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Abstract
The tourism industry, in particular the hotel sector, is a highly competitive market. In
this context, it is important that an hotel chain operates efficiently if it wants to improve
or maintain its market position. The objective of this work is to compare the relative
efficiency of hotel chains operating in Spain. To do this, we have designed a stochastic
frontier model to measure revenue efficiency as a function of various different inputs
such as total staff or number of rooms. Given that chains vary considerably in size,
both inputs and outputs are normalized by an appropriate size measure. In contrast
to most previous work, we account for heterogeneity in hotel chains by introducing
relevant variables, such as the proportion of hotels in the chainwith three stars or fewer,
into the efficiency term of the stochastic frontier model. Our results suggest that in
the Spanish case, in the period of the economic crisis, hotel chains increase overall
revenue by investing in fewer, big hotels rather than more, small hotels. Furthermore,
in terms of revenue efficiency, it appears better for hotel chains to invest in hotels of
three or fewer stars than in higher star rated hotels. Finally, there is no clear evidence
of a relationship between the size of a hotel chain and its efficiency.
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1 Introduction

The high level of competition in the tourismmarket, especially the hospitality industry,
makes the formulation of a marketing strategy, strengthening hotel operations and
improving the quality of service essential, not only for the profitability, but also for
the survival of both individual hotels and hotel chains; see Hwang and Chang (2003).
All these factors, directly or indirectly, depend on the efficient management of hotel
chains. In addition, due to its characteristic of an oligopolistic market, Barros (2004)
and Phillips (1999) indicate that the level of competition in the hospitality sector
requires efficiency; see also Teague and Eilon (1973).

In the twentieth century, many efficiency studies in the tourism industry focused on
measuring efficiency via accounting-based measures (Baker and Riley 1994; Phillips
and Louvieris 2005). However, modern approaches to efficiency measurement have
been based on the idea of an efficient frontier function representing the output which
may be achieved by an efficient company. One popular technique is data envelopment
analysis (DEA), which assumes a deterministic frontier that can be estimated using
optimization techniques. One advantage of this methodology is its ability to handle
multiple inputs and outputs without imposing strong assumptions on the production
frontier. However, the existence of statistical noise andmeasurement errors in the data,
in particular in cross-sectional analyses, may lead to biased efficiency estimation, with
terrible consequences for policy implications; see, e.g.,Banker et al. (1993) andBifulco
and Bretschneider (2001), for simulations on the impact of measurement errors on the
estimation of efficiencies. Therefore, in cross-sectional analyses, stochastic frontier
analysis (SFA) is often preferred. Here, a composite error term, composed of a random
component and a component measuring inefficiency, is introduced to the frontier and
statistical estimation techniques can be applied; see, e.g., Coelli (2005) and Behr
(2015), for good overviews of both DEA and SFA. Two of the first studies using the
concept of the efficient frontier in the hospitality sector are Johns et al. (1997) and
Anderson et al. (1999). For a very good, recent survey of the literature on efficiency
in this area; see Assaf and Josiassen (2016).

In most studies of efficiency using SFA, it is assumed that the inefficiency term is
homogeneous. However, in many situations, inefficiency may be related to character-
istics of a company that do not affect the frontier. For example, characteristics such
as the star status or location of a hotel might be considered as belonging to this cate-
gory. Heterogeneity in terms of such characteristics can lead to inaccurate inefficiency
measurement; see, e.g., Reifschneider and Stevenson (1991), Caudill and Ford (1993)
and Caudill et al. (1995). Nevertheless, there are relatively few works that explore this
issue. Some examples are Greene (2005), Galán et al. (2014) and Arbelo et al. (2018).

Although the majority of works on SFA are based on the use of frequentist sta-
tistical approaches, stemming from van den Broeck et al. (1994b) and more recently
Griffin and Steel (2007), who showed how to implement the Bayesian approach in a
straightforward way using the freely available software package WinBUGS, there has
been recent interest in applying Bayesian statistical methods. Bayesian approaches
have a number of advantages as compared to more traditional approaches, as outlined
in van den Broeck et al. (1994a). In particular, regularity conditions are easily incorpo-
rated and parameter uncertainty is formally considered in deriving posterior densities
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for individual efficiencies. Bayesian approaches have been applied in the hospitality
industry in Assaf (2012), Assaf and Magnini (2012), Assaf and Barros (2013) and
Arbelo et al. (2018).

The majority of works on efficiency in the hotel sector focus on comparing the
efficiencies of individual hotels or of companies owning a small number of establish-
ments. Some exceptions are the studies by Brown and Ragsdale (2002) and Neves
and Lourenço (2009) where the DEA methodology is applied to study the efficiency
of large international chains and Ferreira et al. (2017) who examine Portuguese hotel
chains. In the context of SFA, Oliveira et al. (2013b) examine the relative efficiency of
hotels and small hotel chains in the Algarve region of Portugal. In contrast to Oliveira
et al. (2013b), where chains are composed only of two or three hotels at most, a contri-
bution of our paper is to compare the relative efficiencies of large, Spanish hotel chains
via the SFA methodology. All chains in our survey have more than a thousand rooms
and the two biggest chains studied (Meliá and NH) have 139 and 137 establishments,
respectively.

There are somedifficulties associatedwith using thismethodology to analyze chains
rather than individual establishments. Firstly, the selection of inputs for hotel chains
cannot be carried out in exactly the same way as for individual establishments. For
example, typically the price of a room varies within different hotels in the same chain
so that if we wish to consider room price as an input, then we need to use an average
price measure. Furthermore, in the case of the Spanish hotel chains studied in this
article, total revenue is typically almost directly related to chain size. Therefore, when
modeling using SFA, in contrast to Oliveira et al. (2013b) who suggested including a
dummyvariable in the frontier function to account for the ownership ofmultiple hotels,
here we prefer to normalize revenue by an appropriate measure of chain size. These
normalizations avoid problems of multicollinearity which lead to unstable estimation
results from the regression model.

In this paper, we analyze a cross-sectional data set of Spanish hotel chains. There-
fore, given the criticisms of DEA pointed out previously, we prefer to use SFA to
analyze hotel chain efficiency. We use both frequentist and Bayesian approaches to
compare the revenue efficiencies of different chains using SFA under the assumption
of homoscedastic efficiency terms. There is evidence that the estimated efficiencies
are correlated with exogeneous factors such as the proportion of hotels of three or
fewer stars or the proportion of beach hotels in the chain, which suggests that these
factors should be incorporated in the inefficiency model. In order to do this, we use
a Bayesian statistical approach which is implemented in the free software R via the
R2OpenBUGS package.

The rest of this paper is organized as follows. In Sect. 2, we give a brief review
of the relevant literature. Then, Sect. 3 introduces the SFA model and its inference
through frequentist and Bayesian techniques. In Sect. 4, we give a brief overview
of the Spanish hotel sector and in Sect. 5, we introduce some working hypothe-
ses concerning the efficiency of Spanish hotel chains. In Sect. 6, we describe the
data covering Spanish hotel chains and the relevant variables as inputs. We also ana-
lyze the data through SFA with heterogeneity using Bayesian inference. Finally, in
Sect. 7 we provide some conclusions and consider some possible extensions of our
approach.
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2 Literature review

In this section, we review different works that focus on hotel efficiency estimation
based on the SFA methodology. As stated before, this is a parametric methodology
that considers a firm that deviates from its optimal frontier to be inefficient.

Many different types of output, input and exogenous variables have been considered
in the efficiency literature on the hotel industry; see, e.g., Anderson et al. (1999), Bar-
ros (2004), Chen (2007), Barros et al. (2010) and Bernini and Guizzardi (2010). Most
papers consider total revenue, sales, number of rooms, market share or guest num-
bers as output variables. As inputs, several studies have chosen variables that reflect
strategic, financial and operation decisions and that contribute to revenues. Strategic
decisions are those related to the investment made. On the other hand, financial deci-
sions are related to the capital structure and operational decisions include both the
cost of goods and services provided and the working capital requirements; see, e.g.,
Neves and Lourenço (2009). The majority of these studies estimate technical effi-
ciency and use cost functions as frontiers. Exceptions are the works by Oliveira et al.
(2013b) and Arbelo et al. (2018) where revenue and profit efficiency are considered,
respectively. Arbelo-Pérez et al. (2017) point out that cost inefficiency has several
drawbacks since it does not differentiate between hotels in terms of the quality of their
services.

Regarding the quality of hotel services, only Assaf and Magnini (2012) consider
customer satisfaction as a proxy of hotel quality, and they find that this can change
hotel efficiency rankings considerably when it is taken into account. Other authors
suggest using star rating as a proxy of hotel quality; see, e.g., Abrate et al. (2011),
Becerra et al. (2013) and Núnez-Serrano et al. (2014). However, the literature does
not provide a clear conclusion concerning the relationship between technical effi-
ciency and star rating. Such-Devesa and Peñalver (2013) find evidence in the case of
Spain that the star rating of a hotel is positively correlated with technical efficiency
while Jorge and Suárez (2014) conclude the opposite and Oliveira et al. (2013a)
find that the star rating does not influence the technical efficiency of Portuguese
hotels.

Another variable that has also been related to hotel quality is the existence of
golf facilities. For instance, Oliveira et al. (2013b) find that hotels with golf facilities
present higher efficiency than hotels without golf since they attract customers with
higher purchasing power who are looking for a differentiation in service quality. Also,
the location of a hotel is also relevant for determining efficiency, since once a hotel is
established, it is very costly to relocate it. Moreover, location is an important factor
in the choice decision made by a tourist. For example, Barsky and Labagh (1992) and
Chu and Choi (2000) report evidence that holiday tourists find the location of a hotel
establishment crucial in their decision process. Arbelo et al. (2018) find that profit
efficiency is higher in hotels based in resort areas. Some of the location variables
considered in the literature are the distance from an international airport (Hu et al.
2010; Honma and Hu 2012), the existence of a major road or the distance from a
city (Barros 2005) and a seaside town (Bernini and Guizzardi 2010); see Yang et al.
(2014), for a complete review of the main models and variables used in deciding upon
a hotel’s location.

123



SERIEs (2019) 10:115–139 119

3 Methodology

In this section, we present the stochastic frontier model which is motivated by the idea
that deviations from the efficient frontier are not always entirely under the control of
a firm.

3.1 Efficiency and the frontier function

According to Koopmans (1951), a company is technically efficient if it is able to use
inputs efficiently. In other words, the company can produce themaximum output given
a certain amount of inputs. Thus, technical efficiency is associated with the physical
use of resources in the production process and is not linked to any economic objective.

Assuming that the aim is to maximize output (in our case this will be revenue),
besides being technically efficient, a firm needs to obtain an allocation of inputs that
generates as much output as possible. If the firm is able to achieve this allocation, it is
(revenue) efficient.

The frontier function, I (xi ;β), representing the maximum output, depends on the
inputs employed, say xn , for n = 1, . . . , N . The actual output of firm i , Ei , satisfies

Ei ≤ I (xi ;β) for i = 1, . . . , K . (1)

The output efficiency of firm i , say OEi ≤ 1, is defined as

OEi = Ei

I (xi ;β)
(2)

and is equal to one only if the firm is 100% efficient.
Various specifications for the frontier function I (xi ;β) are possible. In this paper,

we use a log-linear, Cobb–Douglas function whose specification is given by:

ln I (xi , β) = β0 +
∑

n

βn ln xni . (3)

The use of the Cobb–Douglas function is justified by its simple interpretation and
estimation. Although other functions such as the translog are more flexible, their
estimation results are more difficult to interpret and require the estimation of many
more parameters. In our context, we have a relatively small sample size, which would
likely imply that the translog function would not be estimated accurately.

3.2 The stochastic frontier

Inefficiency can be due to both inherent problems in an individual firm’s activity
and factors that are beyond their control. Therefore, it is reasonable to consider the
possibility of a stochastic frontier function by including an error in the definition of
the frontier, I (xi ;β), so that, taking logarithms, we have:
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ln I (xi , β) = β0 +
∑

n

βn ln xni + vi , (4)

where vi represents the idiosyncratic error component which is often assumed to be
normally distributed. Taking logarithms in (2), now gives the SFA equation

ln Ei = β0 +
∑

n

βn ln xni + vi − ui , (5)

where ui = − ln OEi ≥ 0.

3.3 Inference for SFAmodels

In order to undertake inference for the SFAmodel, we need either to use a nonparamet-
ric approach (see, e.g, Kumbhakar et al. 2007) or otherwise to specify distributional
forms for the error terms vi and ui in Eq. (5). Here, we assume throughout that the
idiosyncratic errors, vi , for i = 1, 2, . . ., are independent and identically distributed
normal variables with a common variance term, vi ∼ N (0, σ 2

v ). For the inefficiency
term, many parametric forms have been proposed in the literature; see, e.g., Greene
(2008). In this article, we shall generally assume one of the most standard functional
forms, that is a half-normal distribution model ui ∼ N+(0, σ 2

ui ) where in this case,
when we allow for efficiency heterogeneity, the scale parameter may depend on indi-
vidual hotel chain characteristics.

Two of the most common approaches to fitting SFA models use classical or fre-
quentist and Bayesian statistical techniques, respectively. This subsection summarizes
the characteristics of these two methods.

3.3.1 Classical approach

The most popular approach to parameter estimation for SFA models is via maximum
likelihood estimation that is, given the data sample, the optimal set of parameters is that
which maximizes the likelihood function. Given the error distributions commented
previously, the likelihood function can be calculated explicitly and then likelihood
maximization can be carried out directly. A number of software packages are available
for parameter estimation, and in this case we use the frontier package (Coelli and
Henningsen 2013) within R for implementation.

In the models we analyze, there are quite a large number (twelve) of possible
explanatory variableswhich could be included in the frontier function (aswell as others
which might affect the inefficiency term). Therefore, it is important to decide which
of these are relevant. In order to do this, we propose using standard model selection
criteria to choose between different fitted models. Within the classical framework, the
twomost popular of these are the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC).
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3.3.2 Bayesian approach

In contrast to classical methods, a Bayesian approach begins by assuming that, given
a model M , there is a prior distribution, f (θ |M), available for the unknown model
parameters θ . Given the data y, the prior distribution can then be updated to a posterior
distribution, f (θ |y, M) via Bayes theorem:

f (θ |y, M) ∝ f (θ |M) f (y|θ , M). (6)

van den Broeck et al. (1994a) present several advantages of Bayesian inference as
opposed to the classical approach. In particular, a posterior distribution for the ineffi-
ciency term, ui , of firm i can be obtained as:

f (ui |y, M) =
∫

f (ui |y, θ , M) f (θ |y, M) dθ ,

which permits interval estimation of the inefficiencies instead of just point estimation.
Unfortunately, for most of the models analyzed here, the exact calculation of poste-

rior distributions is impossible. Therefore, we must apply simulation methods which
allow us to simulate a sample from the posterior parameter distribution such asMarkov
chain Monte Carlo approaches; see Robert and Casella (2013). Fortunately, Griffin
and Steel (2007) show that these methods can be implemented for SFAmodels via the
WinBUGS statistical package. We proceed in a similar way and use the more recent
package OpenBUGS via R2OpenBUGS in R to carry out the fitting of Bayesian mod-
els.

To selectmodels under theBayesian approach,we consider a version of the deviance
criterion (deviance information criterion or DIC) of Spiegelhalter et al. (2002), which
is, in the context of regression models, similar to a Bayesian version of the AIC. A
major advantage of this approach is that it makes DIC to be very easy to calculate
through the output of OpenBUGS and this criterion is recommended for use in the
SFA context in Griffin and Steel (2007). Unfortunately, it is illustrated in Celeux et al.
(2006) that inmodelswith latent variables (such as the efficiencies in SFA), the original
DIC may give inaccurate results. Celeux et al. (2006) present several variants of the
DIC to resolve this problem and recommend the use of DIC3 criterion, which we use
in this paper. The interpretation is the same as that of the DIC: the lowest value of
DIC3 indicates the best model.

4 The Spanish hotel sector

Tourism is one of the most important contributors to the Spanish economy, with earn-
ings from this sector contributing around 11% of the Gross Domestic Product and
over 75 million foreign tourists visiting the country in 2016. The high quantity of both
internal and foreign visitors clearly requires accommodating and, by 2015, there were
almost 17,000 hotels in Spain. Many Spanish hotels are run by large chains and, for
example, by 2011, approximately 20% of the market was dominated by the biggest
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five hotel chains (Meliá, Riu, NH, Barceló and Iberostar and nearly 30% by the biggest
ten chains). Therefore, in the Spanish context, it is important not to consider hotels
just as single entities but also to examine the relative efficiencies of different hotel
chains, which is one of the main objectives of this paper.

The five most popular tourist destinations in the country are Catalonia, the Canary
Islands and the Balearics, followed by Andalusia and Valencia, that is the Spanish
coastal communities and islands with lots of sun and sand tourism although in recent
years, there has been increasing interest in other types of tourism such as ecotourism,
wine tourism, etc., away from the traditional tourist zones; see, e.g., Aguiló et al.
(2005).

5 Working hypotheses

Size has different meanings according to whether we consider companies (chains) or
individual hotels. Chain size is often measured via the number of employees hired
or the number of establishments in the chain, while hotel size is often measured by
the number of rooms. The evidence found in the literature regarding hotel size and
performance is not completely clear, although several studies have suggested that
larger, individual hotels can achieve higher levels of performance due to economies
of scale, higher bargaining power and more possibilities of funding and investment;
see, e.g., Claver et al. (2007a, b), Kim et al. (2013) and Babayan et al. (2014). Assaf
et al. (2012) and Arbelo et al. (2018) report evidence that large chain hotels achieved a
better performance than small, independent hotels. Also, Babayan et al. (2014) show
that the size of a hotel positively affects the total revenue and that establishments with
less than one hundred rooms do not seem to manage their assets so well.

In the Spanish context, where the market is dominated by mass tourism, it would
also seem reasonable to suppose that tourists would typically prefer to go to a cheaper,
larger establishment than to pay more for a stay in a smaller, dearer hotel. Therefore,
extending the previous arguments to chains of hotels, this would suggest that a big
chain of small establishments is likely to perform worse than a chain with fewer, large
establishments in terms of overall revenue. Putting this evidence together, we propose
the following initial research hypothesis:

H1: For a chain, it is better, in terms of revenue, to invest in fewer large hotels
rather in more small establishments.

Bernini and Guizzardi (2010, 2016) propose a novel stochastic frontier production
function that specifies the mean of the inefficiency term as a function of the internal
characteristics of a hotel. In particular, they use dummy variables to account for dif-
ferent star categories and other exogenous variables such as the asset/revenue ratio,
the percentage of days without guests and the hotel location. Jorge and Suárez (2014)
include territorial dummy variables for capturing the effect of hotel locations in differ-
ent Spanish regions, and they conclude that the location is quite significant. Lazzeretti
et al. (2008) provide evidence that hotels tend to be concentrated in particular areas, and
there is a strong connection between hotel competitiveness and destinations. Arbelo
et al. (2018) suggest that hotels in resort areas are more efficient than those in urban
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centers. However, the majority of Spanish destinations are seaside towns with hotels
of comparable size and star rating and most large hotel chains tend to have similar
profiles in the range of establishments in their portfolios, with in general, high pro-
portions of establishments in these resort areas. This means that in practice, it will be
difficult to discriminate between chains based on location.

Spanish hotel chains differ more in the star categories of their establishments.
Some chains concentrate on cheaper, 3 star accommodation, and others opt to invest
in more upmarket or boutique 4 or 5 star hotels. As commented previously, studies
of individual hotels have provided mixed conclusions concerning the relationship
between star rating and efficiency. However, given the standard Spanish tourist model
where beach tourism is the norm, we think that it is reasonable to suggest that most
tourists in these destinations will not require a very high star rating but are more
interested in a comfortable hotel which is close to the beach and only require the
standard facilities as givenbymost, three star hotels. In 2014, 86.5%of the international
tourists who visited Spain came for leisure and holiday activities. The three countries
that contributed most tourists were the United Kingdom, with 15 million visitors,
France with 10.6 million and Germany with 10.42 million which correspond to 55.4%
of the total foreign tourists visiting Spain in this year. These tourists had a preference
for low cost, sun, sea and sand-based vacations. The average expenditure of German,
British and French tourists was 962 euros, 849 and 617 euros, respectively; see Lojo
(2016), for details on the characteristics of tourists visiting Spain. This would imply
that it would be preferable in terms of revenue efficiency for a hotel chain to invest in
more 3 star establishments rather than higher star rated hotels in coastal zones. Thus,
we can formulate the following working hypothesis:

H2: There is observable efficiency heterogeneity between hotel chains and it is
disadvantageous in terms of revenue efficiency for chains to try to increase their
proportions of higher (4 and 5 star) rated hotels.

In contrast to the results on hotel performance, several studies find no relation in
terms of efficiency between individual hotels of different sizes; see Hwang and Chang
(2003),Wang et al. (2006) and Sanjeev (2007). Examining Portuguese hotel chains via
DEA, Barros et al. (2011) suggest that there is no clear relationship between chain size
and managerial efficiency in this case. Exceptions are Poldrugovac et al. (2016) who
find a difference in efficiency between small- and medium-sized hotels, although this
difference disappears when these are compared with larger establishments and Such-
Devesa and Peñalver (2013) who use the DEA approach to find that in the Spanish
context, larger hotels have greater technical efficiency than smaller establishments.
In the Spanish context, Arbelo et al. (2018) find that larger hotels show more profit
efficiency and suggest that part of this is due to increased economies of scale leading
to reductions in costs. They also suggest that chain hotels are more profit efficient than
independent hotels.

For the Spanish hotel chains examined in our article, all chains have various hotels
with over one thousand one hundred rooms and it has been observed that operational
revenue increases proportionally with the size of the chain, as measured by either
the number of rooms, establishments or employees. Therefore, when this revenue is
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normalized by a measure of chain size, it appears reasonable to hypothesize that there
is no relationship between revenue efficiency and hotel chain size, that is:

H3: The size of the chain does not influence the efficiency.

6 Spanish hotel chains: a case study

The data that we analyze in this article correspond to the year 2014 and have been
collected from the system for library automation (SABI) database. The sample consists
of forty-four Spanish hotel chains, each with at least one thousand one hundred and
eighty rooms in total. The total sizes of the chains we consider vary considerably. The
biggest chain in our study is Meliá with 139 hotels and a total of 5541 employees,
while the smallest chain is Dreamplace Hotels and Resorts with 4 hotels and 249
employees.

Combining the hotels in all of the chains studied, there are seven hundred and
eighty-seven individual hotels. Of these, there are four one star hotels, twenty two star
hotel, two hundred and forty three star hotels, four hundred and sixty five four star
hotels and fifty-six five star hotels.

As well as the information available from SABI, we also use other sources, such as
HOSTELTUR1 in order to find the average number of rooms available in each hotel
chain, as well as the individual Web sites of each hotel chain in order to calculate the
average roomprices of the different chains and Booking.com2 to find the proportion
of hotels with golf facilities and the proportion of beach hotels in each chain. Finally,
we calculate the proportion of hotels close to airports using Google Maps3.

6.1 Variable selection

In this article, we propose using the total operating revenue of each chain (O.R) as the
basic output variable. The available input variables to the frontier are average room
price (P.R), the average price of food price (P.F), the total number of rooms (N.R),
total assets (T.A), material expenses (M.E), employee expenses (EM.E), number of
employees (N.EM), financial expenses (F.E), funds (F), cash flow (C.F), operating
expenditure (O.E) and number of establishments (N.ES).

A variety of different variables have been considered as possibly influencing hotel
efficiency in the literature. Here, we followOliveira et al. (2013b) and consider factors
that reflect the operating environment as potential exogenous variables. In particular,
we use the proportion of hotels with three stars or less within each chain (Star123),
the proportion of beach hotels (Beach), the proportion of golf hotels (Golf) and the
proportion of hotels that are ten kilometers or less from an airport (Airport) as possible
heterogeneous variables.

1 http://www.hosteltur.com/.
2 http://www.booking.com/.
3 https://www.google.es/maps/.
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Table 1 Correlation among variables

O.R. N.R T.A M.E EM.E N.EM F.E C.F O.E N.ES O.F P.R P.F

O.R. 1.00 0.96 0.94 0.93 0.99 0.98 0.89 0.72 1.00 0.89 0.93 0.41 0.26

N.R 0.96 1.00 0.92 0.84 0.97 0.95 0.89 0.67 0.96 0.93 0.88 0.37 0.21

T.A 0.94 0.92 1.00 0.85 0.95 0.87 0.99 0.81 0.93 0.76 0.95 0.33 0.23

M.E 0.93 0.84 0.85 1.00 0.91 0.91 0.79 0.70 0.92 0.77 0.88 0.29 0.17

EM.E 0.99 0.97 0.95 0.91 1.00 0.97 0.92 0.72 0.99 0.89 0.92 0.37 0.22

N.EM 0.98 0.95 0.87 0.91 0.97 1.00 0.81 0.63 0.98 0.94 0.87 0.38 0.22

F.E 0.89 0.89 0.99 0.79 0.92 0.81 1.00 0.80 0.88 0.70 0.91 0.29 0.18

C.F 0.72 0.67 0.81 0.70 0.72 0.63 0.80 1.00 0.70 0.50 0.84 0.27 0.41

O.E 1.00 0.96 0.93 0.92 0.99 0.98 0.88 0.70 1.00 0.91 0.91 0.41 0.25

N.ES 0.89 0.93 0.76 0.77 0.89 0.94 0.70 0.50 0.91 1.00 0.76 0.36 0.18

O.F 0.93 0.88 0.95 0.88 0.92 0.87 0.91 0.84 0.91 0.76 1.00 0.32 0.26

P.R 0.41 0.37 0.33 0.29 0.37 0.38 0.29 0.27 0.41 0.36 0.32 1.00 0.78

P.F 0.26 0.21 0.23 0.17 0.22 0.22 0.18 0.41 0.25 0.18 0.26 0.78 1.00

Fig. 1 Relationship between total operating revenue and chain size as measured by number of rooms (N.R.),
establishments (N.ES.) and employees (N.EM.), respectively

6.2 Exploratory data analysis

Before formally defining the SFA models that we consider in this paper, we first
perform some simple data analyses in order to illustrate some of the specific problems
we face in applying SFA to hotel chains as opposed to individual establishments.

Firstly, in Table 1, we report the correlations between the different input and output
variables. It can be observed that there are very high, positive correlations between
the dependent variable, O.R, and the independent variables, number of rooms (N.R),
number of employees (N.EM) and number of establishments (N.ES). Indeed, all of
the variables excepting room price and food price are highly correlated.

Figure 1 backs this up by showing regression plots of operating revenue against
these variables, which suggest an approximately linear relationship in each case, espe-
cially in the case of the number of employees, even though this impression may be
exaggerated due to the fact that the largest three chains in our study are much bigger
than the remainder of the chains. The underlying explanation is that all of these vari-
ables are influenced by the size of the hotel chain. We would not only expect a larger
chain to have higher total revenues but also to employ more staff, have more rooms in
total, have more hotels, etc.
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As the hotel chains in our study vary considerably in size, if we wish to compare
them in terms of revenue, it is therefore necessary to normalize both revenue and
size-dependent inputs via some size measure. We choose to normalize revenue and
(non-price) inputs either by the number of rooms, the number of employees or the
number of establishments. Note that this first normalization, which leads to revenue
per room, has been used in hotel efficiency problems to compare individual hotels
of different sizes; see, e.g., Barros et al. (2010). Obviously, when these variables are
used to normalize the other input and output variables, they are not then included
in the resulting SFA model. This implies that when we normalize using number of
rooms, for example, then we can only draw conclusions about how to optimize the
number of employees or establishments given a fixed number of rooms. Similarly,
when normalizing in terms of establishments, we can optimize the number of rooms
or the number of employees conditional on a fixed number of establishments.

6.3 A revenue stochastic frontier model for hotel chains

According to Kumbhakar and Lovell (2003), a change in prices should not cause a
change in efficiency of a firm. Therefore, revenue efficiency only depends on relative
output prices. This implies that for the frontier to satisfy this restriction, both output
and price input terms should be normalized. Following Oliveira et al. (2013b), we
normalize by dividing operational revenue and room price by food price. This leads
to the following SFA model for hotel chain revenues:

ln
O.Ri

siP.Fi
= β0 +

∑

n

βn ln
xni
si

+ βn+1 ln
P.Ri

P.Fi
+ vi − ui , (7)

where si ∈ {N.Ri ,N.EMi ,N.ESi }, is the size correction and xi represents the input
variables related to size for chain i .

6.4 Model and variable selection

To fully specify our models, we need to choose a distribution for the inefficiency
component and to select the input variables. We consider both the half-normal and the
truncated-normal distributions for the inefficiency component. Note that for a given
inefficiency distribution and size normalization, we have ten potential independent
variables, and consequently, 210 = 1024 possible models.

As Bayesian analysis of all models is somewhat more time-consuming than the
classical approach, before examining Bayesian approaches, we first fit all possible
model specifications via maximum likelihood using the R frontier package.

Table 2 reports the rankings of the optimal models selected by the AIC and BIC.
It can be observed that the AIC and BIC values are very similar under both the half-
normal and truncated-normal inefficiency distributions although slightly preferring
the simpler, half-normal model. To discriminate between the two, we also perform a
likelihood ratio test whose statistic is:
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Table 2 Model selection using AIC and BIC

Model number Half-normal Truncated normal Test

Ranking
by AIC

AIC BIC Ranking
by AIC

AIC BIC τ

Normalized by
N.R

751 1 38.965 56.807 1 40.861 60.027 0.104

744 2 39.866 57.708 2 41.866 60.487 0.000

759 3 39.930 57.772 3 41.930 60.914 0.000

Normalized by
N.ES

717 1 36.000 50.273 1 38.000 54.057 0.000

733 2 36.973 53.031 2 38.862 55.345 0.111

973 3 37.894 53.952 3 39.894 56.565 0.000

Normalized by
N.EM

749 1 36.973 53.031 1 38.862 56.704 0.111

765 2 38.343 56.185 3 40.186 58.220 0.157

751 3 38.355 56.197 2 40.150 57.537 0.205

Table 3 Top models under different size normalizations

τ = −2 ln
L(βHN)

L(βNT)
∼ χ2

1 .

The values of the τ statistic are shown in the last column of Table 2. In all cases, the
value of τ is less than the 95th percentile of the χ2

1 , which implies that there is no
evidence to reject the half-normal distribution. Therefore, in all future analyses in this
paper, we assume that the efficiency term is modeled with a half-normal distribution
throughout.

Table 3 shows the independent variables that are included in the top three mod-
els under each size normalization, together with the signs of the coefficients that
are associated with each variable. The results are very consistent in terms of the
selected variables: The selection criterion always chooses those models that include
as input variables material expenses (M.E), employee expenses (EM.E), cash flow
(C.F), operating expenses (O.E) and price of room divided by price of food (P.R/P.F)
as independent variables. Under all three normalizations considered, the regression
coefficients of these variables are positively estimated. This is as to be expected. In the
first place, if a chain spends more in terms of inputs (M.E, EM.E and O.E), it is invest-
ing in a higher-quality product and should expect to obtain higher revenues. Similarly,
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low or negative cash flows indicate problems of liquidity of a company which imply
that they will have fewer resources for investment. In such cases, we would expect
that client numbers decrease over the medium term as quality deteriorates.

As expected, the coefficient of the price per room and price for food ratio is positive,
that is, if price per room increases relatively more than the food price, then so does
revenue. Also, this suggests that, if food is expensive compared to room prices, then
tourists may decide that it is not worth paying the extra for food inside a hotel and
may prefer instead to eat out. Note that the majority of Spanish resorts have many
restaurants and bars oriented to the tourist market and with a high level of competi-
tion.

It is important to observe that (when it is not used as a normalizing factor), the
number of establishments appears with a negative coefficient in the frontier function
of the top models. Therefore, for a given number of rooms (or employees) this implies
that it is optimal for a chain to invest in fewer, larger hotels rather than several smaller
establishments. This result confirms hypothesis H1.

6.5 SFA with heterogeneity

In the previous analysis, we have not included any of the exogenous variables com-
mented at the end of Sect. 6.1 in the SFA models specified in (7).

In their analyses, Oliveira et al. (2013b) include these exogenous variables in the
frontier function. However, following, e.g., Greene (2008) and Coelli (2005), it is
an open question whether it is better to include these variables in the frontier or in
the inefficiency parameters. In this article, we take the second approach. Including
these variables in the scale parameter of a half-normal inefficiency distribution as
we do here implies that inefficiency possesses the scaling property; see, e.g., Wang
and Schmidt (2002). This property has a number of modeling advantages, such as
the fact that firm heterogeneity simply inflates or deflates the efficiency distribution
without changing its shape, as outlined in, e.g., Alvarez et al. (2006) and Greene
(2008).

In order to select the relevant exogenous variables, Fig. 2 shows scatter plots of the
efficiency estimates of the different firms against the possible heterogeneity factors
using number of rooms as the size normalization. It can be seen that there is a slight
positive relationship between the proportion of hotels in the three star or lower category
(Star123) and the efficiency rankings and possibly, although to a much lesser extent if
at all, in the case of the proportion of beach hotels (Beach). There is no real evidence
of a relationship between estimated efficiency and the proportions of hotels with golf
or hotels close (less than 10km) to an airport. Therefore, we consider models that
include either the proportion of beach hotels or the proportion of hotels of three or
fewer stars as variables influencing the inefficiency term.

In order to include heterogeneity in the SFA model of (7), we now introduce a
log-linear model for the scale parameter of the inefficiency as follows:

ui ∼ N+ (
0, σ 2

ui

)

ln σ 2
ui = γ0 + γ1Beachi + γ2Star123i . (8)
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Fig. 2 Scatter plots showing the relation between the estimated efficiency and the exogenous variables:
proportion of beach hotels (Beach), proportion of hotels with 3 stars or fewer (Star123), proportion of
hotels with golf facilities (Golf) and proportion of hotels less than 10km from an airport

We also consider all different possible sub-models of this complete specification.
For example, the basic model of (7) corresponds to the case γ1 = γ2 = 0 and the
sub-model containing just the proportion of beach hotels as a heterogeneity variable
corresponds to γ2 = 0.

6.5.1 Bayesian estimation

Unfortunately, it is not straightforward to fit the SFA model including heterogeneity
using the classical approach, and therefore, we adopt a Bayesian framework in this
section.

In order to compare the Bayesian approach with the classical results, we first run
the top three models under the half-normal inefficiency specification as illustrated
in Table 2 without considering heterogeneity, but now using Bayesian inference. In
all cases, relatively weak, normal priors are used for the regression coefficients, an
inverse gamma prior is applied for the variance of the idiosyncratic error and an inverse
gamma prior is used for the inefficiency scale parameter. In this last case, the prior is
designed so that the prior mean efficiency estimate is close to the estimated, average
efficiency under the classical approach.

Under this specification, the results of the Bayesian analysis are very similar to
those of the classical analysis. For example, when Kendall’s rank correlation measure
is used to compare the Bayesian mean efficiency rankings and classical efficiency
rankings of the different chains, correlations of at least 0.9 are achieved in all models
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and in themajority of cases, there is an almost linear relationship between the estimated
efficiency rankings.

We also fit the models including heterogeneity as described in Sect. 6.5, again with
diffuse normal priors for the coefficients γ0, γ1, γ2.

Table 4 shows the value of the DIC3 criterion for the best three models of Table
2, but now also including the different combinations of exogenous variables in the
inefficiency as in (8).

We can see that, excepting the case of normalization via N.EM, when the orders
of the second and third models are reversed, the rankings selected by the AIC and
DIC3 for the models without heterogeneity are consistent. This consistency in model
selection does not appear to be altered by the inclusion of heterogeneity variables.
Thus, in the case of normalization by number of rooms, model 751 is more popular
than model 744 or model 759, whichever set of exogenous variables are included.

Furthermore, under each basic model, the DIC3 of the sub-model considering the
percentage of hotels of three or fewer stars always outperforms the other models. This
suggests that this is an important influencing factor in hotel chain efficiency in line
with the hypothesis H2.

In contrast to the case of star ratings, surprisingly, including the proportion of beach
hotels does not appear to improve upon the basic model as the DIC3 values in this case
are virtually identical. A reasonable explanation for this, as can be observed in Fig. 2,
may be that apart from a very few chains, the great majority of chains in our study
have high proportions of 60% or more beach hotels in their portfolios. Thus, given
the similarity of the chains under this criterion, it is difficult to use it to discriminate
between them.

Table 5 shows the posterior mean parameter estimates under the best models under
each normalization, selected using the DIC3 criterion. These models are model 751
when normalizing by number of rooms, model 733 when normalizing by number of
establishments and model 749 when normalizing by number of employees. In each
case,wehave used the proportion of hotelswith three or fewer stars as the heterogeneity
variable. It can be observed that the signs of the estimated coefficients are the same
as in Table 3 under all normalizations, which suggests that the results are fairly robust
to the inclusion of the heterogeneity variable. Thus, for example, we can see that, as
previously suggested, for a fixed number of staff or a fixed number of rooms, relative
revenue increases when a hotel chain invests in a small number of larger hotels as
opposed to a larger number of small hotels, again in confirmation of hypothesis H1.

Secondly, it is interesting to observe the negative coefficient for the proportion of
hotels of three or fewer stars. This has important implications for hotel chainmanagers,
suggesting that it is not advantageous, in the Spanish context, in terms of revenue
efficiency, for a hotel chain to undertake the extra work and costs required to gain
more four star ratings for their hotels and confirming our hypothesis H2. This may be
due to the Spanish sun and sand model of tourism where clients may just require a
comfortable place to stay near the beach but are not necessarily interested in paying
the extra premium required for higher-rated hotels. This result contrasts a little with
the findings of Oliveira et al. (2013b) who found that, for the Algarve region, revenue
is higher for five star hotels than for four star hotels in general. However, in this paper,
these variables are included in the frontier and not in the inefficiency. Observe also
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Table 5 Estimation results of the best models under different normalizations

Normalized by N.R Normalized by N.ES Normalized by N.EM

Estimate SD Estimate SD Estimate SD

β̂0 − 3.867 1.285 −3.833 1.153 −3.807 1.163

β̂1 (M.E) 0.200 0.074 0.201 0.073 0.200 0.073

β̂2 (EM.E) 0.535 0.306 0.570 0.294 0.564 0.293

β̂3 (N.EM) − 0.278 0.279 −0.304 0.271 – –

β̂4 (C.F) 0.077 0.036 0.074 0.037 0.075 0.036

β̂5 (O.E) 0.366 0.170 0.367 0.169 0.366 0.172

β̂6 (N.ES) − 1.001 0.201 – – −0.973 0.148

β̂7 (P.R/P.F) 1.072 0.127 1.066 0.128 1.068 0.129

γ̂0 − 10.742 9.075 −10.839 9.021 −10.975 9.211

γ̂2 (Star123) − 15.831 9.968 −11.013 5.680 −12.461 6.754

that the great majority of the hotels in the Spanish chains considered in our analysis
belong to the three and four star categories. Note also that our analysis considers the
year 2014 toward the end of the Spanish and European economic crisis, when it may
be that customers preferred to pay less for a three star hotel experience than invest
more in a four star hotel.

It is also interesting to explore whether including exogenous variables in the ineffi-
ciency term changes the relative rankings of the different hotel chains. In Table 6, we
show the rank correlations of the efficiencies under the top three models previously
selected by the AIC criterion and analyzed under all combinations of factors when
normalizing by the number of employees. We observe a high correlation between
rankings obtained with models with both factors and the model with the percentage
of hotels with three or fewer stars. The rankings without including this factor and
rankings including Star123 are much lower correlated, indicating that the inclusion of
this variable does cause a substantial change in efficiency rankings.

This is further illustrated in Table 7 which gives the top ten ranked chains under
each model specification. Columns “1”, “2”, “3” correspond to the best three models
classified by the AIC criterion.

The green cells represent chain 16which is the only chain that remains in the top ten
under all models and normalizations, with and without the inclusion of heterogeneity
in the inefficiency term.

The orange cells indicate the top ten ranked chains (24, 25, 38 and 41) under all
three models and normalizations when inefficiency heterogeneity is not considered.
The top three positions are always occupied by the same three chains (16 in first
position and 25 or 41 in second or third positions). However, only half of the top ten
chains remain constant under all different model specifications which implies some
instability in the rankings when inefficiency heterogeneity is not accounted for.

Finally, the blue cells indicate the high ranked chains (8, 11, 15, 21, 32, 35, 39 and
40) in all cases when inefficiency heterogeneity is included. Few of the best chains
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Table 6 Kendall correlations for efficiency rankings under size normalization N.EM

Normalized by N.EM Both factors Star123 Beach Without factor

1 Both factors 1.0000 0.8943 0.3214 0.3277

Star123 0.8943 1.0000 0.2368 0.3277

Beach 0.3214 0.2368 1.0000 0.4524

Without factor 0.3277 0.3277 0.4524 1.0000

2 Both factors 1.0000 0.8140 0.4059 0.3404

Star123 0.8140 1.0000 0.2537 0.3573

Beach 0.4059 0.2537 1.0000 0.4144

Without factor 0.3404 0.3573 0.4144 1.0000

3 Both factors 1.0000 0.8520 0.3890 0.3615

Star123 0.8520 1.0000 0.2579 0.3404

Beach 0.3890 0.2579 1.0000 0.4524

Without factor 0.3615 0.3404 0.4524 1.0000

Table 7 Rankings of the top ten most efficient hotel chains under the three best models and different size
normalizations

Green = top ranking chains under all models and size normalizations with and without the inclusion of
exogenous variables. Orange = top ranking chains when exogenous variables are not included. Blue = top
ranking chains when exogenous variables are included

under the basicmodelmaintain their positionswhen taking into account the exogenous
variable. It is important to observe the consistency of the rankings in this last case. Nine
out of the ten top ranked chains (including chain 16) are the same under all models and
normalizations. Furthermore, in all cases but one (when it is ranked second), chain 21
occupies the first ranking position while chain 40 occupies the second ranking position
in seven out of nine cases (and in the remaining two is ranked first and fifth). It is also
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Fig. 3 Relationship between efficiency and number of employees

important to note that chain 16, which is ranked first among all chains in all models
without the inclusion of inefficiency heterogeneity is lower ranked when inefficiency
heterogeneity is included. Chains 25 and 40 also disappear from the top rankings
when inefficiency heterogeneity is accounted for, which suggests that their initial high
rankings may be an unreliable representation of their true level of efficiency.

6.5.2 The (lack of) relationship between efficiency and hotel chain size

In analyzing individual hotel efficiencies, a number of works have encountered a
relationship between hotel size and efficiency. For example, Davutyan (2007) and Pol-
drugovac et al. (2016) observe an increasing relationship between the size of individual
hotels and their efficiency in the case of Anatolian and Croatian hotels, respectively.
Conversely, Pulina et al. (2010) find that medium-size hotels are more technically
efficient than either small or large hotels in a DEA analysis of the Italian hospitality
sector. In the case of chains, it might be expected that bigger chains can take advantage
of economies of scale to reduce overall costs. On the contrary, it may be that smaller
chains can only survive in a competitive market if they are efficient, whereas larger
chains can continue to operate at lower efficiency levels due to having higher reserves,
easier access to financial credit, etc.

Figure 3 shows the posterior mean efficiency levels under the Bayesian model
including the percentage of hotels of three or fewer stars as an exogenous variable,
versus the size of hotel chains when revenues are normalized by number of employees
as a size measure.

In line with our hypothesis H3, there is no obvious relationship between the size
of a hotel chain (as measured by number of employees) and efficiency, but this could
be a consequence of the fact that the two largest hotel chains are over twice as big
(in terms of number of employees) than the rest of the chains in the study. Thus, it
could be that these chains behave differently in terms of their efficiencies than chains
of more similar sizes. Therefore, it is interesting to exclude these two chains from the
analysis in order to explore the relationship between size and efficiency more clearly.

Table 8 shows the top ten ranked chains under a Bayesian analysis, both with
and without the inclusion of the proportion of hotels of three and fewer stars as a
heterogeneity factor, and under different normalizations in the same way as Table
7. The top ranked chains remain similar to those in Table 7. Note that chain 21 is
still top ranked in five out of nine cases when inefficiency heterogeneity is included
although it falls out of the top ten under one of the model structures. This suggests
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Table 8 Rankings of the top ten most efficient hotel chains under the three best models and different size
normalizations when the two largest chains are excluded

Green = top ranking chains under all models and size normalizations with and without the inclusion of
exogenous variables. Orange = top ranking chains when exogenous variables are not included. Blue = top
ranking chains when exogenous variables are included

that the inclusion of the two biggest chains does not overly influence the results of the
analysis.

Therefore, there is no clear evidence of a relation between chain size and efficiency
here, confirming hypothesis H3.

7 Conclusions and policy implications

In this paper, we have measured the revenue efficiency of hotel chains in Spain in the
year 2014. In order to compare chains of very different sizes, we have proposed to use
a normalization by either number of hotels, number of rooms or number of employees.

Using both classical and Bayesian analyses, our results give a number of important
insights for hotel chainmanagers. Firstly, in terms of overall revenue, it is preferable for
chains to invest in fewer, big hotels than in a higher number of smaller establishments.

We have also shown that it is important to take exogenous information into account
when this is available as this can be very influential in efficiency estimates. Our results
contrast with those of Oliveira et al. (2013a), where it is found that in the case of
individual hotels in the Portuguese region of the Algarve, efficiency is influenced by
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the presence of golf courses and is not clearly affected by star ratings. The Algarve is
recognized as a high end tourist destination where clients require very good quality
accommodation and facilities.Golf tourism inAlgarve is integratedwith beach tourism
andgives theAlgarve region an additional international projection.This typeof tourism
depends on the north and central Europe markets where there are a large amount of
golf courses and players. It represents an important diversification of tourism products
crucial for the sustainability perspective of tourism and for less dependence on certain
markets; see, e.g, Pedro (2006) and Completo and Gustavo (2014).

For large Spanish hotel chains however, it appears that the ownership of golf courses
has little influence on a chains revenue efficiency, whereas it is better to concentrate
on three star (and lower) rather than four star (and higher) hotel categories. In contrast
to the Algarve, the Spanish tourist model has tended toward cheaper, mass tourism
(less than 10% of the hotels run by the chains in our study have 5 stars) where extras
such as golf are not so much in demand, and this may be a cause of these apparently
contradictory findings. This suggests that Spanish hotel chains with a high proportion
of hotels with golf courses are not exploiting these resources adequately. Golf facilities
might be used to reduce the dependence on beach tourism. For example, chains could
promote golf facilities in the winter season by offering full packages with accom-
modation and golf fees, and advertising in northern European tourism channels. In a
similar way, chains with a high proportion of luxury hotels should explore ways to
attract international and national tourists by promoting the extras they offer such as
spas, gastronomy, etc., in the low season.

Also, in contrast to the results of Poldrugovac et al. (2016) for individual hotels,
when hotel chains are considered, there appears to be little relationship between chain
size and revenue efficiency. As we observed previously, for the case of large Spanish
hotel chains, total operational revenue appears to be proportional to the size of the
chain, so that revenue per room, etc., is not greatly influenced by chain size in general.
Therefore, as we might expect, revenue (per room, etc.) efficiency is also independent
of chain size.

Finally, rural and winter tourism is a growing area in Spain, but less developed
than in it’s European neighbors; see Perales (2002), Barke (2004) and Cánoves et al.
(2004). Indeed, most of the chains in our study have very few, if any, establishments
based in the countryside or in winter resort areas. This means that it would be very
difficult to try and draw conclusions concerning this type of tourism, which is typically
a very different market to that attracted by beach hotels. An interesting extension of
the study would be to include smaller chains of hotels concentrating on this sector in
order to see if our conclusions still hold true.
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