈ X . Suppose that (1) and (10) hold, that pprior(y | x, θ0) > 0 for all
y ∈ Y , and that f

(
y
∣∣ x, α, θ0

)
is continuous in α ∈ A. Then

(i) we have

E
[
s∞(Y , X , θ0)

∣∣ X = x, A = α
] = 0 , for all α ∈ A;

(ii) the matrix Q(x, θ0) has a zero eigenvalue if and only if there exists a non-zero
moment function m(y, x, θ0) ∈ R that satisfies

E
[
m(Y , X , θ0)

∣∣ X = x, A = α
] = 0 , for all α ∈ A;

(iii) for every moment function m(y, x, θ0) ∈ R that satisfies the condition in part (ii),
there exists a function s(y, x, θ0) ∈ R such that

m(y, x, θ0) = s∞(y, x, θ0) , for all y ∈ Y .

The proof of the lemma is given in the “Appendix”. Note that the true param-
eter value, θ0, only takes a special role in Lemma 2 because the expectation
E (· | X = x, A = α) is evaluated using f (y|x, θ0, α), according to (1). If we had
written these conditional expectations as explicit sums over f (y|x, θ0, α), then we
could have replaced θ0 in the lemma by an arbitrary value θ ∈ �; that is, there is
nothing special about the parameter value θ0 that generates the data.

Part (i) of the lemma states that s∞(y, x, θ) is an exactly valid moment function in
the sense of (4). If Q(x, θ) does not have any zero eigenvalues, then this part of the
lemma is a trivial result, because then we simply have s∞(y, x, θ) = 0, which is not
useful for estimating θ0. However, if Q(x, θ) does have one or more zero eigenvalues,
then, for a generic choice of s(y, x, θ), we have s∞(y, x, θ) �= 0, and part (i) of the
lemma becomes non-trivial.

Part (ii) of the lemma states that the existence of a zero eigenvalue of Q(x, θ)

is indeed a necessary and sufficient condition for the existence of an exactly valid
moment function in the sense of (4). As explained in the proof, if Q(x, θ) has a zero
eigenvalue, then an exactly valid moment function m(y, x, θ) is simply obtained by
the entries of the corresponding left-eigenvector of Q(x, θ).

Finally, part (iii) of the lemma states that any such exactly valid moment function
m(y, x, θ) can be obtained as limq→∞ s(q)(y, x, θ), i.e., as the limit of our iterative
bias correction scheme above, for some appropriately chosen initial score function
s(y, x, θ). Thus, the set of valid moment functions is identical to the set of all possible
limits s∞(y, x, θ).

Recall that finding such exactly valid moment functions is the underlying idea of
the functional differencing method of Bonhomme (2012). Thus, Lemma 2 establishes
a very close relationship between our bias correction method and functional differ-
encing.
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Remark 2 If the set A is finite with cardinality nA = |A|, then by construction
rank[Q(x, θ)] ≤ nA. Thus, whenever nA < nY , Q(x, θ) has nY −nA zero eigenval-
ues, implying that exact moment functions, free of α, are available. Notice, however,
that this assumes not only that α takes on only a finite number of values, but also that
these values are known (they constitute the known setA). By contrast, the literature on
discretizing heterogeneity in panel data (e.g., Bonhomme and Manresa 2015; Su, Shi
and Phillips 2016; Bonhomme, Lamadon and Manresa 2022) usually considers the
support points of A to be unknown. For our purposes, the fact that rank[Q(x, θ)] ≤ nA
matters only in our numerical implementation, where the rank of Q(x, θ) might be
truncated my the discretization of the set A.

5 Eigenvalues ofQ(x,�): numerical example

Lemma 1 guarantees that all eigenvalues of the matrix Q(x, θ) lie in the interval [0, 1],
and Lemma 2 shows that exact moment conditions that are free of the incidental
parameter A are only available if Q(x, θ) has a zero eigenvalue. However, even in
models where Q(x, θ) does not have a zero eigenvalue, we suggest that calculating
the eigenvalues of Q(x, θ) is generally informative about whether moment conditions
exist that are approximately free of the incidental parameters. This is because in typical
applications we expect that the distinction between a zero eigenvalue and a very small
eigenvalue of Q(x, θ) should be practically irrelevant, that is, as long as Q(x, θ)

has one or more eigenvalues that are very close to zero, then very good approximate
moment conditions in the sense of (8) should exist.

It is difficult to make a general statement about how small an eigenvalue of Q(x, θ)

needs to be to qualify as sufficiently small. However, in a typical model with a suf-
ficiently large number nY of outcomes (which for discrete choice panel data usually
requires only moderately large T ) one will often have multiple eigenvalues of Q(x, θ)

that are so small (say smaller than 10−5) that there is little doubt that they can be
considered equal to zero for practical purposes.

To illustrate this, consider Example 1B with normally distributed errors, F(u) =
�(u), even values of T , and T0 = T1 = T /2, which implies nY = (1+T /2)2. For the
prior distribution of A we choose the standard normal distribution, πprior(α) = φ(α).2

We then calculate the eigenvalues of the nY × nY matrix Q(θ) for θ = 1 (there are
no longer covariates x in this example as they are assigned non-random values). For
T = 2 we have nY = 4, and the four eigenvalues of Q(1) are λ1 = 1, λ2 = 0.47463,
λ3 = 0.10727, and λ4 = 0.00016. For T = 4 and T = 6 we have nY = 9 and
nY = 16, respectively, and the corresponding eigenvalues of Q(1) are plotted in Figs. 1
and 2. Figure3 plots only the smallest eigenvalues of Q(1) for T = 2, 4, . . . , 20.

From these figures, we see that for T ≥ 4 the smallest eigenvalue of Q(1) is less
than 10−9, which we argue can be considered equal to zero for practical purposes. In

2 In fact, for our numerical implementation, we discretize the standard normal prior by choosing 1000
grid points α j = �−1( j/1001), j = 1, . . . , 1000, and we implement a prior that gives equal probability
to each of these grid points. The approximation bias that results from this discretization is negligible for
our purposes, as long as nY is much smaller than 1000.
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Fig. 1 The eigenvalues λ j (θ) of the matrix Q(θ) in Example 1B are plotted for the case θ = 1, T = 4,
T0 = T1 = 2, and where both the error distribution and the prior distribution of A are standard normal. The
left and right plots show the same eigenvalues, just with a different scaling of the y-axis
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Fig. 2 Same eigenvalue plot as in Fig. 1, but for T = 6 and T0 = T1 = 3

Fig. 3 For the same setting as in
Fig. 1, but for different values of
T (with T0 = T1 = T /2), we
plot only the smallest eigenvalue
of Q(θ) for θ = 1. Notice that
the smallest eigenvalue is never
zero, that is, Q(1) has full rank
for all values of T considered
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Figs. 1 and 2 we see that the largest eigenvalue, λ1, is equal to one (because Q(1) is a
stochasticmatrix), but then the eigenvaluesλ j decay exponentially fast as j increases.3

If we were to replace the standard normal distribution of the errors by the stan-
dardized logistic cdf F(u) = (1 + e−πu/

√
3)−1 (normalized to have variance one),

3 The eigenvalues of Q(1) presented in this section were obtained using Mathematica with a numerical
precision of 1000 digits.
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then the left-hand side (non-logarithmic) plots in Figs. 1 and 2 would look almost
identical, but there would be (T /2)2 eigenvalues exactly equal to zero. These zero
eigenvalues for the logit model are due to the existence of a sufficient statistic for A
and, correspondingly, the existence of exact moment functions (associated with the
left null-space of Q(θ)), as discussed in Sect. 3.1 above. Given that the change from
standardized logistic errors to standard normal errors is a relativelyminormodification
of the model, it is not surprising that we see many eigenvalues close to zero in Figs. 1
and 2.

Figure 3 shows that the smallest eigenvalue of Q(1) in this example also decays
exponentially fast as T increases.4 However, for none of the values of T that we
considered here, did we find an exact zero eigenvalue for the static binary choice
probit model. We conjecture that this is true for all T ≥ 2, but we have no proof.5

This example illustrates that eigenvalues of Q(x, θ) very close to zero but not
exactly zero may exist in interesting models. When aiming to estimate the parameter
θ0 in a particular model of the form (2), our first recommendation is to calculate the
eigenvalues of Q(x, θ) for some representative values of θ and x to see if some of them
are zero or close to zero. If some are equal to zero, then exact functional differencing
(Bonhomme 2012) is applicable. If some are very close to zero, then approximate
moment functions (as in (8)) are available.

The eigenvalues of Q(x, θ) are useful to examine whether exact or approximate
moment functions for θ are available in a given model. However, as explained in
Sect. 3.1, the corresponding moment functions also have to depend on θ to be useful
for parameter estimation. For example, the matrix Q(1) in Example 1A has exactly the
same non-zero eigenvalues as the matrix Q(1) in Example 1B that we just discussed,
but in addition, it has a zero eigenvaluewithmultiplicity equal to 2T −(T0+1)(T1+1),
corresponding to the uninformative moment functions in equation (6). As a diagnostic
tool, it can also be useful to calculate the matrix Q(x) for the model f (y|x, θi , αi ),
which has no common parameters and where both θi and αi are individual-specific
fixed effects (this requires choosing a prior for θ as well, which may have finite
support to keep the computation simple). Every zero eigenvalue of that matrix Q(x)
then corresponds to a moment function, for that value of x , that does not depend on θ

(within the range of the chosen prior for θ ). The existence of uninformative moment
functions (6) in Example 1A, for example, can be detected in this way.

4 Presumably this finding and the fast shrinkage of the identified sets of common parameters (Honoré and
Tamer 2006) and average effects (Chernozhukov, Fernández-Val, Hahn andNewey 2013) aremanifestations
of the same phenomenon.
5 One needs to be careful with such conclusions for all T . For example, we also experimented with another
error distribution. If, in Example 1B with θ = 1 and T0 = T1 = T /2, one chooses the error distribution
F(u) to be the Laplace distribution with mean zero and scale one, then numerically we found that for any
choice of prior the matrix Q(1) does not have a zero eigenvalue for T = 2 and T = 4, but it does for T = 6.
So it is not impossible that something similar could happen for the probit model for sufficiently large T ,
although we do not expect it.
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6 Estimation

Suppose we have chosen a prior distribution πprior, an initial score function s(y, x, θ),
and an order of bias correction, q. This gives the bias-corrected score function
s(q)(y, x, θ) as the moment function m(y, x, θ) for which the approximate moment
condition (8) is assumed to hold. For simplicity, suppose that ds = dθ , so that the
number of moment conditions equals the number of common parameters we want to
estimate. We can then define a pseudo-true value θ∗ ∈ � as the solution of

E [m(Yi , Xi , θ∗)] = 0. (21)

The corresponding method of moments estimator θ̂ satisfies 1
n

∑n
i=1 m(Yi , Xi , θ̂ ) =

0. Under appropriate regularity conditions, including existence and uniqueness of θ∗,
we then have, as n → ∞,

√
n(θ̂ − θ∗)

d→ N (0, V∗) ,

with asymptotic variance given by

V∗ = [G ′∗]−1Var [m(Yi , Xi , θ∗)]G−1∗ , G∗ = E
[∇θ m

′(Yi , Xi , θ∗)
]
. (22)

In Sect. 7 we will report the bias θ∗ − θ0 and the asymptotic variance V∗ for different
choices of moment functions in Example 1B. Note that reporting the bias θ∗ − θ0 of
the parameter estimates is more informative than reporting the bias E [m(Yi , Xi , θ0)]
of the moment condition, in particular since the moment condition can be rescaled by
an arbitrary factor.

How should q be chosen? If Q(x, θ) is singular, then a natural choice is q = ∞,
as described in Sect. 4.3, because this delivers an exactly unbiased moment condi-
tion. If Q(x, θ) is nonsingular but some of its eigenvalues are small, then, recalling
our discussion in Sect. 5, our general recommendation is to choose relatively large
values of q. The larger the chosen q, the more we rely on the smallest eigenvalues
of Q(x, θ), because contributions to s(q)(y, x, θ) from larger eigenvalues of Q(x, θ)

are downweighted more heavily as q increases. If none of the eigenvalues Q(x, θ)

is close to zero, then there are no moment conditions that hold approximately in the
sense of (8). Yet, even then, setting q > 0 is likely to improve on q = 0, even though
the remaining bias will still be non-negligible in general. Whatever the eigenvalues of
Q(x, θ) are (and, indeed, whether Q(x, θ) is singular or not), q is a tuning parameter
and a principled way to choose q would be to optimize some criterion, for example, the
(estimated) mean squared error of θ̂ . We leave this for further study. In our numerical
illustrations in Sect. 7 we just consider finite values of q up to q = 1000, and q = ∞.

7 Asymptotic and finite-sample properties

In this section, we report on asymptotic and finite-sample properties of θ̂ for different
choices of moment functions in the model of Example 1B with standard normal errors
(i.e., the panel probit model with a single, binary regressor and fixed effects) and a
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variation thereof, the model of Example 1A with a continuous regressor. Throughout,
we set θ0 = 1, we use a standard normal prior (i.e., πprior(α) = φ(α), as in Figs. 1
and 2), we choose the integrated score (12) as the initial score function, and we vary
q, the number of iterations of the bias correction procedure.

We first present results on asymptotic and finite-sample biases and variances of θ̂

for three cases where T is relatively small: Example 1B with T0 = T1 = T /2 and
T ∈ {4, 6} (Case 1); Example 1B with T0 = 1, T1 = T − 1 and T ∈ {4, 10} (Case
2); Example 1A with a continuous regressor Xit ∼ N (0.5, 0.25) and T ∈ {4, 6}
(Case 3). In all three cases we set the true distribution of A equal to N (1, 1) (i.e.,
π0(α) = φ(α − 1)); note that this implies that πprior is rather different from π0.

Then, in the setup of Example 1B with standard normal errors, we numerically
explore Conjecture 1 by examining the asymptotic bias, θ∗ − θ0, for T up to 512, q
up to 3, and various choices of π0 as detailed below.

7.1 Case 1: binary regressor, T0 = T1 = T/2

Table 1 reports θ∗ − θ0 and V∗ for the case where T0 = T1 = T /2 and T ∈ {4, 6}. The
uncorrected estimate of θ0 (q = 0) has a large positive bias, 0.5050 when T = 4 and
0.4056 when T = 6. Bias correction (q > 0) reduces the bias considerably, though
non-monotonically in q. The least bias is attained at q = ∞, where the bias is very
small: −0.52 × 10−4 when T = 4 and −0.25 × 10−10 when T = 6.

Our calculation of V∗ shows that there is, overall, a bias-variance trade-off in this
example. When T = 4, V∗ slightly decreases as we move from q = 0 to q = 1, but
for q ≥ 1 we see that V∗ increases in q; when T = 6, V∗ increases in q throughout.
Strikingly, V∗ at q = ∞ is much larger than, say, at q = 1000.6

Table 1 also reports, for a cross-sectional sample size of n = 1000, the approxi-
mate RMSE of θ̂ and the approximate coverage rate of the 95% confidence interval
with bounds θ̂ ± (nV̂∗)1/2�−1(0.975), where V̂∗ is the empirical analog to V∗.
The approximate RMSE is calculated as RMSE = (V∗/n + (θ∗ − θ0)

2)1/2 and
the approximate coverage rate as CI0.95 = Pr[|Z | ≤ �−1(0.975)] where Z ∼
N ((θ∗ − θ0)/(V∗/n)1/2, 1). Of course, RMSE and CI0.95 follow mechanically from
θ∗, V∗, n and heavily depend on the chosen n. For our choice of n = 1000, when
T = 4, the RMSE is minimized at q = 2, but this is a rather fortuitous consequence
of the bias having a local minimum (in magnitude) at q = 2. In practice, when T is
very small we would not recommend choosing q less than 10, say, because otherwise,
the remaining bias is often non-negligible. From q = 10 or 20 onward, the bias and
confidence interval coverage rates are reasonably good. On the other hand, we would
also not recommend choosing q to be very large (including q = ∞), one reason being
asymptotic variance inflation.

We also conducted a real Monte Carlo simulation, under the exact same setup as
described (and with n = 1000 in particular). Table 2 gives the results, based on 1000
Monte Carlo replications. The column “bias” isE(θ̂ −θ0) (estimated byMonte Carlo),

6 The limit limq→∞ θ∗(q) can be obtained by solving E[S(θ∗)UnY (θ∗)[U−1(θ∗)]nY δ(Y )] = 0 for θ∗,
where UnY (θ) is the submatrix of U (θ) whose columns are the right-eigenvectors of Q(θ) corresponding

to λnY (θ), the smallest eigenvalue of Q(θ), and [U−1(θ)]nY is the submatrix of [U−1(θ)] whose rows
are the corresponding left-eigenvectors.
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and the second column is n × var(θ̂) (with var(θ̂) estimated by Monte Carlo), to be
compared with V∗ in Table 1. The columns RMSE and CI0.95 are the finite-n RMSE
and coverage rate. All the results are close to those in Table 1, confirming that large-n
asymptotics provide a good approximation to the finite-n distribution of θ̂ . Note that
Table 2 does not report simulation results for q = ∞. This is because in some Monte
Carlo runs, in particular for T = 6, it turned out to be too difficult to numerically
distinguish between the smallest and the second smallest eigenvalue of Q(x, θ) and,
therefore, to reliably select the eigenvector associated with the smallest eigenvalue.
This is another reason not to recommend choosing q = ∞.

7.2 Case 2: binary regressor, T0 = 1, T1 = T− 1

There is nothing special about the case T0 = T1 = T /2, which we just discussed.
Any other T0 ≥ 1 and T1 = T − T0 ≥ 1 lead to qualitatively similar results. We
illustrate this for the case T0 = 1 and T1 = T − 1. Table 3 is similar to Table 1 and
reports results for (T0, T1) = (1, T − 1) with T ∈ {4, 10}. With T0 = 1 fixed, we
find that the bias for q = 0 is nearly constant in T (and large), while the bias of the
bias-corrected estimates (q > 0) decreases in T . Again, the bias is not monotonic in
q (it changes sign) and it becomes very small as q becomes sufficiently large, albeit
more slowly than in the case T0 = T1 = T /2. Table 4 presents the corresponding
simulations, showing that the finite-sample results are, again, very close to asymptotic
results reported in Table 3.

7.3 Case 3: continuous regressor

Here we illustrate approximate functional differencing in a panel probit model with a
single continuous regressor and fixed effects. Apart from the continuity of the regres-
sor, the setup is identical to that in Cases 1 and 2 above. Specifically, we consider
Example 1A with Uit ∼ N (0, 1), θ0 = 1, πprior(α) = φ(α), π0(α) = φ(α − 1), and
the integrated score as initial score.We set Xit ∼ N (0.5, 0.25), so that Xit has the same
mean and variance (across t) as the binary regressor in Cases 1 and 2. For T ∈ {4, 6}
and n = 1000, we generated a single data set Xit (t = 1, . . . , T ; i = 1, . . . , n) to
form X = {X1, . . . , Xn}, so the results are to be understood with reference to this
X . Table 5 presents the asymptotic biases and variances for q up to 1000. (We do
not consider q = ∞ here because, even though θ∗ and θ̂ remain well-defined in the
limit q → ∞, the limiting values are generically determined by a single Xi ∈ X ,
that is, estimation would be based on a single observation i , for which Q(Xi , θ) has
the smallest eigenvalue within the sample.) The results are similar to those in Table 1,
albeit the asymptotic biases and variances are somewhat larger (for all q). Table 6
presents the corresponding simulation results, which are in line with those in Table 5.

7.4 Numerical calculations related to Conjecture 1

Table 7 reports bias calculations for larger values of T that support our conjecture about
the rate of the bias as T grows. The model is as in Example 1B with standard normal
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errors, πprior(α) = φ(α), T0 = T1 = T /2, and θ0 = 1. We calculated the bias, bT :=
θ∗ − θ0, with θ∗ based on the integrated score, for q up to 3, T ∈ {64, 128, 256, 512},
and for five different choices of π0: three degenerate distributions, δz , with mass 1 at
z ∈ {0, 1, 2} (i.e., A = z is constant); and two uniform distributions, U [0.5, 1.5] and
U [0, 2]. (So in all these cases πprior is very different from π0.) Table 7 gives the bias
bT for the chosen values of T , and also the successive bias ratios bT /2/bT (the three
rightmost columns). If Conjecture 1 is correct, we should see these ratios converge
to 2q+1 as T → ∞. For comparability, we also report the bias for q = 0, where
the known rate is confirmed: bT /2/bT converges to 2 for every π0, although when
π0 = δ2 the convergence to 2 is not yet quite visible. Presumably, this is because
then π0 and πprior are quite different, requiring a larger T for the ratio bT /2/bT to
become stable. For q = 1, bT /2/bT is seen to converge to 4 (as conjectured) when
π0 ∈ {δ0, δ1,U [0.5, 1.5]}, while forπ0 ∈ {δ2,U [0, 2]} the convergence is less visible.
Overall, the picture is a little more blurred for q = 1 compared to q = 0. For q = 2,
where bT /2/bT should converge to 8, we tend to see this convergence forπ0 ∈ {δ0, δ1},
although the picture is more blurred; but also here the order of magnitude of bT /2/bT
is in line with convergence to 8. Finally, for q = 3, the picture is even more blurred:
we tend to see convergence of bT /2/bT to 16 only for π0 = δ0, but even here the order
of magnitude of bT /2/bT is not incompatible with convergence to 16 (apart from the
case π0 = U [0, 2], which clearly needs larger values of T for bT /2/bT to stabilize).
Certainly, these numerical calculations are by no means proof of the conjectured rates,
but looking at the last column of Table 7, the ratios bT /2/bT are broadly in line with
the conjecture. Note, furthermore, that for any q ≥ 1 the remaining bias in Table 7
is extremely tiny in most cases, unlike the bias of the maximum integrated likelihood
estimator (reported as q = 0 in the table).

8 Some further remarks and ideas

8.1 Alternative bias correctionmethods

Let α̂(y, x, θ) := argmaxα∈A f
(
y
∣
∣ x, α, θ

)
be the MLE of α for fixed θ . Define

Q̃(ỹ | y, x, θ) := f
(
ỹ
∣
∣ x, α̂(y, x, θ), θ

)
, and let Q̃(x, θ) be the nY × nY matrix with

elements Q̃k,	(x, θ) = Q̃(y(k) | y(	), x, θ), for k, 	 ∈ {1, . . . , nY }.
Instead of implementing the bias correction of the score as in (16), one could

alternatively consider

s̃(1)(y, x, θ) := s(y, x, θ) −
∑

ỹ∈Y
s(ỹ, x, θ) f

(
ỹ
∣∣ x, α̂(y, x, θ), θ

)

= s(y, x, θ) −
∑

ỹ∈Y
s(ỹ, x, θ) Q̃(ỹ | y, x, θ)

= S(x, θ)
[
InY − Q̃(x, θ)

]
δ(y). (23)

This alternative bias correction method is very natural: We simply have subtracted
from the original score the expression for the bias in the first line of (15), and replaced
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the unknown A with the estimator α̂(y, x, θ). In fact, this is exactly the “profile-score
adjustment” to the score function that is suggested in Dhaene and Jochmans (2015a).

The expression in (23) is identical to that in (16), except that Q(x, θ) is replaced
with Q̃(x, θ). Iterating this alternative bias correction q times therefore also gives the
formula in (17) with Q(x, θ) replaced with Q̃(x, θ). Thus, by the same arguments as
before, for large values of q, the corresponding score function s̃(q)(x, θ) will be dom-
inated by contributions from eigenvectors of Q̃(x, θ) that correspond to eigenvalues
close to or equal to zero.

It is therefore natural to ask why in our presentation above we have chosen the bias
correction in (16) based on the posterior distribution of A instead of the bias correction
in (23) based on the MLE of A. The answer is that the matrix Q̃(x, θ) does not have
the same convenient algebraic properties as the matrix Q(x, θ). In particular, none
of the parts (i), (ii), (iii) of Lemma 2 would hold if we replaced Q(x, θ) by Q̃(x, θ),
implying that the close relationship between the bias correction in (23) and functional
differencing does not generally hold for the alternative bias correction discussed here.

To explain why Q̃(x, θ) does not have these properties, consider the following. For
given values of x and θ , assume that there exist two outcomes y and ȳ that give the
same MLE of A, that is, α̂(y, x, θ) = α̂(ȳ, x, θ). Then, the two columns of Q̃(x, θ)

that correspond to y and ȳ are identical, and therefore Q̃(x, θ) does not have full rank,
implying that it has a zero eigenvalue. The existence of this zero eigenvalue is simply
a consequence of α̂(y, x, θ) = α̂(ȳ, x, θ).

Now, in models where there exists a sufficient statistic for A (conditional on
X ), if the outcomes y and ȳ have the same value of the sufficient statistic, then
α̂(y, x, θ) = α̂(ȳ, x, θ), and in that case the zero eigenvalue of Q̃(x, θ) just discussed
is closely related to functional differencing because the existence of the sufficient
statistic generates valid moment functions; recall the example in equation (7).

However, we may also have α̂(y, x, θ) = α̂(ȳ, x, θ) for reasons that have nothing
to do with functional differencing. For example, consider Example 1B with normally
distributed errors, T ≥ 2 even, and T0 = T1 = T /2. Then, all outcomes y with y0 +
y1 = T /2 have α̂(y, θ) = −θ/2. So there are at least 1+T /2 different outcomes with
the same value of α̂(y, θ), which implies that Q̃(θ) has at least T /2 zero eigenvalues.
But we have found numerically that Q(θ) does not have zero eigenvalues in this
example for θ �= 0, that is, according to Lemma 2, no exact moment function exists.

This example shows that Q(x, θ) and Q̃(x, θ) have different algebraic properties,
and it explains why we have focused on Q(x, θ) instead of Q̃(x, θ) in our discussion.
Nevertheless, the observation that bias correction can be iterated using the formula in
(17) can be useful for alternative methods as well.

8.2 Alternative ways to implement approximate functional differencing

Instead of choosing s(q)(y, x, θ) as moment function to estimate θ0, we could alterna-
tively choose the moment function sh(y, x, θ) defined by (18) and (19) for some other
function h : [0, 1] → R. In particular, one very natural relaxation of s∞(y, x, θ) and
h∞(λ) = 1{λ = 0} would be to choose
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h(λ) = K (λ/c),

for some soft-thresholding function K : [0,∞) → [0,∞), for example, K (ξ) =
exp(−ξ). The tuning parameter q ∈ {0, 1, 2, . . .} is replaced here by the bandwidth
parameter c > 0, which specifies which eigenvalues of Q(θ, x) are considered to be
close to zero. Regarding the thresholding function, one could in principle consider a
simple indicator function K (ξ) = 1{ξ ≤ 1}, but since this function is discontinuous,
the resulting score function sh(y, x, θ) defined in (19) would then be discontinuous
in θ , so we would not recommend this.

Another possibility to implement approximate functional differencing is to replace
the setA by a finite setA∗ with cardinality nA less than nY . As explained in Remark
2 above, after this replacement, the matrix Q(x, θ) will have at least nY − nA zero
eigenvalues, that is, one can then use the moment function s∞(y, x, θ) defined in (20)
to implement the MM or GMM estimator. In this case, the key tuning parameter to
choose is the number of points nA in the set A∗ that “approximates” A.

8.3 Average effect estimation

In models of the form (2) we are often not only interested in the unknown θ0 but also
in functionals of the unknown π0(α|x). In particular, consider average effects of the
form

μ0 = E [μ(X , A, θ0)] = E

[∫

A
μ(X , α, θ0) π0(α | X) dα

]
,

where μ(x, α, θ) is a known function that specifies the average effect of interest.
For example, in a panel data model, if we are interested in the average partial
effect with respect to the p-th regressor in period t , we could choose μ(x, α, θ) =

∂
∂xt,p

∑
y∈Y yt f (y|x, θ, α). For other examples of functionals of the individual-

specific effects, see e.g. Arellano and Bonhomme (2012).
We now focus on the problem of estimating μ0. Therefore, in this subsection, we

assume that the problem of estimating θ0 is already resolved (with corresponding
estimator θ̂ ), and we focus on the problem that π0(α|x) is unknown when estimating
average effects μ0.

Analogously to the iterated bias-corrected score functions s(q)(y, x, θ) in (17), we
want to define a sequence of estimating functions w(q)(y, x, θ), q = 0, 1, 2, . . ., such
that, for some q,

μ
(q)∗ := E

[
w(q)(Y , X , θ0)

]

is close to μ0. The corresponding estimator of μ0 is

μ̂(q) := 1

n

n∑

i=1

w(q)(Yi , Xi , θ̂ ).
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Using the posterior distribution in (11), a natural baseline estimating function (q = 0)
is

w(0)(y, x, θ) :=
∫

A
μ(x, α, θ) πpost(α | y, x, θ) dα.

The corresponding estimator μ̂(0) of μ0 can again be motivated by “large-T ” panel
data considerations, where, under regularity conditions, the posterior distribution con-
centrates around the true value A as T → ∞.

Let W (x, θ) be the nY -vector with entries w(0)(y(k), x, θ), k = 1, . . . , nY . Then,
the analog of the limiting estimating function in (20), corresponding to q → ∞, for
average effects is

w(∞)(y, x, θ) := W ′(x, θ) Q†(x, θ) δ(y)

= W ′(x, θ) h̃(∞)[Q(x, θ)] δ(y), h̃(∞)(λ) :=
{

λ−1 for λ > 0,
0 for λ = 0,

(24)

where Q†(x, θ) is a pseudo-inverse of Q(x, θ), and the application of a func-
tion h̃(∞) : [0, 1] → R to the matrix Q(x, θ) was defined in equation (18).
The motivation for choosing w(∞)(y, x, θ) in this way is that it gives an unbi-
ased estimator of the average effect (i.e., μ

(∞)∗ = μ0) whenever we can write
μ(x, α, θ) = ∑

y∈Y ν(y, x, θ) f
(
y
∣∣ x, α, θ

)
for some function ν(y, x, θ).7 Of course,

average effects with this form ofμ(α, x, θ) are a very special case, but they are usually
the only cases for which we can expect unbiased estimation of the average effect to
be feasible (for fixed T ); see also Aguirregabiria and Carro (2021). Notice that we do
not assume here that μ(α, x, θ) is of this form, it is just used to motivate (24).

As we have seen before, the non-zero eigenvalues of Q(x, θ) can be very small,
which implies that the pseudo-inverse Q†(x, θ) can have very large elements. The
corresponding estimator μ̂(∞) based on (24) therefore typically has a very large vari-
ance and we do not recommend this estimator in practice. Instead, to balance the
bias-variance trade-off of the average effect estimator, some regularization of the
pseudo-inverse of Q(x, θ) in (24) is required. There are various ways to implement
regularization, in the same way that there are various ways to implement approximate
functional differencing (see Sect. 8.2).

7 This is because in that special case we have W ′(x, θ) = N ′(x, θ) Q(x, θ), where N (x, θ)

is the nY -vector with entries ν(y(k), x, θ), and therefore E

[
w(∞)(Y , X , θ0)

∣∣ X = x, A = α
]

=
N ′(x, θ0) Q(x, θ0) Q

†(x, θ0)E
[
δ(Y )

∣∣ X = x, A = α
] = N ′(x, θ0)E

[
δ(Y )

∣∣ X = x, A = α
] =

μ(x, α, θ0).
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Here, regularization means that we want to find functions h̃q(λ) that approximate
the inverse function 1/λ well for large values of λ ∈ [0, 1], but that deviate from 1/λ
for values of λ close to zero to avoid divergence.8 This gives,9 for q ∈ {0, 1, 2, . . .},

h̃q(λ) =
q∑

r=0

(1 − λ)r =
{

1−(1−λ)q+1

λ
for λ > 0,

q + 1 for λ = 0.
(25)

The corresponding estimating function that regularizes w(∞)(y, x, θ) is therefore
given by

w(q)(y, x, θ) := W ′(x, θ) h̃q [Q(x, θ)] δ(y), h̃q [Q(x, θ)] =
q∑

r=0

[
InY − Q(x, θ)

]r
.

(26)

This is a polynomial in Q(x, θ), as was the case for s(q)(y, x, θ). Choosing a value of q
that is not too large therefore ensures that the variance of the corresponding estimator
μ̂(q) remains reasonably small (for fixed q), because we don’t need the pseudo-inverse
of Q(x, θ).

Note also that w(q)(y, x, θ) and the corresponding estimators μ̂(q) have a large-
T bias-correction interpretation very similar to s(q)(y, x, θ). For example, we have
h̃1(λ) = 2 − λ, and therefore

w(1)(y, x, θ) = 2w(0)(y, x, θ) − W ′(x, θ) Q(x, θ) δ(y).

We conjecture that the estimator of μ0 corresponding to only W ′(x, θ)Q(x, θ)δ(y)
has twice the leading order 1/T asymptotic bias of the estimator μ̂(0) corresponding
to w(0)(y, x, θ), that is, w(1)(y, x, θ) is exactly the jackknife linear combination that
eliminates the large-T leading order bias in μ̂(0); see Dhaene and Jochmans (2015b).
Appropriate iterations of this jackknife bias correction also give the estimating func-
tions w(q)(y, x, θ) for q > 1.

We are not considering average effects further here. But we found it noteworthy
that there is a formalism for average effect calculation that closely mirrors the devel-
opment of approximate functional differencing for the estimation of θ0 introduced

8 In previous sections, the functions hq (λ) = (1 − λ)q were polynomial approximations of (rescaled
versions of) the function h∞(λ) = 1{λ = 0}. The regularization that is analogous to s(q)(y, x, θ) in (17)
is given by a q-th order Taylor expansion of the function 1/λ around λ = 1.
9 Here, we use the convention that 00 = 1, which also implies that

[
InY − Q(x, θ)

]0 = InY even though

Q(x, θ) has an eigenvalue equal to one. Also, there is some ambiguity in what value we should assign
to h̃q (λ) for λ = 0. We choose h̃q (0) = q + 1 because it results in the simple polynomial expression
(26) for h̃q [Q(x, θ)], which is convenient since h̃q [Q(x, θ)] can be evaluated without ever calculating the
eigenvalues and eigenvectors of Q(x, θ). However, if we want to obtain w(∞)(y, x, θ) in (24) as the limit
of w(q)(y, x, θ) as q → ∞, then we should assign h̃q (0) = 0 for λ = 0, but this would deviate from the
polynomial expression.
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above. However, this does not imply that we expect the results for average-effect esti-
mation to be necessarily similar to those for the estimation of the common parameters
θ0. In particular, for small values of T , the identified set for the average effects in
discrete-choice panel data models tends to be much larger than the identified set of
the common parameters (see, e.g., Chernozhukov, Fernández-Val, Hahn and Newey
2013; Davezies, D’Haultfoeuille and Laage 2021; Liu, Poirier and Shiu 2021; Pakel
and Weidner 2021). Therefore we expect larger values of T to be required for the
point estimators μ̂(q) to perform well, and we also expect the bias-variance trade-off
in the choice of q to be quite different. For a closely related discussion see Bonhomme
and Davezies (2017), and also the section on “Average marginal effects” in the 2010
working paper version of Bonhomme (2012).

9 Conclusions

We have linked the large-T panel data literature with the functional differencing
method through a bias correction that converges to functional differencing when
iterated. Our numerical illustrations show that in models where exact functional dif-
ferencing is not possible, one may still apply it approximately to obtain estimates that
can be essentially unbiased, even when the number of time periods T is small.

The key element in our construction is the nY ×nY matrix Q(x, θ). The eigenvalues
of this matrix are informative about whether (approximate) functional differencing is
applicable in a given model. The matrix Q(x, θ) also features prominently in our
bias-corrected score functions in (17) and in our regularized estimating functions
for average effects in (26). We have assumed a discrete outcome space with a finite
number of elements nY . When the outcome space is infinite, the matrix Q(x, θ) has
to be replaced by the corresponding operator.

The goal of this paper was primarily to introduce and illustrate an approximate
version of functional differencing. Future work is needed to better understand the
properties of the method and to explore its usefulness in empirical work, both for the
estimation of commonparameters,whichwas our primary focus, and for the estimation
of average effects, briefly introduced in Sect. 8.3.
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A Proofs

Proof of Lemma 1 Define

Q(ỹ | y, x, θ) =
∫
A f

(
ỹ
∣
∣ x, α, θ

)
f (y | x, α, θ) πprior(α | x)dα

[
pprior(ỹ | x, θ)

]1/2 [
pprior(y | x, θ)

]1/2

and let Q(x, θ) be the nY ×nY matrix with elements Qk,	(x, θ) = Q(y(k) | y(	), x, θ).
Also define the nY × nY diagonal matrix

Pprior(x, θ) = diag
[
pprior(y(k) | x, θ)

]
k=1,...,nY .

From (11) and (14) we obtain

Q(ỹ | y, x, θ) =
∫
A f

(
ỹ
∣∣ x, α, θ

)
f (y | x, α, θ) πprior(α | x)dα

pprior(y | x, θ)

= [
pprior(ỹ | x, θ)

]1/2
Q(ỹ | y, x, θ)

[
pprior(y | x, θ)

]−1/2
,

which in matrix notation is

Q(x, θ) = [
Pprior(x, θ)

]1/2
Q(x, θ)

[
Pprior(x, θ)

]−1/2
.

This shows that the matrices Q(x, θ) and Q(x, θ) are similar and therefore have the
same eigenvalues.10 The matrix Q(x, θ) is symmetric and positive semi-definite (by
construction), which implies that all its eigenvalues (and therefore all eigenvalues
of Q(x, θ)) are non-negative real numbers. Furthermore, Q(x, θ) is diagonalizable
because it is symmetric. Hence Q(x, θ) is also diagonalizable, because it is similar to
Q(x, θ).11

In addition, Q(x, θ) is a stochastic matrix (by construction), which implies that its
spectral radius is equal to one, that is, Q(x, θ) cannot have any eigenvalue larger than
one. We thus conclude that all eigenvalues of Q(x, θ) lie in the interval [0, 1]. ��

The following lemma is useful for the proof of Lemma 2, which we present after-
ward.

Lemma 3 Let the assumptions of Lemma 2 hold. Let w(y, x, θ0) ∈ R be such that

∑

y∈Y
w(y, x, θ0) Q

(
y
∣
∣ ỹ, x, θ0

) = 0 , for all ỹ ∈ Y .

10 Two matrices A and B are similar if B = P−1AP for some nonsingular matrix P . Similar matrices
have the same eigenvalues.
11 A matrix is diagonalizable if and only if it is similar to a diagonal matrix. Since Q(x, θ) is similar to
a diagonal matrix, and Q(x, θ) is similar to Q(x, θ), it must also be the case that Q(x, θ) is similar to a
diagonal matrix.
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Then

∑

y∈Y
w(y, x, θ0) f

(
y
∣
∣ x, α, θ0

) = 0 , for all α ∈ A.

Proof of Lemma 3 The nY ×nY diagonal matrix Pprior(x, θ0)was defined in the Proof
of Lemma 1. In addition, let F(x, α, θ0) andW (x, θ0) be the nY -vectors with elements
f (y(k) | x, α, θ0) and w(y(k), x, θ0), respectively, for k = 1, . . . , nY . Then

Q(x, θ0) =
∫

A
F(x, α, θ0) F

′(x, α, θ0) πprior(α | x) dα P−1
prior(x, θ0), (27)

and the condition on w(y, x, θ0) in the lemma can be written as

W ′(x, θ0) Q(x, θ0) = 0.

Plugging in the expression for Q(x, θ0) in (27) and multiplying with Pprior(x, θ0)
W (x, θ0) from the right gives

∫

A
W ′(x, θ0) F(x, α, θ0) F

′(x, α, θ0)W (x, θ0) πprior(α | x) dα = 0.

Since W ′(x, θ0) F(x, α, θ0) F ′(x, α, θ0)W (x, θ0) ≥ 0 and πprior(α | x) > 0 we con-
clude that

W ′(x, θ0) F(x, α, θ0) F
′(x, α, θ0)W (x, θ0) = 0, (28)

for almost all values α, except possibly for a set of values α that has measure zero
under πprior(α | x). However, since f

(
y
∣∣ x, α, θ0

)
is assumed to be continuous in α,

we conclude that (28) must hold for all α ∈ A, since any violation on a set of measure
zero would require a discontinuity in α. Finally, (28) also implies that

W ′(x, θ0) F(x, α, θ0) = 0 ,

for all α ∈ A. This is what we wanted to show, just written in vector notation. ��
Proof of Lemma 2 # part (i): LetU0(x, θ0) be the submatrix ofU (x, θ0) that only con-
tains those columns that are the right-eigenvectors of Q(x, θ0) corresponding to the
eigenvalues λ j (x, θ0) = 0. We then have Q(x, θ0)U0(x, θ0) = 0. Similarly, let
[U−1(x, θ0)]0 be the submatrix of U−1(x, θ0) that only contains the rows that are
the left-eigenvectors of Q(x, θ0) corresponding to the eigenvalues λ j (x, θ0) = 0. We
then have

[U−1(x, θ0)]0 Q(x, θ0) = 0 ,
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and according to Lemma 3 this implies

[U−1(x, θ0)]0 F(x, α, θ0) = 0. (29)

Next, by using the definition of s∞(y, x, θ0) and h∞[Q(x, θ0)] in the main text we
find

s∞(y, x, θ0) = S(x, θ0) h∞[Q(x, θ0)] δ(y)
= S(x, θ0)U (x, θ0) diag

([
1
{
λ j (x, θ0) = 0

} ]
j=1,...,nY

)
U−1(x, θ0) δ(y)

= S(x, θ0)U0(x, θ0) [U−1(x, θ0)]0 δ(y),

and therefore

E
[
s∞(Y , X , θ0)

∣∣ X = x, A = α
] = S(x, θ0)U0(x, θ0) [U−1(x, θ0)]0 F(x, α, θ0) = 0,

where in the last step we used (29).
# part (ii): Let m(x, θ0) be the nY -vector with elements m(y(k), x, θ0), k =

1, . . . , nY . Then, E
[
m(Y , X , θ0)

∣
∣ X = x, A = α

] = 0 can be written in vector nota-
tion as

m′(x, θ0) F(x, α, θ0) = 0. (30)

From the expression of Q(x, θ0) in (27) we see that this implies m′(x, θ0)Q(x, θ0) =
0, that is, if (30) holds for all α ∈ A, then Q(x, θ0) has a zero eigenvalue with
corresponding left-eigenvector m(x, θ0). This is the “if” part of the statement in part
(ii) of the lemma.

Conversely, if Q(x, θ0) has a zero eigenvalue, then letm(x, θ0) be a corresponding
left-eigenvector. We then have m′(x, θ0)Q(x, θ0) = 0. According to Lemma 3 this
implies that (30) holds, or equivalently thatE

[
m(Y , X , θ0)

∣∣ X = x, A = α
] = 0.We

have thus also shown the “only if” part of the statement in part (ii) of the lemma.
# part (iii): Letm(y, x, θ0) ∈ R be such thatE

[
m(Y , X , θ0)

∣∣ X = x, A = α
] = 0.

We choose

s(y, x, θ0) = m(y, x, θ0).

Using the definition of s(1)(y, x, θ) in (16) we then find s(1)(y, x, θ0) = m(y, x, θ0),
and therefore also

s(q)(y, x, θ0) = m(y, x, θ0) ,

for all q ∈ {1, 2, . . .}. We therefore also find s∞(y, x, θ0) = limq→∞ s(q)(y, x, θ0) =
m(y, x, θ0), which is what we wanted to show. ��
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