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Abstract
Weconsider a natural generalization of Jackson andWolinsky’s (J EconTheory 71:44–
74, 1996) connections model where the quality or strength of a link depends on the
amount invested in it and is determined by a non-decreasing function of that amount.
The information that the nodes receive through the network is the revenue from invest-
ments in links. We prove that in this most general version of the connections model,
the only possibly non-empty efficient networks, in the sense of maximizing the aggre-
gate profit, are still the all-encompassing star and the complete network, with the sole
and rare exception of a highly particular case where there is a draw between the all-
encompassing star, the complete network and a whole range of a particular type of
nested split graph structures intermediate between them.
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1 Introduction

Jackson and Wolinsky (1996) introduce a connections model of network formation
where nodes invest in links with other players in order to receive valuable information.
Each node embodies a piece of information ofworth v for any other node if it is received
intact. However, connection through a link is not perfect as it involves a certain friction
or decay, i.e., only a fraction δ (0 < δ < 1) of the information transmitted through
a link reaches the other node. The formation of each link requires an investment of a
fixed amount c by each of the two nodes involved. A noteworthy result is that in this
setting the only efficient architectures, that is, the only ones that can maximize the
aggregate payoff or net value of the network, i.e., the sum of the information received
by all players minus the total cost of the network, are the all-encompassing star, the
complete network or the empty network, depending on the configuration of values of
the two parameters, δ and c. The same occurs in the non-cooperative version of this
model in Bala and Goyal (2000), where links can be formed unilaterally.

The question arises of whether this result is robust to more general settings.1 The
proof of this result is straightforward, but it is unclear whether it is dependent on the
simplicity of the link-formation technology in the model: only one type of link of fixed
strength andfixed cost. To answer this question,we address in this paper the question of
efficiency in a natural generalization of Jackson andWolinsky’s connectionsmodel, by
assuming that the quality or strength of a link, i.e., the fidelity level of the transmission
through it, is never perfect, but depends on the amount invested in it. A link-formation
technology determines the quality of the resulting link as a function of investment.
Formally, a technology is a non-decreasing function whose range is [0, 1), i.e., an
increase in investment in a link cannot decrease its strength, but however much is
invested in a link transmission is never perfect. The revenue from investments in links
is the information that the nodes receive through the network. We prove that even
in this general setting, virtually, whatever the technology, the only possibly efficient
networks are the empty network, the all-encompassing star and the complete network.

Olaizola and Valenciano (2019) prove constructively that, under rather general
conditions for models extending the connections model of Jackson and Wolinsky
(1996) and for any link-formation technology, any network with positive net value
is dominated by a weighted nested split graph network (NSG-network) of particular
type called dominant nested split graph network (DNSG-network).2 The generalized
connections model considered here meets those conditions, so that result applies to
the current model and provides the basic point of support for the result obtained. As
any network is dominated by a connected DNSG-network, the strategy of the proof
consists of showing that any network of this type other than the complete network
and the all-encompassing star, which are both particular cases of connected DNSG-
networks, is strictly dominated by one of them, by a complete network or by an
all-encompassing star. In fact, we prove that this is so with one rare exception, that of a
highly particular case of a “supertie” where there is a tie between the all-encompassing

1 Section 7 briefly reviews some extensions and models in the wake of Jackson and Wolinsky (1996).
2 König et al. (2014) contains an interesting study of the topological properties of nested split graph
networks.
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star, the complete network and a whole range of a particular type of nested split
graph structures intermediate between them. Nevertheless, we show that by adding
the requirement of minimizing the total cost of the network renders this exception
impossible.

The rest of the paper is organized as follows. Section 2 introduces basic notation
and terminology. Section 3 introduces the generalized connections model. Section 4
addresses the question of efficiency and characterizes efficient networks. Section 5
deals with the issues of existence and uniqueness of efficient networks and the rarity
of a supertie. Section 6 briefly reviews some related literature, and Sect. 7 gives some
concluding comments emphasizing the results obtained and pointing out some lines
of further research. Proofs are relegated to “Appendix.”

2 Preliminaries

An undirected weighted graph consists of a set of nodes N = {1, 2, . . . , n}with n ≥ 3
and a set of links specified by a symmetric adjacency matrix g = (gi j )i, j∈N , with
gi j ∈ [0, 1) and gii = 0. An undirected weighted graph g can also be represented by
a map g : N2 → [0, 1), where N2 denotes the set of all subsets of N with cardinality
2. In what follows, i j stands for {i, j} and gi j for g({i, j}) for any {i, j} ∈ N2. When
the codomain of g is {0, 1} instead of [0, 1), i.e., gi j only takes the values 0 or 1,
we say that g is non-weighted and it can be specified as a set of links S ⊆ N2. In
particular, the non-weighted underlying graph Sg of a weighted graph g is Sg :=
{i j ∈ N2 : gi j > 0}. When gi j > 0 we say that a link of weight gi j connects i

and j . Nd(i, g) := { j ∈ N : gi j > 0} denotes the set of neighbors of node i , and its

cardinality,
∣
∣Nd(i, g)

∣
∣, is the degree of node i . Note that i /∈ Nd(i, g). N (i, g) denotes

the set of nodes connected to i by a path, i.e., a sequence of distinct nodes s.t. every
two consecutive nodes are connected by a link. The length of a path is the number of
links that it contains, i.e., the number of nodes minus 1. A graph is connected if any
two nodes are connected by a path. A component of a graph is a maximal connected
subgraph.

Undirected graphs, weighted or not, underlie a variety of situations where actual
links mean some sort of reciprocal connection or relationship. Such structures are
commonly referred to as networks. Behind a network there is always a graph as a highly
salient feature, so we transfer the notions introduced so far for graphs to networks and
refer the new ones directly to networks.

The empty network is the one for which gi j = 0 for all i j ∈ N2. A complete

network is one where gi j > 0 for all i j ∈ N2.3 An all-encompassing star consists
of a network with n − 1 links in which one node (the center) is connected to each of
the remaining nodes by a link. One important class of networks is that of those whose
underlying graph is a “nested split graph.”These networks exhibit a strict hierarchical
structure where nodes can be ranked by their number of neighbors.

3 Note that there is only one non-weighted complete network, but there are infinite complete weighted
networks.
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Fig. 1 A connected
non-weighted NSG-network

Definition 1 A nested split graph (NSG) is an undirected (weighted or not) graph g
such that

∣
∣
∣Nd(i, g)

∣
∣
∣ ≤

∣
∣
∣Nd( j, g)

∣
∣
∣ ⇒ Nd(i, g) ⊆ Nd( j, g) ∪ { j}.

Anested split graphnetwork (NSG-network for brief) is a networkwhoseunderlying
graph is nested split. In terms of the adjacency matrix, such graphs have a simple
structure. It is a symmetric matrix such that for a certain numbering of the nodes, each
row consists of a sequence of nonzero entries (apart from those in the main diagonal)
followed by zeros, and the number of nonzero entries in each row is no greater than
that in the preceding row. Such a numbering of the nodes is a ranking numbering . In
what follows, nodes are always assumed to be numbered like this in NSG-networks.
Nodes in an NSG-network are partitioned in NSG-classes, each containing the nodes
with the same number of neighbors. Isolated nodes, i.e., with no neighbors, form the
trivial class, which plays no relevant role.

Example 1 Figure 1 shows the adjacency matrix of a 12-node NSG-network with 6
NSG-classes: K1 = {1, 2} with 11 neighbors, K2 = {3} with 8 neighbors, K3 = {4}
with 5 neighbors, K4 = {5, 6} with 4 neighbors, K5 = {7, 8, 9} with 3 neighbors,
K6 = {10, 11, 12} with 2 neighbors.

3 A generalized connectionsmodel

In Jackson andWolinsky’s (1996) connections model, all links have the same strength
δ (0 < δ < 1), and the formation of a link requires an investment of a fixed amount
c > 0 by each of the two nodes involved. Thus, the question of an efficient investment
(in the sense of maximizing the aggregate payoff) by the node players is equivalent
to the question of an efficient investment by a planner making use of a technology
that requires an investment of at least 2c in a link for the link actually to form. Such
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a technology can be formalized as a map δ : R+ → [0, 1) s.t. if c ≥ 0 is the amount
invested in a link, δ(c) is the strength of the resulting link and is given by

δ(c) :=
{

δ, if c ≥ 2c
0, if c < 2c.

(1)

We consider the natural generalization of Jackson and Wolinsky’s connections
model that results from replacing the discrete technology in that model (1) by any
link-formation technology that meets the following definition:

Definition 2 A link-formation technology is a non-decreasing map δ : R+ → [0, 1)
s.t. δ(0) = 0.

The interpretation is clear: If c is the amount invested in a link to connect two
nodes, δ(c) is the level of fidelity of the transmission of information through it. More
precisely, δ(c) is the fraction of information flowing through the link that remains
intact.4 Flow occurs only through links invested in (δ(0) = 0), an increase in the
investment in a link cannot decrease its strength, but perfect fidelity in transmission
between different nodes is never reached (δ(c) < 1).

Thus, if nodes in a set N = {1, 2, . . . , n} can be connected by links according
to a link-formation technology δ, a link-investment vector is an n(n − 1)/2-vector,
c = (ci j )i j∈N2 , where ci j ≥ 0 denotes the investment in link i j ∈ N2 through which

the fidelity level is δ(ci j ).5 Investing c > 0 in a link determines its strength, δ(c), so
when δ(c) > 0 we often refer to such a link as a c-link. Thus, investment c yields
network gc, namely

gc := (gci j )i j∈N2 , with gci j = δ(ci j ). (2)

For link-investment vector c = (ci j )i j∈N2 , a node i thus receives the fraction from
another node’s worth v that reaches i through the best possible route in the weighted
network gc, as in Jackson and Wolinsky (1996). Let Pi j (gc) denote the set of paths in
gc connecting i and j . For a path p ∈ Pi j (gc), let δ(p) denote the resulting fidelity
level determined by the product of the fidelity levels through each link in that path,
i.e., if p = i i2i3 . . . ik j , δ(p) = δ(cii2)δ(ci2i3) . . . δ(cik j ). Thus, i values information
originating from j that arrives via p by vδ(p). If information is routed via the best
possible route from j to i , then i’s valuation of the information originating from j 	= i
is

v
j
i (g

c) = max
p∈Pi j (gc)

vδ(p) = v max
p∈Pi j (gc)

δ(p),

and i’s overall revenue from gc is

Vi (g
c) =

∑

j∈N (i;gc)
v
j
i (g

c).

4 Nevertheless, the strength of a link admits other interpretations, such as the “strength of a tie,”i.e., the
intensity of a personal relationship (Granovetter 1973). A link can also be a means for the flow of other
goods, but we give preference here to the interpretation in terms of information.
5 A link-investment vector c = (ci j )i j∈N2 can also and below often will be seen as a symmetric matrix
c = (ci j )i, j∈N , with ci j = c ji = ci j for all i, j ∈ N .
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For all i, j ∈ N , i 	= j, let pi j denote an optimal path connecting them, i.e., such
that δ(pi j ) = maxp∈Pi j (gc) δ(p); that is

pi j ∈ arg max
p∈Pi j (gc)

δ(p).

The net value of the network resulting from a link-investment vector c = (ci j )i j∈N2

is the aggregate payoff, i.e., the total value of the information received by the nodes
minus the total cost of the network:

v(gc) =
∑

i∈N
Vi (g

c) −
∑

i j∈N2

ci j = 2v
∑

i j∈N2

δ(pi j ) −
∑

i j∈N2

ci j . (3)

4 Efficiency

Let c and c′ be two link-investment vectors and v(gc) and v(gc
′
) as defined by (3): gc

dominates gc
′
(or c dominates c′) if v(gc) ≥ v(gc

′
), and gc strictly dominates gc

′
(or

c strictly dominates c′) if v(gc) > v(gc
′
). Network gc (or link-investment vector c) is

said to be efficient if it dominates any other.
Efficiency can be seen as a desirable outcome when links are formed in a decen-

tralized context by node players who invest in links. Alternatively, efficiency can be
seen as the goal of a planner investing in links with the objective of maximizing social
welfare, i.e., the aggregate revenue received by the nodes minus the total cost of the
network.

Olaizola and Valenciano (2019) prove constructively that under rather general con-
ditions, within a wide class of extensions of the connections model of Jackson and
Wolinsky (1996) and for any link-formation technology, any network with a positive
net value is dominated by a particular type of weighted NSG-network. Such dominant
NSG-networks show certain features in addition to those specified in Definition 1.
Like any undirected graph, a weighted NSG-network g is completely specified by
the triangular matrix above the main diagonal of 0-entries of its adjacency matrix,
T (g) = (gi j )i< j . Formally, this leads to the following definition:

Definition 3 A dominant nested split graph network (DNSG-network) is a connected
weighted NSG-network g such that, for a ranking numbering of the nodes, in T (g):
(i) each row (of entries to the right of the main diagonal of the adjacency matrix)
consists of a rightward non-decreasing sequence of positive entries followed by zeros;
(ii) all positive entries in the first row are greater than or equal to any other entries;
and (iii) from the second row down on, nonzero entries in the same column form a
non-decreasing sequence.

Thus, aDNSG-network consists of an all-encompassing central star centered at node
1 formed by the strongest links (i.e., first row and column of the adjacency matrix)
plus some additional links between spoke nodes of that star (i.e., remaining nonzero
entries on the northwest of the adjacency matrix) according to the pattern specified
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Fig. 2 Adjacency matrix of a
dominant NSG-network

in Definition 3. As an example, Fig. 2 shows an adjacency matrix that follows this
pattern.6

In order to make the paper basically self-contained, we briefly review the family of
connections models considered in Olaizola and Valenciano (2019). As in the current
model, a link-formation technology (as per Definition 2) rules the formation of costly
weighted links among a set of nodes, each of them endowed with value v. The value
that one node receives from another is what it receives through the strongest path
connecting them, and what it receives through a path is a fraction of v proportional to
the “strength” of their connection through that path. Olaizola and Valenciano (2019)
make the following assumptions about the “strength” of the connection of any two
nodes in a weighted network through a path: (i) the strength of a link is its weight;
(ii) the strength of the connection of i with j is the same as that of j with i ; (iii) the
strength of the connection through a path is non-decreasing w.r.t. the increase of the
strength of its links; (iv) the strength of the connection through a path is not stronger
than the connection of any two nodes in it through the subpath. Then, the net value
that a weighted network generates is the sum of the value received by all the nodes
minus the total cost of the network.7

It is straightforward to check that the model described in Sect. 3 satisfies all these
conditions, under which the dominance of weightedDNSG-networks is established in
Olaizola andValenciano (2019).We omit the very easy detailed checking here to avoid
a trivial digression. On the other hand, the constructive proof of the result in Olaizola
and Valenciano (2019) consists of an algorithm that generates a DNSG-network that
dominates the initial network by rearranging the links of any network whose net
value is positive, perhaps disposing of some of them. The procedure consists basically
of forming a star with the strongest links and adding the weakest of the remaining
available links at each stage only if adding it improves the connection of the two
worst connected nodes in the network. It is proved that the resulting DNSG-network
dominates the initial network. Nevertheless, that network may include superfluous
links between spoke nodes of the initial star that can be eliminated without decreasing
the net value of the network. In this case, a simple procedure enables to refine the

6 In what follows, we always assume that nodes in a DNSG-network are numbered according to a ranking
numbering for which the conditions in Definition 3 hold.
7 In fact, the result in Olaizola and Valenciano (2019) also covers two other cases: when only nodes at a
given or smaller distance are received and when only nodes with which the strength of the connection is
above a threshold level are received.
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result and produce a DNSG-network that dominates the initial network and contains
no superfluous links connecting spoke nodes of the initial star. That is, the elimination
of any link would cause a decrease in the net value of the network.8

Therefore, the result applies, and we have the following:

Proposition 1 If the net value is given by (3), for any investment c, network gc, given
by (2), is dominated either by the empty network or by a connected DNSG-network
where no link connecting spoke nodes of the central star can be eliminated without
decreasing the net value of the network.

This is the starting point for the proof of the main result in this paper, which
requires several steps. Before proceeding with it, we give the outline of the proof:
Given that any network with a positive net value is dominated by a connected DNSG-
network, Definition 3 specifies a particular type of NSG-structure among which an
efficient network is to be found if efficient non-empty networks do actually exist.
Thus, the strategy of the proof consists of showing that any DNSG-network other
than a complete network and an all-encompassing star is strictly dominated by one of
them.9 To that end, Proposition 1 is first refined by narrowing the class of dominant
connected DNSG-networks among which an efficient network is to be found if a non-
empty efficient network actually exists.We show that attention canbe constrained to the
subclass of simple DNSG-networks (Propositions 2 and 2’), among which only those
exhibiting two particular architectures can be efficient (Proposition 3 and Corollary 1).
Propositions 4 and 5 establish necessary conditions for a complete network and an
all-encompassing star to be efficient. (Both are particular, extreme cases of the two
especial architectures obtained in Corollary 1.) Proposition 6 establishes that unless
a rare condition holds, only an all-encompassing star or a complete network among
the two particular architectures obtained in Corollary 1 can be efficient. Then, the
result is finally established: The only possible architectures of a non-empty efficient
network are the complete network and the all-encompassing star network, unless a
rare condition holds (Theorem 1).

The following result refines Proposition 1 and enables us to confine our attention
to a simpler class of DNSG-networks.

Proposition 2 For any efficient connected DNSG-network with a positive net value
and no superfluous links, there is another connected DNSG-network, gc, with the
same underlying graph, no superfluous links and the same net value satisfying the
following conditions, where ĉ is any value in argmaxc>0(2vδ(c) − c):

(i) For all i, j 	= 1 s.t. ci j 	= 0 : ci j = ĉ.
(ii) For all j 	= 1 in the NSG-class of node 1 (i.e., with n − 1 neighbors) : c1 j = ĉ.

(iii) For all i, j 	= 1 : c1i ≤ c1 j if and only if
∣
∣Nd(i; gc)∣∣ ≥ ∣

∣Nd( j; gc)∣∣.

8 In the formulation of the result Olaizola and Valenciano (2019), only the structure of DNSG-network is
emphasized, but this refining procedure is commented in the concluding remarks of that paper.
9 In fact, as we show later, with the sole, rare exception of a highly particular case where there is a tie
between anoptimal all-encompassing star, an optimal complete networkand awhole range of “intermediate”
NSG-structures between them.
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Proposition 2 refines Proposition 1 by specifying a class ofDNSG-networks, among
which an efficient DNSG-network is to be found for any technology for which a non-
empty efficient network actually exists. Given that all links not involving central node
1 and those connecting node 1 with nodes with as many neighbors as node 1 in an
efficient DNSG -network are only used by the two nodes that each of them connects,
they must all maximize 2vδ(c) − c. Therefore, all such links can be replaced by ĉ-
links, with ĉ ∈ argmaxc>0(2vδ(c) − c) without altering the net value of the network.
Note that for such links to exist for a technology δ it is necessary that 2vδ(c) − c > 0
holds for some c, but this is not sufficient, and nor they need to be unique if they do
exist. Links of the central star connecting its center with spoke nodes with different
numbers of neighbors must receive different investments, and the greater the number
of neighbors the smaller the investment. By contrast, those connecting its center with
spoke nodeswith the same number of neighbors are proved either to necessarily receive
the same investment (when they are not neighbors) or to be replaceable by links of the
same strength without altering the net value.

Therefore, any efficient connectedDNSG-network with a positive net value has the
same net value as a simpler connected DNSG-network that satisfies the conditions in
Proposition 2, which motivates the following definition:

Definition 4 A simple DNSG-network is a connected DNSG-network with no super-
fluous links such that: (i) all links connecting pairs of nodes other than 1 and all
those connecting node 1 with nodes with n−1 neighbors receive the same investment
ĉ ∈ argmaxc>0(2vδ(c) − c); (i i) links of node 1 with nodes that belong to the same
NSG-class (i.e., with the same number of neighbors) receive the same investment, and
the smaller the number of neighbors the greater the investment is.

In terms of investments, the pattern of the link-investmentmatrix of a simpleDNSG-
network is represented in Fig. 3 for anNSG-networkwith an underlying graph identical
to that of Example 1, where there are 6 NSG-classes, ĉ ∈ argmaxc>0(2vδ(c)− c) and
ĉ < c2 < c3 < c4 < c5 < c6.

In the seminal papers of Jackson and Wolinsky (1996) and Bala and Goyal (2000),
the complete network and the all-encompassing star emerge as efficient structures.
Note that simple DNSG-networks include complete networks (all entries > 0, except
those in the main diagonal) and all-encompassing stars (nonzero entries in the first
row and column and no more nonzero entries) as extreme cases. Note also that in a
simple complete network all pairs of nodes are connected by links of the same strength
ĉ ∈ argmaxc>0(2vδ(c)− c), and in a simple all-encompassing star network all links
are of the same strength.

Proposition 2 can thus be reformulated like this:

Proposition 2’ (Proposition 2 reformulated) If gc is an efficient connected DNSG-
network with a positive net value and no superfluous links, then there is a simple
DNSG-network gc

′
with the same underlying graph and the same net value.

As a corollary of the following proposition shows, it is possible to further constrain
attention to the only two particular types of simple DNSG-network (other than the
complete network and the all-encompassing star) that can be efficient.
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Fig. 3 Link-investment matrix of a simple DNSG-network

Proposition 3 If gc is an efficient simple DNSG-network with a positive net value, then
gc has links of at most two different strengths.

Notice that given the precise structure of simpleDNSG-networks, the only oneswith
all links of the same strength are the complete network (all pairs of nodes connected
by ĉ-links for some ĉ ∈ argmaxc>0(2vδ(c) − c)) and the all-encompassing star of
links of the same strength. For those with only two levels of investment in their links,
one level must be ĉ (connecting some of the spoke nodes). But then there must be
other links of greater strength. This leaves only two types of simple DNSG-networks
which only have two levels of investment in their links c1 = ĉ and c2 > ĉ, all of which
are members of the family specified by the following definition, which also assigns a
notation to them which is used to conclude the proof of the main theorem.

Definition 5 If 1 ≤ k ≤ n, gc
∗
k and gc

∗∗
k are defined in terms of the triangular

matrix (ci j )i< j associated with the investments c∗
k and c∗∗

k given by

c∗
ki j

=
⎧

⎨

⎩

c2, if i = 1 and j > k,
ĉ, if i, j ≤ k,
0, otherwise,

c∗∗
ki j

=
⎧

⎨

⎩

c2, if i = 1 and j > k,
0, if i, j > k,
ĉ, otherwise,

where c2 > ĉ.

If k = 1, gc
∗
1 = gc

∗∗
1 is an all-encompassing star, while if k = n, gc

∗
n = gc

∗∗
n is

a complete network of ĉ-links. If 1 < k < n, gc
∗
k is a simple DNSG-network with

three NSG-classes of cardinality #K1 = 1 with n − 1 neighbors, #K2 = k − 1 with
k − 1 neighbors and #K3 = n − k with 1 neighbor (Fig. 4a), unless k = 2, because
gc

∗
2 is a non simple star as it is formed by one ĉ-link and n − 1 c2-links. By contrast,

gc
∗∗
k is a simple DNSG-network with two NSG-classes of cardinalities #K1 = k with

n − 1 neighbors and #K2 = n − k, with k neighbors (Fig. 4b), unless k = n − 1,
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(a) (b)
Fig. 4 Two-level investment matrices of DNSG-networks c∗k and c∗∗

k

because gc
∗∗
n−1 is a non simple complete network as it is formed by ĉ-links and only

one c2-link.10

Note that for any of these structures to be efficient a necessary condition is 2vδ(̂c)−
ĉ ≤ 2vδ(c2)2, i.e.,

ĉ ≥ 2vδ(̂c) − 2vδ(c2)
2. (4)

Thus, Proposition 3 yields the following:

Corollary 1 The only possibly efficient simple DNSG-networks are gc
∗
k (k 	= 2) and

gc
∗∗
k (k 	= n − 1) for some k (1 ≤ k ≤ n).

The following propositions establish necessary conditions for the efficiency of a
complete network and an all-encompassing star network.

Proposition 4 For a complete network gc to be efficient, the following conditions are
necessary:

(i) For all i j ∈ N2, ci j ∈ argmaxc>0(2vδ(c) − c) > 0.
(ii) For all i j ∈ N2, and all k 	= i, j : 2vδ(cki )δ(ck j ) ≤ 2vδ(ci j ) − ci j .

Proposition 5 For an all-encompassing star network to be efficient, the following
conditions are necessary:

(i) All links receive the same investment c∗
n s.t.

c∗
n ∈ argmax

c>0
(2vδ(c) + (n − 2)vδ(c)2 − c). (5)

(ii) Additionally, if ĉ ∈ argmaxc>0(2vδ(c) − c) > 0,

2vδ(c∗
n)

2 ≥ 2vδ(̂c) − ĉ, (6)

for all c > 0.

10 It is noteworthy that once again the same types of structure emerge in the final steps to prove this
result as in the lengthy proof under much more restrictive conditions in the unifying model of Olaizola and
Valenciano (2018) without using Proposition 1, and indeed using it as in Olaizola and Valenciano (2019).
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Note that, in general, under the minimal assumptions made on the technology, the
existence of an optimal complete network or an optimal star network is not guaranteed,
as the set argmaxc>0(2vδ(c)−c)may be empty. The samemay occur for the argmax-
set where c∗

n is taken according to (5). Moreover, even if it does exist, uniqueness is
not guaranteed as these sets may not be singletons.11 There may be various efficient
complete networks that combine different link-investments in argmaxc>0(2vδ(c)−c).
The highly special case may even occur in which

2vδ(̂c) − ĉ = 2vδ(c∗
n) − c∗

n = 2vδ(c∗
n)

2 (7)

for some ĉ ∈ argmaxc>0(2vδ(c) − c) and some c∗
n satisfying (5). In this case, there

is a supertie: The complete network and the all-encompassing star and a whole range
of particular intermediate DNSG-structures (gc

∗∗
k , k = 1, 2, . . . , n, in fact) may be

efficient as is presently shown. In fact, it turns out that unless this very special coin-
cidence occurs the only possible non-empty efficient simple DNSG-networks are the
complete network and the all-encompassing star as the following proposition shows.

Proposition 6 The only possibly efficient simple DNSG-networks are the complete
network and the all-encompassing star network, except if (7) holds for some ĉ ∈
argmaxc>0(2vδ(c) − c) and some c∗

n s.t. (5). If (7) holds for a technology δ, all gc
∗∗
k

(k 	= n − 1) are efficient if their same net value is positive.

The last part of Proposition 6 is clear. If (7) holds for a technology δ, the three
equal terms in (7) are the contributions to the net value of gc

∗∗
k (k = 1, 2, . . . , n) of

the connection of different pairs of nodes, namely 2vδ(̂c) − ĉ for those connected by
ĉ-links, 2vδ(c∗

n)−c∗
n for those connected by c

∗
n-links and 2vδ(c∗

n)
2 for those indirectly

connected through the central star, i.e., k + 1, . . . , n (Fig. 4b).
We now proceed to put together the steps set out so far, so as to prove the main

result:

Theorem 1 The only possible efficient networks are the empty network, a com-
plete network and an all-encompassing star network, unless (7) holds for any
ĉ ∈ argmaxc>0(2vδ(c) − c) and any c∗

n such that (5).

As we have seen, the argmax-sets from which ĉ and c∗ are picked may not be
singletons. This means that efficient networks that yield the same net value may have
different costs. This difference may be particularly important for a planner. This sug-
gests the possibility of strengthening the notion of efficient network by adding the
condition of minimizing the cost of the network.

Theorem 1 can then be adapted as follows:

Theorem 2 The only possible efficient networks ofminimal cost are the empty network,
the complete network of minimum cost, i.e., with

ĉ = min argmax
c>0

(2vδ(c) − c), (8)

11 The questions of existence and uniqueness are dealt with in the next section.
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and an all-encompassing star network of minimum cost, i.e., with

c∗
n = min argmax

c>0
(2vδ(c) + (n − 2)vδ(c)2 − c). (9)

5 Existence, uniqueness and rarity of the supertie

In this section, we examine the issues of the existence and uniqueness of efficient
networks, along with the rarity of the occurrence of the supertie.

5.1 Existence

In order to be as general as possible, the only assumptions made here about the tech-
nology are that links are costly and their conductivity non-decreasing with investment.
As a result, we obtain only necessary conditions for an investment/network to be effi-
cient. Nevertheless, there may not actually be any efficient networks, as the following
trivial example shows.

Example 2 Consider a variant of the seminal model of Jackson and Wolinsky (1996),
where the available technology is given by:

δ(c) :=
{

δ, if c > 2c
0, if c ≤ 2c,

where c > 0, 0 < δ < 1 and 2vδ − 2c > 0. That is, the only difference is that
δ(2c) = 0 instead of δ. In this case, a complete network cannot be efficient for an
obvious reason: maxc>0(2vδ(c) − c)) does not exist. The same goes for the star.

Obviously, the continuity of δ suffices to guarantee the existence of an optimal star
and an optimal complete network, and consequently the existence of an efficient non-
empty network ifmaxc>0(2vδ(c)−c) > 0 ormaxc>0(2vδ(c)+(n−2)vδ(c)2−c) > 0.

As for efficiency along with minimal cost, continuity of δ also ensures the compact-
ness of the argmax-sets in (8) and (9), and consequently, ĉ and c∗

n are well-defined by
(8) and (9).

5.2 Uniqueness

Nevertheless, even assuming continuity, the uniqueness (up to a permutation of the
labels of the nodes) of an efficient network is not guaranteed as both argmax-sets
may contain more than one value. An optimal complete network is unique only if
argmaxc>0(2vδ(c) − c) is a singleton, and this is certain if δ is strictly concave as
well as continuous, but concavity does not suffice to guarantee it, as the following
example shows:
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Fig. 5 A technology in the family of Example 3

Example 3 Consider the following 3-parametric family of technologies, piecewise lin-
ear and concave (no strictly):

δ(c) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
ĉmin+k
2vĉmin

)

c, if 0 ≤ c ≤ ĉmin,

c+k
2v , if ĉmin ≤ c ≤ c∗,

c∗+k
2v , if c ≥ c∗,

where parameters ĉmin, c∗ and k are s.t. 0 < ĉmin < c∗ < 2v − k and k < 2v. Figure 5
shows the graph of a technology in this family.

It is easy to check that for any technology in this family the following holds

max(2vδ(c) − c) = k and argmax
c>0

(2vδ(c) − c) = [̂cmin, c
∗].

Therefore, any complete network where any pair of nodes are connected by links of
strength within the interval [̂cmin, c∗] is optimal. Whether the complete network or
all-encompassing stars are efficient depends on k ≶ 2vδ(c∗)2, and a supertie occurs
if k = 2vδ(c∗)2.

An optimal all-encompassing star is unique (up to the identity of the central node)
only if argmaxc>0(2vδ(c) + (n − 2)vδ(c)2 − c) is a singleton, and this is certain if δ

is continuous and in addition 2vδ(c) + (n − 2)vδ(c)2 − c is strictly concave, which
is certain if both δ(c) and δ(c)2 are strictly concave.

Efficiency along with minimal cost of a complete network or a star network implies
its uniqueness. Thus, continuity is sufficient to guarantee uniqueness unless, in addition
to a supertie, the cost of the optimal star and complete also coincide, i.e., c∗

n = n
2 ĉ

holds.

5.3 Rarity of a supertie

As for the occurrence of a supertie (7), it should be noticed that it is not just a tie
between the net values optimal complete networks and optimal all-encompassing
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(a) (b)
Fig. 6 δ(c), 2vδ(c) and c

stars. The following example illustrates the possibility and rarity of the super-
tie.

Example 4 Consider the following biparametric family of technologies piecewise lin-
ear and continuous, perhaps the simplest that can be thought of:

δ(c) =
⎧

⎨

⎩

δ
c c, if 0 ≤ c ≤ c,

δ, if c ≥ c,
(10)

where parameters v, c and δ are s.t. 0 < c < 2vδ. (Otherwise, a link that only connects
two nodes is not worth its cost.) The conductivity/strength of a link increases linearly
up to a saturation point at (c, δ), i.e., at cost c and saturation level δ, beyond which it
remains constant no matter how much is invested in the link. Figure 6 represents δ(c),
2vδ(c) and c.

Note that

ĉ = argmax
c>0

(2vδ(c) − c) = c = argmax
c>0

{

2vδ(c) + (n − 2)vδ(c)2 − c
}

= c∗.

Whether the optimal all-encompassing star g∗ or any optimal complete network g�
is efficient depends on their net values. The net value of an optimal complete network
g� is

v(g�) = n(n − 1)

2
(2vδ − c),

while that of an optimal star is

v(g∗) = (n − 1)(2vδ − c + v(n − 2)δ
2
) = (n − 1)(k + v(n − 2)δ

2
).

From this, it follows easily that

v(g�) ≶ v(g∗) ⇔ 2vδ − c ≶ 2vδ
2 ⇔ 2vδ(1 − δ) ≶ c.
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Fig. 7 Technologies for which complete, star and empty networks are efficient

Thus, on the boundary 2vδ(1−δ) = c separating the regions where only the complete
network or the all-encompassing star is efficient, a supertie occurs, i.e., 2vδ̂ − ĉ =
2vδ − c = 2vδ∗ − c∗ = 2vδ

2
. Figure 7 shows (for v = 1, n = 10) the regions of

values of the two parameters, c and δ, separated by thick lines, where the efficient
network for the corresponding technology is the complete network, the star or the
empty network. For technologies in this family whose saturation (c, δ) occurs within
region I, the efficient networks are complete; for those whose saturation occurs within
region II, the efficient networks are all-encompassing stars, while for those whose
saturation occurs within region III, the only efficient network is the empty one.12

6 Related literature

Since the seminal papers of Jackson andWolinsky (1996) and Bala and Goyal (2000),
there has been a growing branch of economic literature that draws up models of
network formation. In this brief review, we concentrate preferentially on publications
stemming from or in the wake of these models, where agents derive utility from their
direct and indirect connections by investing in links, and focus on those most closely
related to the model studied in this paper.13

Nested split graph networks were first brought into network economics by König
et al. (2014). Olaizola and Valenciano (2019), establishing the dominance of NSG-
networks in a very general connections model, lay the groundwork for the results
obtained in this paper. Bloch and Dutta (2009) introduce endogenous link strength
in a connections model, opening up an interesting line of research. Their paper was
in fact the one that most inspired our work. Bloch and Dutta replace Jackson and
Wolinsky’s discrete technology by a function that determines the strength of a link as

12 Note the coincidence of Fig. 10 with the regions of values of the parameters where these structures are
efficient in Jackson and Wolinsky’s (1996) discrete biparametric model. This is not surprising, given that
in the current family of non-discrete technologies it holds that ĉ = c = c∗.
13 Excellent surveys on social and economic networks areGoyal (2007), Jackson (2008) andVega-Redondo
(2007). See also Bramoullé et al. (2015).
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a function of the players’ investments in it. They assume that a unit of resource limits
the players’ investments and that technology is an additively separable and convex
function, i.e., they assume non-decreasing returns to investment. We instead only
assume technology to be a non-decreasing function and no budget constraint, hence
the different results. Bloch and Dutta prove that the star is the only stable architecture
and the only efficient one. Deroian (2009) adopts a similar approach, but in directed
communication, i.e., links are directed. As in Bloch and Dutta (2009), in equilibrium
agents concentrate their investment on a single link. He establishes that the complete
wheel is the unique efficient architecture and the unique Nash architecture. So (2016),
like Bloch and Dutta (2009), assumes that a unit of resource limits the investment of
every player and that the strength of a link is an additively separable function of the
investments in it of the players that it connects, but unlike Bloch and Dutta, Chiu Ki So
assumes concavity instead of convexity, i.e., that the strength of a link connecting i and
j where i invests x j

i and j invests xij is φ(x j
i )+φ(xij ), with φ increasing and strictly

concave, while in our model the strength is φ(x j
i + xij ) with φ just non-decreasing.

She obtains sufficient conditions for the symmetric complete network to dominate all
star networks, but no characterization is provided.14 She also establishes sufficient
conditions for the symmetric star and the complete network to be Nash stable.

Other, less closely related models with endogenous link strength are the following.
Cabrales et al. (2011) provide a model where players choose an aggregate level of
socialization effort which is distributed across all possible bilateral interactions in
proportion to the partner’s socialization effort; Feri and Meléndez-Jiménez’s (2013)
provide a dynamic model, where the choice of whom to link and a coordination game
determines the strength of the links. Harmsen-van Hout et al. (2013) provide a model
where individuals derive social value from direct connections and informational value
from direct and indirect connections, but the more links an individual sustains the
weaker they are. In Boucher (2015), individuals with a limited budget derive utility
from “self-investment” and from direct connections, assuming the utility of a direct
link to be a convex function of the investments of the two players involved, whose
distance also enters as an argument their utility. Also in Salonen (2015), Baumann
(2019) and Griffith (2019), individuals with limited resources derive utility from self-
investment and fromdirect connections, but assuming the utility of a link to be a strictly
concave function of the investments of the two players. Ding (2019) considers a CES
(constant elasticity of substitution) link-formation technology that nests unilateral and
bilateral network formation.

7 Concluding comments

It is worth emphasizing the generality and naturalness of the extension of Jackson and
Wolinsky’s (1996) connections model studied, where the two parameters—cost and
decay level—fixed exogenously in Jackson and Wolinsky’s model are replaced by a
function, i.e., a technology that relates the investment in a link and its strength.

14 As Chiu Ki So rightly acknowledges in “Introduction”: “A complete characterization of efficient and
stable networks for concave technologies seems analytically formidable.”
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As it turns out, still in broad general terms as far as technology is concerned, in
connections models à la Jackson–Wolinsky complete networks and all-encompassing
star networks continue to be the only possibly non-empty efficient networks unless a
rare coincidence occurs. Even the exception of a supertie in this more general model
is very rare. Moreover, if the notion of efficiency is strengthened by requiring minimal
cost, only complete networks and all-encompassing star networks can possibly satisfy
this requirement. The outcome of a laborious proof confirms the great robustness
of the result obtained by Jackson and Wolinsky (1996) for the simplest technology,
where only one type of link, with fixed strength and fixed cost, is feasible. This adds
new insight, substantially increasing the scope of the connections model introducing
endogenous link strength.

It is worth noting the crucial role of the result (and its proof) obtained in Olaizola
and Valenciano (2019) in the laborious proof of Theorem 1: The first step in its proof
(Proposition 1) is a corollary of that result, and the final steps for the proof of the
theorem are based on the algorithm at the basis of the proof in Olaizola and Valen-
ciano (2019). The proof then takes advantage of the sharp structure ofDNSG-networks,
among which one is sure to be efficient if a non-empty efficient network exists (Propo-
sition 1), to corner the actual candidates step by step. Each step narrows the set of
candidate networks. It is also worth remarking that the result on efficiency in the “uni-
fying” model in Olaizola and Valenciano (2018), whose proof was extremely lengthy,
is now a direct corollary of Theorem 1 in this work.

An easy strengthening of Theorem 1 is worth mentioning. The model considered
here assumes that revenue and investments occur simultaneously, so as long as the
net value is positive a network is feasible. In other words, the planner has unlimited
credit and there are no budget constraints. This may seem unrealistic and begs ques-
tion of efficiency under a budget constraint. As commented, Olaizola and Valenciano
(2019) provide an algorithm that rearranges the available links (i.e., those forming the
network) in a more efficient way, perhaps disposing of some of them, and yields a
connected DNSG-network whose net value is at least as high as that of the original
network. Therefore, if a network is feasible under a given budget, this rearranging
procedure can be applied without increasing the cost. This means that the result in
Olaizola and Valenciano (2019) applies, i.e., any network feasible for a budget is dom-
inated by aDNSG-network which is also feasible for the budget.Moreover, Theorem 1
extends to the case when the planner has a limited budget. To see why, note that if δ

is the available technology and b the budget, this is equivalent in practical terms to no
budget and a technology δb given by

δb(c) =
⎧

⎨

⎩

δ(c), if 0 ≤ c ≤ b,

δ(b), if c ≥ b.

An natural line of further work is to address the question of stability, i.e., Nash
equilibrium or pairwise stability, in a decentralized context where node players can
invest in links and a technology in thegeneral sense consideredhere, possibly satisfying
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further regularity conditions, determines the strength of each link. That will be the goal
of a separate paper
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Appendix

Proposition 2

Proof Let gc be an efficient connected DNSG-network where nodes are numbered so
that Definition 3 holds, with a positive net value and no superfluous links.

(i): Let i and j be two nodes, i, j 	= 1, directly connected, i.e., ci j > 0. Given the
DNSG-structure of gc, the strongest links are those that form the all-encompassing star
centered at node 1 that connects any two nodes other than node 1 by two-link paths.
Therefore, link i j cannot be a necessary part of the optimal path connecting any other
pair of nodes in gc. In other words, link i j can only be part of one optimal path, the one-
link path connecting i and j . Then, given that the link is only useful for i and j to see
each other, for investment c to be efficient ci j must maximize 2vδ(c)− c, that is, ci j ∈
argmaxc>0(2vδ(c) − c). Then, all such links can be replaced by ĉ-links, where ĉ ∈
argmaxc>0(2vδ(c) − c), to obtain a DNSG-network with the same underlying graph,
the same net value, which is consequently also efficient and has no superfluous links.

(ii): Now assume that node j 	= 1 belongs to the NSG-class K1 of node 1, i.e.,
j has n − 1 neighbors. All nodes in K1 are directly connected with all other nodes,
so links connecting 1 with other nodes in K1 are not used by any indirect connec-
tion. That is, link 1 j is only used by 1 and j to see each other. Therefore, c1 j ∈
argmaxc>0(2vδ(c)− c). Then, all such links can also be replaced by ĉ-links to obtain
a DNSG-network with the same net value and no superfluous links.

(iii): In view of (i) and (ii), it is possible to replace all links connecting pairs of
nodes other than 1 and those connecting node 1 with nodes with as many neighbors
as node 1 by ĉ-links for a fixed ĉ ∈ argmaxc>0(2vδ(c) − c) to form a network with
the same underlying graph, the same net value and no superfluous links. Let gc (with
c so updated) be such a network and i, j 	= 1. If

∣
∣Nd(i; gc)∣∣ >

∣
∣Nd( j; gc)∣∣ , the

DNSG-structure of gc implies that δ(c1i ) ≤ δ(c1 j ). We show that the inequality must
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be strict. Assume k ∈ Nd(i; gc) \ Nd( j; gc), i.e., cik = ĉ > 0 and c jk = 0. Then,
2vδ(̂c)− ĉ > 2vδ(c1i )δ(c1k) (otherwise the ĉ-link connecting i and k would be super-
fluous) and if δ(c1i ) = δ(c1 j ), then 2vδ(̂c) − ĉ > 2vδ(c1 j )δ(c1k) too. That is, by
connecting j and k by a ĉ-link the net value of the network would increase. Therefore,
it must be δ(c1i ) < δ(c1 j ), which implies c1i < c1 j .

Thus, nodes with fewer neighbors are connected through stronger links with the
center. We show now that nodes with the same number of neighbors are either con-
nected with the center by links of the same strength or by links that can be replaced by
links of the same strength without changing the net value. Let i, j 	= 1 be two nodes
with the same number of neighbors,

∣
∣Nd(i; gc)∣∣ = ∣

∣Nd( j; gc)∣∣, and let c = c1i and
c′ = c1 j . Let c′ and c′′ be the investments that result from changing one link in c: link
1 j for c → c′, and link 1i for c → c′′, defined by

c′
kl :=

{
c, if kl = 1 j
ckl , otherwise.

c′′
kl :=

{

c′, if kl = 1i
ckl , otherwise.

It follows that if i and j are not neighbors, the changes in the contribution to the net
value from gc to gc

′
and from gc to gc

′′
are of equal absolute value and opposite sign

or zero for any pair of nodes but for i and j , namely

v(gc) − v(gc
′
) = A + 2v(δ(c)δ(c′) − δ(c)2) ≥ 0,

v(gc) − v(gc
′′
) = −A + 2v(δ(c)δ(c′) − δ(c′)2) ≥ 0,

because for gc to be efficient both differences must be ≥ 0. Therefore, adding up the
two inequalities we have

2δ(c)δ(c′) − δ(c)2 − δ(c′)2 = −(δ(c) − δ(c′))2 ≥ 0,

which implies δ(c)− δ(c′) = 0, i.e., δ(c1i ) = δ(c1 j ), which, by gc efficiency, implies
c1i = c1 j .

Finally, if i and j are neighbors the changes in the contribution to the net value
from gc to gc

′
and from gc to gc

′′
are of equal absolute value and opposite signs or

zero for any pair of nodes, i.e.,

v(gc) − v(gc
′
) = −(v(gc) − v(gc

′′
)),

which, as both v(gc) − v(gc
′
) and v(gc) − v(gc

′′
) are ≥ 0, implies v(gc) = v(gc

′
) =

v(gc
′′
). From this, it follows that

c, c′ ∈ argmax
c>0

(2vδ(c)(K + 1) − c),

where K = ∑

k<l≤n δ(c1l), if k − 1 is the number of neighbors of both i and j . In
general, this argmax-set may not be a singleton, but if all links connecting the center
with nodes in the same NSG-class as i and j are replaced by c-links the net value will
remain the same.
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Finally, given that the new network has been formed by replacing all existing links
between spoke nodes of the central star in the initial one (none of them superfluous) by
ĉ-links, and each of the links forming the central star has been either left unchanged
or replaced by a link that does not alter the net value, in the resulting network the
underlying graph is the same and no link is superfluous. ��

Proposition 3

Proof Assume that c is an efficient investment vector such that gc is a simple DNSG-
network, with p ≥ 2 NSG-classes K1, K2, . . . , Kp−1, Kp. We show that the central
star of gc can have links of at most two different strengths: ĉ and c2. Assume that
there are links of three different strengths in the central star. Then, at least two of them
must have strengths greater than ĉ. This must be so for classes Kp−1 and Kp, with
investments cp−1 < cp. Let j := max Kp−1 (and consequently j + 1 = min Kp),
and compare the net value of gc with the net value of the two networks, gc

′
and gc

′′
,

that result from each of the following two modifications of c (Fig. 8) denoted by c′
and c′′ respectively:15

(a) c → c′ : Invest cp in link 1 j instead of cp−1, delete the ĉ-links connecting j

with nodes in Nd( j, gc)\Nd( j + 1, gc) and let all other link-investments remain
unchanged.

(b) c → c′′ : Invest cp−1 in link 1, j + 1 instead of cp, connect j + 1 with nodes

in Nd( j, gc)\Nd( j + 1, gc) by ĉ-links, and let all other link-investments remain
unchanged.

Figure 8 represents columns j and j +1 of the investment matrix corresponding to
gc (center), gc

′
(left) and gc

′′
(right). Note that c → c′ modifies only the j-column and

row, while c → c′′ modifies only the ( j + 1)-column and row. A comparison of the
impact of either modification on the net value generated by the connection of any pair
of nodes entry by entry yields the following.16 The impact in both cases is either the
same (when there is no impact), or the same but with opposite signs (entries framed),
but in only one case for each (entries marked as 0∗ in Fig. 8).

The change in contribution by the indirect connection between j and j + 1 dif-
fers. In the first case, it is 2v(δ(cp−1)δ(cp) − δ(cp)2), while in the second it is
2v(δ(cp−1)δ(cp) − δ(cp−1)

2). This means that for v(gc) to be efficient the following
must hold:

v(gc) − v(gc
′
) = A + 2v(δ(cp−1)δ(cp) − δ(cp)

2) ≥ 0,

v(gc) − v(gc
′′
) = −A + 2v(δ(cp−1)δ(cp) − δ(cp−1)

2) ≥ 0,

15 In fact, any choice of nodes in Kp−1 and Kp would do. The only reason for this particular choice is to
preserve the conditions in Definition 3 for the same numbering of the nodes after either of the modifications
considered.
16 Note that 0-entries not in the main diagonal correspond to pairs of nodes indirectly connected through
the star. In Fig. 4, 0-entries in the main diagonal are in bold (0).
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Fig. 8 Columns j and j + 1 in c, c′ and c′′

and summing up these inequalities, we obtain −(δ(cp) − δ(cp−1))
2 ≥ 0, which is a

contradiction as we assume cp−1 < cp and δ(cp) > δ(cp−1). ��

Proposition 4

Proof (i) This follows from the fact that in an efficient complete network any link is
only used by the two nodes that it connects.

(ii) Otherwise, if 2vδ(cki )δ(ck j ) > 2vδ(ci j ) − ci j , the net value of the network
would increase if link i j were deleted. ��

Proposition 5

Proof (i) An all-encompassing star is anNSG-networkwith twoNSG-classes: a single-
ton, the center and all other nodes with only one neighbor. There are no links between
spoke nodes, so any two spoke nodes in that NSG-class are not neighbors. Therefore,
the last part of the proof of Proposition 2(iii) adapts to the case of an efficient all-
encompassing star and yields that all spoke nodes are connected with the center by
links that receive the same investment, say, c∗

n . The net value of an all-encompassing
star of c∗

n-links, g
c, is:

v(gc) = (n − 1)(2vδ(c∗
n) + v(n − 2)δ(c∗

n)
2 − c∗

n).
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Fig. 9 Columns k and k + 1 in c∗k , c∗k−1 and c∗k+1

Thus, for this star to be efficient c∗
n must maximize 2vδ(c)+(n−2)vδ(c)2−c.Hence,

(5).
(ii) Otherwise, if 2vδ(c∗

n)
2 < 2vδ(̂c) − ĉ, the net value of the network would

increase if two spoke nodes were connected with a ĉ-link. ��
Proposition 6

Proof By Corollary 1, the only possibly efficient simpleDNSG-networks are gc
∗
k (k 	=

2) or gc
∗∗
k (k 	= n − 1) for some k = 1, 2, . . . , n. We first discuss gc

∗
k (Fig. 4a) and

prove that the only efficient gc
∗
k must be complete (gc

∗
n ) or an all-encompassing star

(gc
∗
1 ). To that end, compare the net value of gc

∗
k (2 < k < n ) with the net values of the

two networks, gc
∗
k−1 and gc

∗
k+1 , that result from each of the following twomodifications

of c∗
k (Fig. 9):

(a) c∗
k → c∗

k−1 : Invest c2 in link 1k instead of ĉ, delete the ĉ-links connecting k with
other nodes in K2 and let all other link-investments be unchanged.

(b) c∗
k → c∗

k+1 : Invest ĉ in link 1, k + 1 instead of c2, connect k+1 with all the other
nodes in K2 by ĉ-links and let all other link-investments be unchanged.

Then, we have

v(gc
∗
k ) − v(gc

∗
k−1) = 2vδ(̂c) − ĉ − (2vδ(c2) − c2)

+(k − 2) (2vδ(̂c) − ĉ − 2vδ(̂c)δ(c2))

+(n − k)(2vδ(̂c)δ(c2) − 2vδ(c2)
2),

v(gc
∗
k ) − v(gc

∗
k+1) = 2vδ(c2) − c2 − (2vδ(̂c) − ĉ)

+(k − 1) (2vδ(̂c)δ(c2) − (2vδ(̂c) − ĉ))

+(n − k − 1)(2vδ(c2)
2 − 2vδ(̂c)δ(c2)),

and therefore:

v(gc
∗
k ) − v(gc

∗
k−1) = −(v(δc

∗
k ) − v(δc

∗
k+1)) − (2vδ(̂c) − ĉ − δ(̂c)δ(c2))

+(2vδ(̂c)δ(c2) − δ(c2)
2).
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Fig. 10 Columns k and k + 1 in c∗∗
k , c∗∗

k−1 and c∗∗
k+1

If gc
∗
k is efficient, 2vδ(̂c) − ĉ ≤ δ(̂c)δ(c2) must hold. (Otherwise, the net value of the

network would increase if a node in K1 and a node in K2 were connected by a ĉ-link.)
Then,

2vδ(̂c)δ(c2) − δ(c2)
2 < 2vδ(̂c) − ĉ − δ(̂c)δ(c2) ≤ 0.

In other words,
v(gc

∗
k ) − v(gc

∗
k−1) + (v(δc

∗
k ) − v(δc

∗
k+1) < 0

or equivalently

v(gc
∗
k ) − v(gc

∗
k+1) ≥ 0 ⇒ v(gc

∗
k ) − v(gc

∗
k−1) < 0,

which contradicts the efficiency of gc
∗
k . This leaves the all-encompassing star gc

∗
1 and

the complete network gc
∗
n as the only possibly efficient simple DNSG-networks of

type gc
∗
k .

We now discuss a network of the second type, gc
∗∗
k with 1 < k < n − 2 (Fig. 4b).

Compare the net value of gc
∗∗
k with the net value of the two networks, gc

∗∗
k−1 and gc

∗∗
k+1 ,

that result from each of the following two modifications of c∗∗
k denoted by c∗∗

k−1 and
c∗∗
k+1, respectively (Fig. 10):

(a) c∗∗
k → c∗∗

k−1 : Invest c2 in link 1k instead of ĉ, delete the ĉ-links connecting k with
nodes in K2, and let all other link-investments be unchanged.

(b) c∗∗
k → c∗∗

k+1 : Invest ĉ in link 1, k + 1 instead of c2, connect k + 1 with the other
n− k − 1 nodes in K2 by ĉ-links, and let all other link-investments be unchanged.

Then, we have

v(gc
∗∗
k ) − v(gc

∗∗
k−1) = (n − k + 1)(2vδ(̂c) − ĉ) − (n − k)2vδ(c2)

2 − 2vδ(c2) + c2,

v(gc
∗∗
k ) − v(gc

∗∗
k+1) = −(n − k)(2vδ(̂c) − ĉ) + 2vδ(c2) − c2 + (n − k − 1)2vδ(c2)

2,

and therefore:

v(gc
∗∗
k ) − v(gc

∗∗
k−1) = −(v(gc

∗∗
k ) − v(gc

∗∗
k+1)) + 2vδ(̂c) − ĉ − 2vδ(c2)

2.
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If gc
∗∗
k is efficient, 2vδ(̂c) − ĉ ≤ δ(c2)2 must hold. (Otherwise, the net value of the

network would increase if any two nodes in K2 were connected by a ĉ-link.) Then,
necessarily

2vδ(̂c) − ĉ − 2vδ(c2)
2 ≤ 0.

If 2vδ(̂c) − ĉ − 2vδ(c2)2 < 0, then it follows that

v(gc
∗∗
k ) − v(gc

∗∗
k+1) ≥ 0 ⇒ v(gc

∗∗
k ) − v(gc

∗∗
k−1) < 0,

which contradicts the efficiency of gc
∗∗
k and leaves the all-encompassing star gc

∗∗
1 and

the complete network gc
∗∗
n as the only possibly efficient simple DNSG -networks of

type gc
∗
k .

Otherwise, if 2vδ(̂c) − ĉ − 2vδ(c2)2 = 0, then

v(gc
∗∗
k ) − v(gc

∗∗
k−1) = −(v(gc

∗∗
k ) − v(gc

∗∗
k+1)),

which implies that gc
∗∗
k can only be efficient if v(gc

∗∗
k ) − v(gc

∗∗
k−1) = v(gc

∗∗
k ) −

v(gc
∗∗
k+1) = 0. In otherwords, in the sequence from gc

∗∗
1 to gc

∗∗
n−1 the increase (decrease)

in net value is the same for any two consecutive structures. From this, it also follows
that gc

∗∗
k is strictly dominated either by gc

∗∗
1 or by gc

∗∗
n−1 , unless all these differences

are 0. But this is only possible if, in addition to 2vδ(̂c) − ĉ − 2vδ(c2)2 = 0, it holds
that 2vδ(̂c) − ĉ = 2vδ(c2) − c2. That is,

2vδ(̂c) − ĉ = 2vδ(c2) − c2 = 2vδ(c2)
2. (11)

In this case, v(gc
∗∗
1 ) = v(gc

∗∗
2 ) = · · · = v(gc

∗∗
n ), and they are all strictly dominated

either by the optimal complete or by the optimal all-encompassing star, unless these
happen to be gc

∗∗
1 and gc

∗∗
n , in which case c2 = c∗

n and (11) becomes (7). In this very
special case, the complete network, the all-encompassing star and all intermediate
gc

∗∗
k with c2 = c∗

n are efficient if their net value is positive. ��

Theorem 1

Proof Let g be an efficient networkwith a positive value. Let gD be the dominantNSG-
networkwith no superfluous links that the algorithmat the basis of the result inOlaizola
and Valenciano (2019) produces from g s.t. v(g) ≤ v(gD). Given that g is efficient,
v(g) = v(gD) and gD must also be efficient. Moreover, by Proposition 2’, v(g) =
v(gD) = v(gRD), where gRD is a simple DNSG-network with the same underlying
graph as gD and necessarily efficient too. Thus, by Corollary 1 and Proposition 6,
unless (7) holds, gRD (and gD which has the same underlying graph) must be either
complete or an all-encompassing star. But this is only possible if g itself is complete or
an all-encompassing star; otherwise, the algorithm could not yield a DNSG-network
with such an underlying graph and the same net value. This is obvious if gD and gRD
are complete. If gD and gRD are all-encompassing stars, then gD = gRD, and they
must consist of n − 1 c∗-links for some c∗ s.t. (5). Thus, g must have at least n − 1
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c∗-links, which arranged as a star maximize the net value achievable with those links.
If g has more links, as v(g) = v(gD), some of them must be superfluous and therefore
discarded in the transition from g to gD. But this is not possible. If two spoke nodes of
a star of c∗-links are connected by a c-link, for this link to be superfluous it must hold

2vδ(c∗)2 = 2vδ(c) − c ≤ 2vδ(̂c) − ĉ,

but efficiency of g implies that in the expression above “≤” must be “=.”Thus, we
have

2vδ(c∗)2 = 2vδ(̂c) − ĉ. (12)

In this case, it is immediate to check that a complete network of ĉ-links yields a greater
net value than a star of c∗-links unless 2vδ(c∗) − c∗ = 2vδ(̂c) − ĉ. But this along
with (12) means that there is a supertie. Thus, g has no superfluous links and must be
an all-encompassing star. ��

Theorem 2

Proof In view of Theorem 1 and Propositions 4 and 5, it is clear that the only complete
network that can be efficient andminimize the cost is the one with ĉ-links, with ĉ given
by (8), and the only all-encompassing star that can be efficient and minimize the cost
is one with c∗

n-links, with c
∗
n given by (9).

In the case of a supertie, i.e., if (7) holds for ĉ given by (8), and c∗
n given by ( 9),

then, as shown in Proposition 6, all gc
∗∗
k (1 ≤ k ≤ n) are efficient if their same net

value is positive. Nevertheless, their costs are different because

cost(c∗∗
k+1) − cost(c∗∗

k ) = (n − k )̂c − c∗
n,

for 1 ≤ k < n, and those differences are decreasing with k. In particular,

cost(c∗∗
n ) − cost(c∗∗

n−1) = ĉ − c∗
n < 0.

If all these differences are negative (or, equivalently, cost(c∗∗
2 ) − cost(c∗∗

1 ) = (n −
1)̂c − c∗

n < 0), then the cheapest is the complete network c∗∗
n . Otherwise, these

differences form a decreasing sequence of positive terms followed by negative terms,
i.e., for some 1 < k < n,

cost(c∗∗
k ) − cost(c∗∗

k−1) > 0,

cost(c∗∗
k+1) − cost(c∗∗

k ) < 0.

In this case,

cost(c∗∗
1 ) < cost(c∗∗

2 ) < · · · < cost(c∗∗
k−1) < cost(c∗∗

k )

> cost(c∗∗
k+1) > · · · > cost(c∗∗

n ),
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that is, the minimal cost is achieved either by c∗∗
1 (an optimal all-encompassing star)

or by c∗∗
n (the optimal complete). ��
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