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Abstract
Given any observed finite sequence of prices, wealth, and demand choices, we propose
a way to measure and classify the departures from rationality in a systematic fashion,
by connecting violations of the underlying Slutsky matrix properties to the length of
revealed demand cycles. The approach complements our previous study (Aguiar and
Serrano in J Econ Theory 172:163–201, 2017), which is based on the entire demand
function. The methodology can be easily applied in experimental demand data sets.

Keywords Consumer theory · Rationality · Slutsky matrix norm · Revealed
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1 Introduction

The Strong Axiom of Revealed Preference (SARP) completely characterizes whether
a finite set of prices and demand choices can be rationalized. However, this binary
approach is incomplete, in the sense that we do not know by how much behavior
departs from rationality. Furthermore, we learn little about the demand data that fails
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to satisfy SARP. This has motivated an important body of literature that has focused
on how to measure the size of rationality violations. The revealed preference approach
(henceforth RP) is the preferred method to test the rationality hypothesis in consumer
behavior, due to its nonparametric nature. The leading contributions of this approach
to testing rationality are Afriat (1973) and Varian (1983), which revolve around Afriat
Efficiency Index (henceforth AEI). The prevalence of the RP approach is due to the
simplicity of its implementation for the commonly used data sets, and to its flexibility,
explained by its nonparametric nature. However, in the words of Varian (1983) “the
RP approach fails to summarize the data in a useful way.”

In a recent contribution, Aguiar and Serrano (2017) propose an index of viola-
tions of rationality based on the Slutsky matrix. Their Slutsky matrix norm (SMN)
approach helps to answer the question of how far is a given behavior (demand func-
tion) from rationality, using the entire observed Slutsky matrix function distance to
its closest rational Slutsky matrix function. Moreover, the methodology provides a
useful classification of the violations of the classical axioms of revealed demand. The
main limitation of the approach, however, is its reliance on infinite data, making its
applicability questionable.

In this paper, we demonstrate how the approach in Aguiar and Serrano (2017) can
be adapted to finite data sets. In doing so, we attempt to provide a complementary
approach to the RP methodology, stemming from the tradition of Antonelli (1951),
Slutsky (1915), and Hurwicz and Uzawa (1971) by using the Slutsky matrix to test
the empirical implications of consumer behavior in a finite data set environment. In
particular, we build and implement a methodology that may help to measure and
classify boundedly rational demand data by means of an index of deviations from
rationality that has a useful decomposition of SARP-inconsistent behavior.

We use classical results from the RP approach to show that nonrational behavior
will be accounted for by a Slutsky matrix function that fails to satisfy the Slutsky
regularity conditions for any extension of the data set. Conversely, if a data set can be
rationalized in the sense of Afriat (1973), there exists an extension thereof that offers
a rationalization in the sense of Hurwicz and Uzawa (1971). An implication of this
observation is that testing rationality in the RP approach and our modification of the
SMNapproachwith finite data is equivalent. In particular, a data set that violates SARP
will have a positive Slutsky norm for any extension of the data set, with an informative
decomposition of SARP-inconsistencies. These results are obtained because the length
of revealed demand cycles, revealed demand axioms, and properties of the Slutsky
matrix are neatly connected. To link finite and infinite environments, we exploit the fact
that any sequence of data points can be interpolated by a continuously differentiable
function.

Thus, our main contribution is to propose a way to classify consumer behavior
according to its Slutsky matrix norm in limited data sets. We adapt the decomposition
of the Slutsky norm into the different violations of axioms of revealed demand for
finite data. Our results seem to hold well in simulations.1

1 In the online supplement to Aguiar and Serrano (2017), we have applied the methodology of the current
paper to a well-known experimental data set from Ahn et al. (2014). This data set reports consumer demand
at the level of the individual. We find that the different kinds of violations of rationality appear to correlate
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To the best of our knowledge, this is the only measure of departures from rational-
ity that allows such a decomposition analysis. In addition, the Slutsky matrix norm
differs from the AEI (Afriat 1973), the most frequently used measure of violations
of rationality, in that the former is a positive index of rationality, whereas the latter
is normative. Indeed, the Slutsky matrix norm measures the error a modeller would
make when predicting the correct elasticity behavior of a consumer, if she makes the
rationality assumption. In contrast, the AEI quantifies the minimum wasted income
that the consumer has incurred without improving his own welfare. Other well-known
indices of departures from rationality that can be called normative are the Money
Pump Index (Echenique et al. 2011) and the Minimum Cost Index (Dean and Martin
2015). For other positive indices, see Varian (1983) and any other goodness of fit
index, concerning failures in predicting out-of-sample demand quantities (behavioral
nearness), under the rationality assumption. Relating our approach to some of these,
we also provide theoretical results that connect quantitatively the SMN with the AEI
and the Behavioral Nearness problem (i.e., the least distance from any given demand
to its best rational demand approximation).

This is the paper’s outline. Section 2 presents the primitives of our analysis and the
model. Section 3 presents an auxiliary equivalence result between the RP and the SMN
approaches that provides a logical bridge between the finite data set environment and
the Slutskymatrix function approach. Section 4 contains ourmain results and develops
a new class of interpolators of consumer choice data sets that have a minimal Slutsky
normandhave desirable properties. Section 5 implements simulation exercises to study
the numerical behavior of the minimal Slutsky norm interpolators and a comparison
with Afriat’s index. Section 6 discusses formally the connection of the SMN with
other measures of bounded rationality. Finally, we present a brief literature review in
Sect. 7 and conclude in Sect. 8. The proofs are collected in an “Appendix”.

2 Themodel: testing rationality with limited data sets

Our primitive is a finite array of prices, wealth levels, and demand choices OK =
{(pk, wk), xk}Kk=1 for an individual or decision unit. The observation xk ∈ R

L+ is a L
dimensional vector of quantities, corresponding to L goods, that we observed being
chosen by the consumer at the price-wealth pair (pk, wk) ∈ R

L++ × R++. These
consumption choices may or may not be rational.

The consumption set is RL+ so the finiteness of the observed data does not mean
that the consumer chooses from finitely-many options. Rather, our problem is that,
as analysts, we can observe only a finite number of price-wealth pairs with their
corresponding choices.

Consider a demand function x : P×W �→ R
L+, going fromZ = P×W , a compact

space of price-wealth pairs (p, w), P ⊆ R
L++, W ⊆ R++, to the consumption set.

We assume x satisfies Walras’ law:
∑L

l=1 pl xl(p, w) = w for all price-wealth pairs.

Footnote 1 continued
with one another, and that failures of symmetry (Ville axiom/Path Independence) are more prevalent than
failures of negative semidefiniteness (WARP).
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This demand is a deterministic choice rule that represents the behavior of a consumer
at each given price-wealth pair. The demand functions considered can be thought
(without loss of generality) to belong to a closed and bounded set of demand functions
X (Z) ⊂ C1(Z,RL+). We assume that this compact space has the C1(Z,RL+) norm.2

When we have two vectors of the same length say v1, v2 ∈ R
L we write its inner

product as v1v2.

Definition 1 Data Generating Demand Function (DGDF). We say that a demand
function x ∈ X is a DGDF of OK = {pk, wk, xk}Kk=1 if xk = x(pk, wk) for all
k ∈ {1, . . . , K }.
Given that our interest is to connect with approaches based on the entire (infinite)
functional data, we introduce the following theoretical construct. We say that x ∈
X (Z) is the “true” DGDF if for any data set OK or “sample” of individual choices
for a given price-wealth situation (pk, wk) ∈ P × W , it is the case that x ∈ X (Z)

is the unique function x : P × W → R
L+ such that xk = x(pk, wk) for all k ∈

{1, . . . , K } for all OK . For example, a true DGDF does not exists if we observe two
different choices for the same price-wealth situation, hence excluding the case of
choice correspondences.

We also assume that Walras’ law holds throughout, for all OK , pkxk = wk and all
x ∈ X (i.e., px(p, w) = w for all (p, w) ∈ P × W ). Behaviorally, when we face
deterministic choices that fulfill Walras’ law, we are concerned with testing whether
OK can be rationalized by a locally non satiated strictly convex preference relation.

In addition, we need a second ingredient, which can be expressed as the extensions
of a finite data set OK . Every finite data set OK has an associated set of functions that
describe all possible extensions, which are also elements of X (Z).

Definition 2 Extensions of a consumer’s data set. We say that a subset of demand
functions X K (Z) ⊆ X (Z) is the set of extensions of a data set OK when X K (Z) =
{x ∈ X (Z)|xk = x(pk, wk) and (pk, wk) ∈ Z ∀{pk, wk, xk} ∈ OK }.
The following claim is trivial:

Claim 1 For finite K and any OK its set of extensions X K (Z) �= ∅ if for any k,m ∈
{1, . . . , K }, whenever pk = pm and wk = wm , it is the case that xk = xm .

For instance, we can always find a smooth x ∈ X (Z) using a number of interpolation
techniques for OK , under the condition above (such as an interpolator of polynomial
degree or one based on B-splines, among others).

3 Connecting the Slutskymatrix, revealed demand cycles, and axioms

3.1 Preliminaries

3.1.1 RP and Slutsky matrix approaches to test rationality

The RP approach to testing and measuring departures from rationality in limited data
sets relies on the SARP. The main concept needed is that of a revealed demand cycle.

2 The C1(Z,RL ) is the space of continuously differentiable mappings from Z to RL .
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Definition 3 (Revealed demand cycle) A Revealed demand cycle CD,T is a pair of
sequences {pt , xt }Tt=0 where {xt }Tt=0 is a sequence of choices and {pt }Tt=0 is a sequence
of prices such that x0 = xT and pt [xt − xt−1] ≥ 0 for all t ∈ {1, . . . , T }.3
If we can find a revealed demand cycle CD,T for T ≥ 2, then we have a violation of
SARP.Namely,wedefine the relation R as follows: xt Rxt−1 whenever pt xt ≥ pt xt−1,
which is read as xt being “directly revealed preferred” to xt−1. Also, define the relation
R as follows: xt Rxs whenever one can find a sequence xt Rx1Rx2R · · · xn Rxs , which
we read as xt being “revealed preferred” to xs . It is clear that in CD,T we have
xT RxT−1RxT−2 · · · x1Rx0, which implies that xT Rx1, but since x0 = xT , we also
have x1RxT , thus violating SARP. We say that a revealed demand cycle is strict
wheneverCD,T is such that for some t ∈ {1, . . . , T−1}, it holds that pt [xt−xt−1] > 0.

Another characterization of rationality for demand functions x ∈ X (Z) was pro-
vided byHurwicz and Uzawa (1971) in the form of restrictions over the Slutskymatrix
function. This characterization requires the knowledge of the whole demand function
(i.e., infinite data).

Definition 4 Let Z ⊂ P × W be given, and denote by (p, w) an arbitrary price-
wealth pair inZ .4 Then the Slutsky matrix function S ∈ M(Z)5 is defined pointwise:
S(p, w) = Dpx(p, w) + Dwx(p, w)x(p, w)′ ∈ R

L×L , with entry sl,k(p, w) =
∂xl (p,w)

∂ pk
+ ∂xl (p,w)

∂w
xk(p, w) for a given demand x ∈ X (Z).

The Slutsky matrix function S of a rational demand x ∈ X (Z) must satisfy the
Slutsky regularity conditions. Namely, S is symmetric (property σ ) or si j (p, w) =
s ji (p, w) for all (p, w) ∈ Z , S is singular in prices (property π ) or S(p, w)p = 0
and S(p, w)′ p = 0 for all (p, w) ∈ Z , and S is negative semidefinite (property ν)
or S(p, w) is negative semidefinite for all (p, w) ∈ Z . Hurwicz and Uzawa (1971)
proved that the converse is also true, that is if x ∈ X (Z) has an associated Slutsky
matrix function that satisfies σ, π , and ν, then it can be generated by maximizing a
continuous utility function.6

3.1.2 Ville cycles, weakWARP, and revealed demand cycles

Note that when attempting to evaluate by how much a data set OK departs from
being rationalized, multiple paths can be followed. In fact, there is a large literature
of measuring departures from rationality in finite data sets. Most of them share the
common feature that their measures are a function of the revealed demand cyclesCD,T

for T ≥ 2. One central question that we tackle is how the properties of the revealed

3 We sometimes write x(t) = xt and p(t) = pt . Recall also that we assume Walras’ law: pt xt = wt for
all t .
4 Since Z is closed, we use the definition of differential in Graves (1956) that is defined not only in the
interior but also on the accumulation points of Z .
5 LetM(Z) be the complete metric space of matrix-valued functions, F : Z �→ R

L ×R
L , equipped with

the weighted inner product 〈F,G〉W = ∫
z∈Z Tr([W (z)F(z)]′[W (z)G(z)])dz.

6 Hurwicz and Uzawa (1971) require other regularity conditions to prove the sufficiency of the Slutsky
regularity conditions for the existence of a utility function that generates the demand function. However,
recent work has shown the necessity and sufficiency of those conditions in our environment Hosoya (2017).
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demand cycle relate to the Slutsky matrix of a demand function. The key to do this is
to draw a connection between the revealed demand cycles from finite data and both
the Ville cycles and the Weak WARP defined for infinite data.

Roughly, recall that the symmetry of the Slutsky matrix function is equivalent to
the Ville Axiom of Revealed Preference (VARP)/Path Independence (Hurwicz and
Richter—HR henceforth—Hurwicz and Richter 1979). To state this axiom, we need
to define a real income path.

Definition 5 (Real income path). A real income path consists of both a wealth path
w : [0, b] �→ W , and a price path p : [0, b] �→ P , having that (w(τ), p(τ )) is a
piecewise continuously differentiable path in Z .

Thus, we are allowing for continuity of the derivative to fail at a countable sub-
set of points. Jerison and Jerison (1992) define a rising real income path whenever
( ∂w

∂τ
(τ ),

∂ p
∂τ

(τ )) exist, leading to ∂w
∂τ

(τ ) >
∂ p
∂τ

(τ )′x(p(τ ), w(τ)). A Ville cycle is a
rising real income path such that (w(0), p(0)) = (w(b), p(b)).

We define a Ville Cycle in our setting as follows:

Definition 6 (Ville cycle) A Ville Cycle CV (S),b is a pair of functions (p(τ ), x(τ ))

for τ ∈ [0, b] for some b > 0 where x is a S continuously differentiable commodity
path x : [0, b] → R

L+ such that x(0) = x(b) and x ∈ CS([0, b];RL+) for S ≥ 1 and

p(τ )
∂x(τ )
∂τ

> 0 almost everywhere inτ ∈ [0, b], for any piecewise continuous price
path p : [0, b] → R

L++.

Observe that if there is a rising real income situation ∂w
∂τ

(τ ) >
∂ p
∂τ

(τ )x(p(τ ), w(τ)),
and the price-wealth path forms a cycle (p(0), w(0)) = (p(b), w(b)), then the sit-
uation is equivalent (almost everywhere) to p(τ )

∂x(τ )
∂τ

> 0 for all τ ∈ [0, b] since
∂w
∂τ

(τ ) = p(τ )
∂x(τ )
∂τ

+ ∂ p
∂τ

(τ )x(p(τ ), w(τ)).

Axiom 1 Ville Axiom of revealed preference (VARP). A demand function x ∈ X is
said to satisfy VARP if it does not have a Ville cycle CV (S),b for all S ≥ 1 and b > 0.

Next, we state the weak version of WARP, which is equivalent to the NSD of the
Slutsky matrix.

Axiom 2 Weak version of the weak axiom of revealed preference (Weak WARP).7 We
say that a demand function x ∈ X satisfiesWeakWARP ifwhenwehave px(p, w) ≤ w

then it follows that px(p, w) ≥ w.

Observe that, under the restrictions on the sampling scheme (which rules out nonde-
terministic choice), WeakWARP is simplified. In fact, for our purposes, we takeWeak
WARP to require this: if px(p, w) < w then px(p, w) > w when (p, w) �= (p, w).

An additional condition that rational consumers fulfill is the property of “no money
illusion” or homogeneity of degree zero.

Axiom 3 Homogeneity of degree zero (HD0). We say that a demand function x ∈ X
satisfies HD0 if x(α p, αw) = x(p, w) for all α > 0.

7 The strict version of WARP says that pt xt ≥ pt xs then ps xt > ps xs .
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Finally, we state an additional axiom, that is equivalent to Weak WARP under homo-
geneity of degree zero, and that is the Wald Axiom. The Wald axiom requires that
if we have a sequence (possibly a pair) of observations such that pkxk = w for all
k ∈ {1, . . . , K }, then: pkx(pl , w) < w implies pl x(pk, w) > w.8

3.2 Preliminary results

Weare ready tomake the connection between the finite and the infinite data approaches
to characterize rationality. The RP approach is concerned with measuring departures
from SARP when there is finite data, while the SMN approach, measuring whether
the Slutsky matrix norm is positive, uses functional data (i.e., the actual DGDF). It
follows that a global connection between both approaches must rely on how to extend
a data set OK = {pk, wk, xk}Kk=0 to the whole region Z . The set of extensions can be
very large, generally infinite. So our first interest is to know if a data set that violates
SARP, when extended, produces a Slutsky matrix function that is nonrational. Also,
we are interested in the question of whether a demand function with a nonrational
Slutsky matrix will be able to generate a data set that violates SARP. The answer in
the affirmative is provided by Proposition 0, which follows from three well-known
characterizations of rationality, the ones by Afriat, Hurwicz-Richter, and Hurwicz-
Uzawa, when adapted to a limited data set OK .

Proposition (0) The next three statements are equivalent:

1. A given data set OK with K ≥ 2 has at least a revealed demand cycle.
2. All elements x ∈ X K (Z) of the set of extensions of the data set either violate Weak

WARP or violate VARP.
3. All elements x ∈ X K (Z) in the set of extensions of the data set have an associated

Slutsky matrix that fails at least one Slutsky regularity condition (σ, π or ν).

We will show only that (1) is equivalent to (3), in the following lemma.

Lemma 1 Any given data set OK = {pk, wk, xk}Kk=1 for K ≥ 2 contains at least one
revealed demand cycle if and only if all elements x ∈ X K in the set of extensions have
an associated Slutsky matrix function that fails σ, π or ν.

The equivalence of (2) and (3) follows from HR and Kihlstrom et al. (1976).
Next, we draw connections between some properties of the Slutsky matrix function

for the set of extensions of a finite data set OK and the length of the revealed demand
cycles.

Lemma 2 For the Slutsky matrix function, we have:

• (i) If there are strict CD,T for T ≥ 3 and no CD,T for T = 2, then for all
extensions, σ fails.

• (ii) If there are CD,T for T = 2, then for all extensions, ν fails.

8 We note that HR provides a third characterization of rationality based on revealed demand axioms: a
demand function x ∈ X (Z) can be generated by maximization of a continuous utility subject to a linear
budget constraint if and only if the demand satisfies VARP and Weak WARP.
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We proceed next to draw connections between revealed demand cycles and properties
of the Slutsky matrix function:

Corollary 1 A necessary and sufficient condition for some data set OK = {pk, wk,

xk}Kk=1 for K ≥ 2 observations to contain at least one revealed demand cycle is that
the true DGDF x has an associated Slutsky matrix function that fails σ, π , or ν.

Several brief remarks are in order:

Remark 1 Our argument in the foregoing corollary applies the reasoning of Afriat’s
andVarian’s theorems in a slightly differentmanner by showing that there cannot exists
a Walrasian demand completion x ∈ X K (Z) that at the same time can be rationalized
by a utility function and made compatible with a data set that contains a revealed
demand cycle. This result implies that, when there is a data set that can be rationalized
in the sense of Afriat, we can find at least one demand function completion that can
be rationalized in the sense of Hurwicz and Uzawa (1971).

Remark 2 The proofs of Lemma 1 and Corollary 1 use Hurwicz and Uzawa (1971)
integrability theorem to define a utility function for an arbitrary compact set Z ⊆
P × W instead of locally relying on a specific cycle. In other words, for the case of a
data set that can be rationalized, there is at least one element x ∈ X K (Z) that has a
Slutsky matrix function that satisfies the regularity conditions σ, π , and ν. Therefore,
we can identify such an element x ∈ X K (Z) as the outcome of maximizing a unique
quasiconcave utility function subject to a linear budget constraint.

4 Slutskymatrix norms for finite data: classifying consumer behavior

There is a need to classify experimental data sets about consumer behavior in a useful
way, in order to understand how rationality is being violated. The SMN (Slutskymatrix
norm) approach, developed in Aguiar and Serrano (2017), provides a natural way to do
this since the SMNcan be decomposed additively in terms of the intensity of violations
of the Slutsky regularity conditions.

The SMN measures the departures from rationality by computing a norm of the
smallest perturbing error matrix function E such that S − E is a rational Slutsky
matrix. This approach requires functional data (i.e., the knowledge of the true DGDF).
However, as will be detailed in this section, the SMN can be modified to be applied
in cases where we have access only to a finite data set.

Definition 7 (SMN approach) The measure of bounded rationality for a given Slutsky
matrix function S = Dpx + Dwxx ′ is

d(S) = min{||E ||W : S − E satisfies the Slutsky regularity conditions},

where ||F ||2W = ∫
z∈Z ||W (z)F(z)W (z)||2

RL×Lμ(z)dz is the weighted Frobenious
norm with W (z) a (positive semidefinite and symmetric) weighting matrix and μ

a probability measure on Z that is assumed to be measurable. The two main results
of Aguiar and Serrano (2017) are that any Slutsky matrix function can be decom-
posed into two parts, a rational one and a behavioral error part. In fact, S = Sr + E
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where Sr = Sσ,π,ν is the projection of S on the space of matrix functions that sat-
isfy all three Slutsky conditions and E is the sum of three orthogonal complement
matrix functions, namely, E = Eσ + Eπ + Eν . Here, Eσ measures the viola-
tions of symmetry, Eπ corresponds to the violations of π , and Eν captures the
violations of NSD. Finally, the Slutsky matrix norm is decomposed in three parts
||E ||2W = ||Eσ ||2W + ||Eπ ||2W + ||Eν ||2W .

Recall that we have the following relations:9

• (i) If Weak WARP holds, then ||Eπ ||W = 0 and ||Eν ||W = 0 (i.e., the Slutsky
matrix is negative semidefinite and singular in prices).10

• (ii) If the Ville Axiom holds, then ||Eσ ||W = 0 (i.e., the Slutsky matrix is sym-
metric).

• (iii) If homogeneity of degree zero holds, then ||Eπ ||W = 0 (i.e., the Slutsky
matrix is singular in prices).

• (iv) If the Wald axiom holds, then ||Eν ||W = 0 (i.e., the Slutsky matrix is negative
semidefinite).

The decomposition in Aguiar and Serrano (2017) remains meaningful in finite data
sets. Proposition 0 has the strong implication that, if the true DGDF violates one of
the axioms of revealed preference, then all of the extensions of OK for any K have a
positive value for the corresponding Slutsky matrix norm.We shall pursue such exten-
sions as an interpolation exercise given the limited data set, and we shall typically
seek interpolators that minimize the Slutsky norm. In doing so, the actual value of the
decomposition is also exhibited. We shall close the section with a different approxi-
mation exercise: instead of seeking extensions in the set of all allowable demands, we
shall approximate this functional space by means of Sieves spaces, of help for com-
putational purposes. In what follows we will fixW (z) = 1, without loss of generality,
and we denote the corresponding matrix function norm as || · ||.

4.1 Theminimal Slutskymatrix norm of a limited data set

Wefirst provide a way tomeasure by howmuch a limited data set departs from rational
behavior. We define the least distance from any given data set extension to rationality
under the SMN:

Definition 8 (Minimal SMN) The measure of bounded rationality for a given data set
OK is given by

α∗(OK ) = minx∈XK (Z)||Ex ||2 ≥ 0,

9 The converse statements of each bullet point hold under additional technical regularity conditions on Z ,
requiring no additional assumptions on OK . In particular, if we let X (Z) be a space of smooth, Lipschitz
continuous (at least in wealth) demand functions, and the space Z be path-connected, convex, and open,
then we have: (i) ||Eσ ||W = 0 implies the Ville Axiom (Hurwicz and Richter 1979), (ii) ||Eπ ||W = 0
implies HD0 (this follows from the Euler’s Homogeneous Function Theorem, since Eπ (p, w) = 0 ⇐⇒
Dpx(p, w)p + Dwx(p, w)w = 0), (iii) ||Eν ||W = 0 and ||Eπ ||W = 0 imply that Weak WARP holds
because of (ii) and Kihlstrom et al. (1976), and (iv) ||Eν ||W = 0 implies the Wald axiom (John 1995).
10 John (1995) established that Weak WARP implies HD0 under Walras’ law. Hence, a demand function
that satisfies Weak WARP must be associated with a Slutsky matrix with both the ν and π properties.
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where Ex is the Slutsky error matrix corresponding to an extension x ∈ XK (Z).

We denote α∗(OK ) as α∗K for short, as we fix the data set OK . This is the smallest
SMN-distance possible to rationality from any demand function that interpolates a data
set. With the minimal Slutsky matrix norm, a classification of nonrational behavior is
provided on the basis of the properties of the set of extensions. The minimal SMN is
additively decomposable α∗K = ασ,∗K + απ,∗K + αν,∗K , with αi,∗K = ||Ei,x∗ ||2 for
i ∈ {σ, π, ν} and x∗ such that α∗K = ||Ex∗ ||2.

In the rest of the section we provide the statements and discussion of our main
results.

Proposition 1 A test for rationality in limited data sets corresponds to the minimal
SMN α∗K = minx∈XK (Z)||Ex ||2, where α∗K = 0 if and only if the data set can be
rationalized (i.e. OK satisfies SARP). Moreover, ασ,∗K = ||Eσ ||2 > 0 when there is
a strict CD,T for T ≥ 3 and no CD,T for T = 2, and αν∗K = ||Eν ||2 > 0 when there
is a CD,T for T = 2.

This result provides the first measure of bounded rationality that is additively decom-
posable into necessary conditions for rational behavior.

Notice also the following key (but direct) property of the Minimal SMN:

Corollary 2 The minimal SMN α∗K is a lower bound of the true value of ||Ex∗ ||2 for
the underlying DGDF x∗ ∈ XK (Z).

In addition, the minimizers of the problem posed in Proposition 1 are interpolators of
demand data that have interesting properties in their own right. Specifically, we can
understand Proposition 1 as a generalized integrability result in the following sense:

Proposition 2 If x K ,∗ ∈ argminx∈XK (Z)||Ex ||2 then:
• xK ,∗ can be rationalized (by a twice continuously differentiable strictly concave
locally non satiated utility function) when α∗K = 0.

• xK ,∗ can be generated by maximizing a complete, regular Quah (2005) but
nontransitive preference subject to px(p, w) = w for all (p, w) ∈ Z when
α∗K = ||Eσ ||2 ≥ 0.

• xK ,∗ can be generated by a scalar function φ : Z �→ R such that ∇pφ(p, w) =
x(p, φ(p, w)) and px(p, w) = w for all (p, w) ∈ Z when α∗K = ||Eπ ||2 +
||Eν ||2 ≥ 0.

The first two cases considered in Proposition 2 provide two different notions of ratio-
nalization of a finite data set. The third case is different because it does not have an
explicit notion of maximization. In fact, it can be compatible with utility minimiza-
tion subject to a linear budget constraint (Hurwicz and Richter 1979). One could view
the scalar function φ as a mapping that is sufficient for describing demand behavior
locally. In particular, it can be interpreted as a function describing local preferences
in the sense of Balasko and Tvede (2010) by means of a vector field.

The classification of consumer behavior on the basis of the Slutsky properties is
presented in Table 1. Observe that not all possible combinations have been studied.
Those that have a full characterization were presented in Proposition 2. For the rest,

123



SERIEs (2018) 9:389–421 399

Table 1 Consumer behavior classification

Slutsky matrix Satisfies σ Fails σ

Satisfies π, ν Rational Regular (Quah)

Satisfies π /Fails ν Scalar φ HD1 HD0 Non-Rational (Shafera)

Satisfies ν/Fails π (Impossible)d Gabaix Sparse Maxb

Fails π /Fails ν (Impossible)e Strongly Bounded Rationalc

only specific examples are provided. It is an open question to fully characterize them,
but our methodology informs about which of them is missing.

The following are examples of models that have the combination of properties of
the Slutsky matrix:

(a) Shafer (1977) provides an example of a demand that is homogeneous of degree
zero -HD0- but fails σ, ν. In particular, he proposes the following demand system

for L = 3 and c > 1: xs f (p, w) =
(

w(p1+(1−c)p2)
2p1(p1+p2)

,
w(p1+(1−c)p2)
2p2(p1+p2)

wcp2
p3(p1+p2)

)′
,

(b) Gabaix sparse max consumer (2014) with a Cobb-Douglas/CES utility and linear
attention is an example of failures of σ, π while satisfying ν (Aguiar and Serrano
2017). In particular, the following Cobb-Douglas sparse max satisfies this prop-
erty: xG(p, w) = 1

α p1/pG1 +(1−α)p2/pG2
(αw

pG1
,

(1−α)w

pG2
)′, with a psychological price

pGl = ml pl + (1 − ml)pdl , an attention parameter ml ∈ [0, 1], pdl ∈ P a default
price, and α ∈ (0, 1) (the Cobb-Douglas share parameter).

(c) Gabaix sparse consumer (2014) with general limited attention can generate any
boundedly rational model.

(d) John (1995) proved that Weak WARP implies HD0.
(e) If Eσ = 0 under Walras’ law it implies Eπ = 0 because p′S(p, w) = S(p, w)p

then HD0 must hold when Z is connected due to Euler’s Homogeneous Function
Theorem.

4.2 Computing theminimal Slutskymatrix norm: limiting behavior and sieves
spaces

We next provide an upper bound (possibly not the sharpest one) that helps to compute
the error of the Slutsky matrix norm associated with the error of the extension of a data
set. Notice that these extensions are deterministic and they pass through all observed
points; the error is with respect to the true DGDF in a domain of interest, assuming
that the true DGDF is sufficiently smooth.

Here we analyze how to provide an upper bound for the distance between the true
value of E = a(x) for the DGDF and the finite sample values that we could get
from any extension of OK , say xK ∈ X K (Z). For a given sample and an extension
(e.g., if xK is a cubic spline interpolator), we usually have some information about
the upper bound of the error ||x − xK || ≤ εK . That is, while the error is zero at
the points in OK , it may be positive in other points in the region Z . Under mild
assumptions, such as smoothness of the DGDF, there are known upper bounds for
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εK for several interpolation techniques. In the next result we use this information to
bound the distance of the values of the Slutsky error map a(·) for any given extension
xK .

Proposition 3 For every OK , with x denoting its true DGDF and any extension xK ∈
X K (Z), with ||x−xK || ≤ εK , there is a constant κ ′ > 0 such that ||a(x)−a(xK )|| ≤
κ ′ · εK , where κ ′ = ||x || + ||Dw[x]||.
In other words, if we have enough observations such that εK is small enough, the
Slutsky matrix norm of any interpolator for that data is close enough to the value of
the Slutsky matrix norm of the true DGDF. Continuity of the Slutsky matrix norm
error is established in Claim 2 in the “Appendix”.

Remark 3 We can allow a family of interpolators based on the SMN. For each set OK ,
there is a bracket of SMN values formed by α∗K = αK

min = minx∈XK (Z)||Ex ||2 and
αK
max = maxx∈X K (Z)||Ex ||2. Observing that X K ⊇ X K+1 for any K , K + 1 with

strict inclusion relation when the new observation K +1 is not redundant, we have that
[αK

min, α
K
max ] ⊇ [αK+1

min , αK+1
max ]. We say that x∗ ≡ limK→∞X K is the true DGDF, the

unique limit of the sequence of extensions. Therefore, limK→∞[αK
min, α

K
max ] = {α∗},

the measure of bounded rationality at the true DGDF.

Next, we present a result that differs from the previous ones in one important respect.
Namely, keeping the data set OK fixed, we do not consider all its unrestricted exten-
sions. Rather, we approximate the space of functions where we search for the minimal
Slutsky norm interpolator demand function. Such an approximation result helps in the
practical implementation of the results provided in Proposition 1. The test provided
in that result is a variational problem that has no closed-form solution. To be able to
implement this test numerically, we have to ensure that we can approximate the result
with a limited functional space. In fact, consider an increasing sequence of sets of
demand functions {Xh}h∈N with Xh ⊂ X and Xh1 ⊂ Xh2 if h2 > h1; here, for any
x ∈ X , there is a (projection) mapping φh : X → Xh with φh ◦ x ∈ Xh such that
φh ◦ x → x as h → ∞. This is usually called a Sieves space (e.g., think of a space
of polynomial functions approximating our space of demand functions, in which h
is the highest degree of the polynomial). We define analogously the allowable set of
extensions of a data set X K

h (Z) = X K (Z) ∩ Xh under the hth approximating space.
We only consider the case when X K

h (Z) is nonempty, in other words, h is sufficiently
large to guarantee nonemptiness given the data set. The next result shows that the
correspondence of Slutsky norm minimizers is “continuous at h = ∞” , or more
formally, a consistent approximation.

Proposition 4 Fix a data set OK and the corresponding set of extensions X K (Z).
An approximate SMN test for rationality in such a limited data set corresponds to
the solution to the optimization problem α∗

h = minx∈X K
h (Z)||Ex ||2, with α∗

h →
α∗K as h → ∞, where α∗K = minx∈XK (Z)||Ex ||2. Moreover, for any x∗ ∈
argminx∈X K (Z)||Ex ||2, there exists a sequence x∗,h → x∗ as h → ∞ where
x∗,h ∈ argminx∈X K

h (Z)||Ex ||2.
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Remarks on computational complexity

The results in this section provide guidelines for practical work. If we have a large
data set (with K large enough) we could use any interpolator, possibly a fast one for
computational reasons, and it will be close to the true DGDF and the distance to the
true Slutsky matrix norm will be small as well. In contrast, if K is small, we could use
a large Sieves space (h large enough) to find an interpolator that has a Slutsky matrix
norm that is close enough to the lower bound of the true value.

We emphasize that the computational complexity of Spline Interpolation for order
of polynomials h, which is an example of a sieve space, and for K interpolation points
is O(h2K ) for the univariate case (Toraichi et al. 1987). In the multivariate case, we
consider tensor products of univariate splines that depend on the dimension of the
consumption space L . Since the derivatives of the interpolator can be obtained in a
recursive way from the splines basis, in practice the derivation step adds no substantial
computational time, other than evaluation, which can be vectorized in the algorithmic
implementation.

The computation of the Slutsky matrix norm is trivial, since Aguiar and Serrano
(2017) provide a close form expression for it. The only object needed to compute
the Slutsky matrix norm of a given interpolator is the computation of the negative
semidefinite part of a matrix and its residual Eν at all points in the data set. The
complexity of the pointwise eigenvalue decomposition of the Slutsky matrix of size
L × L is O(L3) (Pan and Chen 1999). In this sense, our approach permits the user to
adjust the computational complexity of its computation with a sacrifice in numerical
precision. By choosing low degree spline interpolation we are effectively close to a
parametric exercise, close in spirit to Halevy et al. (2014). In contrast, by increasing
the size of h we approximate a fully nonparametric approach to bounded rationality.
Our approach will become computationally more complex when the consumption
space dimension grows. In this regard, the computational flexibility of our approach
ought to be contrasted with the computational complexity of other methods tomeasure
departures from rationality. Namely, the Money Pump Index is known to be NP-hard
(Dean and Martin 2015), and the Minimum Cost Index is also NP-hard (Shiozawa
et al. 2015). The AEI does not suffer from the computational issues of the indices just
mentioned.

5 Simulation study

In order to complement our results for the computation of the minimal Slutsky norm
interpolators in finite samples with restricted functional spaces (e.g., piecewise poly-
nomial interpolators of finite degree), we provide a simulation study of the behavior of
the testing procedures provided in Sect. 4 for a small number of observations and for
interpolators chosen from small functional spaces. The results are encouraging. They
exhibit fast convergence when the true DGDF corresponds to a classical boundedly
rational model proposed by Shafer (1977):

• xs f1 (p, w) = w(p1+(1−c)p2)
2p1(p1+p2)

,
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• xs f2 (p, w) = w(p1+(1−c)p2)
2p2(p1+p2)

,

• xs f3 (p, w) = wcp2
p3(p1+p2)

.

The parameter c ∈ R controls the violations of rationality. When c = 0, this demand
system corresponds to a rational Cobb-Douglas consumer with the same preferences
over the first two goods and no interest in consuming the third one. Homogeneity of
degree 0 and Walras’ law hold for all values of c. For 0 < c < 1, the only property
of the Slutsky matrix being violated is symmetry (σ ). For c > 1, both symmetry (σ )
and NSD (ν) fail.

We implement our simulation study in the budget-share form of this demand
function, and we focus on computing the lower bound of the budget-share elas-
ticities version of the Slutsky matrix norm (Aguiar and Serrano 2017). Formally,
the budget-share elasticity Slutsky matrix norm is the Slutsky matrix norm with a
weight matrix W (p, w) = 1√

w
diag(p). This variant of the Slutsky matrix norm

is unit-free. The Slutsky matrix norm is the unknown quantity of interest that we
want to bound below, and in general, to obtain a good approximation, we use
||Es f ||W = (

∫
z∈Z ||Exs f (p, w)||2

M,Wμ(z)dz)1/2, where || · ||M,W is the weighted

Frobenious matrix norm in the space R
L×L , and μ : Z �→ [0, 1] is a probability

density function that corresponds to the sampling scheme chosen by an observer of
prices and wealth. For us, μ(z) corresponds to a probability density such that the vec-
tor log(z) has a multivariate normal distribution probability formed as the product of
L + 1 normal distributions with zero mean and standard deviation 1/20.

Notice that μ is known to the experimenter because it is the sampling scheme
generator process. The choice of this particular distribution is irrelevant and we do not
need to estimate it. We note that our exercise is deterministic.

In practice, the observer obtains only a finite sample OK = {pk, xk}Kk=1 such that
wk = pkxk and in this example xk = xs f (pk, wk). We obtain the budget shares of
the data bkl = pkl x

k
l /w

k .
The budget-share form of the demand system expressed in terms of logarithms of

prices and logarithm of wealth, which we take as the true DGDF is:

• (i) b∗
1(ln(p), ln(w)) = p1+(1−c)p2

2(p1+p2)
.

• (ii) b∗
2(ln(p), ln(w)) = p1+(1−c)p2

2(p1+p2)
.

• (iii) b∗
3(ln(p), ln(w)) = 1 − b∗

1(ln(p), ln(w)) − b∗
2(ln(p), ln(w)).

Here, the vector entry ln(p)i = ln(pi ). The Slutsky matrix at a point (p, w), in its
budget-share elasticity form, can be computed for numerical stability purposes from
the budget shares expressed in terms of logged prices and wealth as follows:

si j (p, w)pi p j/w = ∂bi (ln(p), ln(w))

∂ln(p j )
+ ∂bi (ln(p), w)

∂ln(w)
b j (ln(p), ln(w))

+ b j (ln(p), ln(w))bi (ln(p), ln(w)) − δi j bi (ln(p), ln(w)),

where δi j = 1 if i = j and zero otherwise.
Using corollary (1) we approximate the lower bound of ||Es f ||W for the fixed

sample OK . The lower bound is αK = minx∈X K (Z)||Ex ||W where X K (Z) is the set
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Table 2 Numerical approximation of the square of the minimal Slutsky norm of a set of extensions, for
different sample size and different size of functional space of interpolators

Sample (γ K ,h)2 = min
b∈X K ,b

h (Z)
||Eb||2W

Degree
c = 0
(||E ||2W = 0)

c = 1/2
(||E ||2W = 0.0241)

c = 2
(||E ||2W = 0.511)

K = 20 h = 5 0.003 0.026 0.487

h = 7 0.002 0.025 0.454

h = 11 0.000 0.025 0.465

K = 50 h = 5 0.004 0.0239 0.5122

h = 7 0.004 0.0246 0.5102

h = 11 0.005 0.0240 0.5112

K = 100 h = 5 0.0002 0.0241 0.5105

h = 7 0.0002 0.0241 0.5106

h = 11 0.0002 0.0241 0.5106

of extensions of OK that belongs to X (Z). We expand on the methodological details
in “Appendix” (9.8).
The effects of the numberof observations andpolynomial degrees on theaccuracyof the
estimationWeobtain a random sample of size K ∈ {20, 50, 100} i.i.d. draws fromμ(z)
and xs f with its budget share bs f such that we obtain: OK = {pm,k, bm,s f (pm,k)}Kk=1

for each value of K . We fix a budget-share space of extensions of OK , X K ,b
h (Z) for

h ∈ {5, 7, 11}.
The key parameter c is fixed at three different values c ∈ {0, 1

2 , 2}, to generate
different intensities of both types of violations (i.e., of σ and ν). We estimate the
Budget-Share Slutsky matrix, The results of the simulation are provided in Table 2
and show that even for K = 50, which is a common data set size (see Ahn et al. 2014)
the SMN test works as well as the revealed preference test. In addition, the quality of
the approximation to the true value increases in both the sample size K and the degree
of the polynomial h.
The effects of sample size on the decomposition of violations A key feature of our
methodology is the decomposition of the size of bounded rationality into its com-
ponents (σ, π, ν). By construction, we can obtain the lower bounds of each type of
violation. In this example the approximated values will be contrasted with the true
values to show that the performance of our procedure is encouraging here as well. For
concreteness, we present only the results for h = 5 for each element of the decompo-
sition in a vector.
The results of the simulation are provided in Table 3 and show that even for K = 50we
can get small absolute errors when estimating the SMN using standard non parametric
estimators of the conditional expectation. In any case, the results of these simulations
are encouraging in terms of their speed of convergence of an out-of-the-box estimator
of the SMN to its true value.
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Table 3 Numerical
approximation of the square of
the minimal Slutsky norm of a
set of extensions, for different
values of c

Sample (αK ,h)2 = min
b∈X K ,b

h (Z)
||Eb||2W

Degree c = 0 c = 1/2 c = 2

True ||Eb,σ ||2W 0 0.0241 0.381

||Eb,π ||2W 0 0 0

||Eb,ν ||2W 0 0 0.130

K = 20
h = 5

||Eb,σ ||2W 0.00120 0.02534 0.36140

||Eb,π ||2W 0.00210 0.00136 0.00292

||Eb,ν ||2W 0.00022 0.00000 0.12299

K = 50
h = 5

||Eb,σ ||2W 0.00004 0.00233 0.38146

||Eb,π ||2W 0.00036 0.00006 0.00070

||Eb,ν ||2W 0.00004 0.00000 0.13006

K = 100
h = 5

||Eb,σ ||2W 0.00000 0.00237 0.38042

||Eb,π ||2W 0.00020 0.00004 0.00056

||Eb,ν ||2W 0.00000 0.00000 0.12677

Relation to AEI

We continue our simulation study, looking at the comparison between the popular AEI
and theminimal SMN.We consider only h = 5 and K = 50, while the data generation
of prices and wealth is the same as in the previous sections.

We allow the bounded rationality parameter in the Shaffer model, c to take values
from 2 to 20.We chose the c parameter numbers to get a range in the AEI roughly from
0.99 to 0.95.We observe that both the AEI and the minimal SMN growmonotonically
in the c parameter. In this sense, both the AEI and SMN are ordinally equivalent for
this example. We provide a formal study of the connection between the two indices in
the sequel. Here we confine ourselves to the numerical properties of the measures of
departures from rationality.

Afriat (1973) considers that a high AEI (very close to 1) is evidence of a high
goodness of fit of the rationality consumer. Although there is no formal threshold of
when to consider that the AEI is high enough to be deemed close to rationality, it is
common to use a threshold of 0.95 or 0.99.11

Our results presented in Table 4 provide numerical evidence that very high levels of
the AEI (0.965), which are usually interpreted as evidence in favor of the rationality
hypothesis, can be associated to data sets with a very high SMN. Recall that a high
SMN implies that themodeller is making a high prediction error. In fact, the α minimal
SMN measures the minimal error a modeller would make in predicting the elasticity
behavior (for price changes when they are compensated in the Slutsky sense) under the
assumption of rationality. Indeed, we observe that in theworst case, which corresponds

11 See Ahn et al. (2014), Andreoni et al. (2005), Varian (1990).
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Table 4 Numerical approximation of the square of the minimal Slutsky norm of a set of extensions, for
different sample size and different size of functional space of interpolators

Sample (αK ,h)2 = min
b∈X K ,b

h (Z)
||Eb||2W

Degree c = 2 c = 5 c = 10 c = 20

AEI 0.9999 0.9947 0.9829 0.9650

True ||Eb||2W 0.511 34.895 957.25 19605.5

||Eb,σ ||2W 0.381 2.3988 9.5952 38.381

||Eb,π ||2W 0 0 0 0

||Eb,ν ||2W 0.130 32.496 947.66 19567.1

K = 50
h = 5

||Eb||2W 0.5122 34.9293 957.2055 19602.243

||Eb,σ ||2W 0.38146 2.4069 9.6125 38.408

||Eb,π ||2W 0 0 0 0

||Eb,ν ||2W 0.13006 32.5224 947.5930 19563.835

to a parameter c = 20, the minimal SMN calculated using our methodology is α =√
1960.243 = 140.01. Our numerical computation of the minimal SMN is very close

to the true value (α50,5 = 140.008). When the AEI is very high (0.9999) we have an
associated SMN index of α = √

0.511 = 0.71, which is smaller, but still sizeable. Our
numerical computation of the SMN is very close to the true value (α50,5 = 0.716).12

We emphasize that, beyond the obvious benefits of having different measures of
rationality to evaluate whether we can consider a data set close to the null of utility-
maximizing behavior, the SMN provides a useful decomposition of the measure into
the Slutsky regularity conditions. We observe that for most values of the parameter c,
the error that corresponds to violations of the law of demand (ν) are more important
than the violations that correspond to the property σ . We also observe that higher
values of the bounded rationality parameter c are associated with a higher relative
weight of the violations of the law of demand in terms of the total SMN. We can
observe how this information provides us with an additional insight about the nature
of bounded rationality in this model. If a modeller wants to effectively predict the
elasticity behavior of this boundedly rational consumer, she should drop the regularity
conditions ν and σ , with a priority on the former.

Applications to experimental data sets

We used the methods developed in this paper in the online Supplement to Aguiar and
Serrano (2017). In particular, we compute theMinimal SMN for the experimental data

12 To further clarify what we mean by a high level of the SMN, let us recall that α = 0 if and only if the
data is rationalizable. In addition, α is a unitless index that measures the quadratic norm of the errors in
the prediction of the elasticity of the expenditure on all goods, as a fraction of total wealth at any given
experimental trial. The expenditure elasticity is taken with respect to a change of 1 percent of all prices,
when this change is compensated in the sense of Slutsky.
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set of Ahn et al. (2014), which consists of K = 50 budget allocation tasks regarding
the purchase of Arrow securities.

In that experimental data set, we find evidence that the violations of ν are less
prevalent in the sample than the violations of σ . The violations of π are not possible
due to the experimental design.We refer the reader to the online Supplement to Aguiar
and Serrano (2017) for details.

6 Generalized SMN and its connections to other measures of
bounded rationality

6.1 The SMN and its local convergence to the afriat approach through the
Jerison-Jerison index

The most well-known measure in the RP approach is the AEI. An important question
is how the Slutsky matrix norm relates numerically to this index. We provide its
definition. :

Definition 9 (Afriat Effiency Index, AEI) The AEI of a data set OK , with at least one
CD,T with T ≥ 2 is:

G = supCD,T {mint∈{0,...,T }{pt [xt − xt−1]/[pt xt ]}|(pt , xt ) ∈ CD,T },

and zero otherwise.

AEI is such thatG ∈ [0, 1] and researchers interpret itsmeasure as a “loss of efficiency”
or distance from a rational behavior benchmark: the larger it is, the larger gap between
actual expenditure and expenditure on a nonchosen bundle that becomes chosen for
different prices, suggesting strong swings of (irrational) behavior. For a fixed cycle
CD,T we call mint∈{0,...,T }{pt [xt − xt−1]/[pt xt ]} (pt , xt ) ∈ CD,T the slope of the
cycle.

The connection between the SMN approach and AEI is established through the
Jerison-Jerison modified Slutsky matrix index. Indeed, an earlier approach, also based
on the Slutsky matrix, is proposed in the work of Jerison and Jerison (2012), where
a local measure of departures from rationality is proposed in the form of a family of
indices.

Definition 10 (JJ-Index) The Jerison and Jerison index is defined as

γ ({vt }Tt=0, S(p, w)) = 1

T

T∑

t=1

vt ′S(p, w)[vt − vt−1],

where S(p, w) is the Slutsky matrix evaluated at a reference point (p, w) ∈ P × W
and {vt }Tt=0 is a collection of vt ∈ R

L vectors such that v0 = vT .

Jerison and Jerison (2012) establish a remarkable connection between Afriat’s inef-
ficiency cost measure of irrationality and the JJ index. Both coincide in a local ball

123



SERIEs (2018) 9:389–421 407

around some price and wealth reference point. Here we will revisit this result, show-
ing that their measure can be seen as a quadratic form associated with the minimal
correcting matrix E from Aguiar and Serrano (2017).

6.2 A generalization of the slutskymatrix norm

Our intent in this section is to focus on a generalized SMN that has as a special
case the index of Jerison and Jerison (2012), and relate it to the Afriat index. The
space of matrix-valued functions M(Z) has some nice properties associated with
the Slutsky regularity conditions σ, π, ν. As shown in Aguiar and Serrano (2017)
the spaces M(Z)σ of symmetric matrices, M(Z)σ,π of symmetric matrices that are
singular in prices, and M(Z)σ,π,ν of symmetric, singular in prices, and negative
semidefinite matrices are closed and convex subspaces under the topology induced
by the Weighted Frobenius norm. Using the weighted inner product 〈F, H〉W in the
space, we define the projections of any Slutsky matrix S ∈ M(Z) on the spaces of
interest. With it, we have the same unique orthogonal decomposition as in Aguiar and
Serrano (2017) with S = Sr + E with E = Eσ + Eπ + Eν . However, it is possible
to change the norm, in fact we can use any pseudonorm or quasinorm to compute our
measure of bounded rationality.

Definition 11 (Generalized Slutsky Error Seminorm) A generalized Slutsky error
seminorm is a mapping 
 = n ◦ a such that is the composition of a n : M(Z) �→ R+
seminorm on the space M(Z) and the Slutsky error mapping a : X (Z) �→ M(Z)

(i.e., a(x) = E).

We establish now that the JJ index can be obtained as a subcase of the Generalized
Slutsky error seminorm. The JJ index definition depends on the Slutsky matrix S =
Sr + E , not only its error matrix E . Ideally, we want a measure of violations of
rationality that depends only on the departures of rationality and on nothing else (i.e.
on the matrix E and not on the matrix Sr ). We show this is the case for the supremum
of the JJ index. We next prove a nice feature of the discrete JJ index that, to the best
of our knowledge, had not been previously pointed out.

Recall from Aguiar and Serrano (2017) that E = Eσ + Eπ + Eν is defined as the
minimal perturbation matrix function that yields a rational Slutsky matrix function,
decomposed in its symmetry, singularity, and NSD error parts. Then:

Lemma 3 The JJ index is equal to

γ ({vt }Tt=1, S
x (p, w)) = γ ({vt }Tt=1, S

r (p, w)) +
∑

j∈{σ,π,ν}
γ ({vt }Tt=1, E

x, j (p, w)).

This result shows that the JJ index can be decomposed additively into the JJ index
of a rational Slutsky matrix, which is always nonpositive γ ({vt }Tt=1, S

r (p, w)) ≤ 0,
because the eigenvectors of Sr are all nonpositive and the JJ index is an average
of quadratic forms, and an unsigned, sometimes nonnegative, part (i.e., it may be
nonnegative for some cycle {vt }Tt=1).
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Looking at the case of infinite data sets, we can begin with a local result, and then
provide a global connection as well. Jerison and Jerison connect the JJ index with the
Afriat index. Herewe establish the connectionwith the SMNusing our previous result.
We define V T (εp) as the set of sequences of the type {vt }Tt=0 where vt ∈ V ⊂ R

L . The
set V is compact, v0 = vT and T ≥ 1 is fixed. Additionally, defining pt = p + vt

and |vt | = |p − pt | ≤ εp for all t ∈ {0, . . . , T }, we require that the related cycle
CD,T = {pt , wt , x(pt , wt )}Tt=0 is a revealed demand cycle. Moreover, we assume

that |wt − w| ≤ εpη where η > max{v ∈ V | |vT x(p, w)|}. Let V T (εp,η)
w be the

set of cycles of the type {vt , ut }Tt=0 where ut = wt − w such that |ut | ≤ εpη.
Using this notation, we can rewrite the Afriat index of an RP cycle as G((p, w) +
V

T (εp,η)
w ) = sup{vt ,ut }Tt=0∈V T (εp ,η){mint∈{0,...,T }{pt [xt − xt−1]/[pt xt ]}|(p + vt , w +

ut xt ) = CD,T |(vt , ut ) ∈ {vt , ut }Tt=0)} (i.e., the supremum over the Afriat inefficiency
index if we are allowed to sample price and wealth at will). Now we establish the
desired result regarding the supremum of the JJ index in V T (εp) and its relation with
the Generalized Slutsky error matrix norm.

Lemma 4 Given a set of cycles V T (εp) and for a fixed T ≥ 1 we have the supremum
of the JJ index sup{γ (v, S(p, w)) : v ∈ V T (εp)} = sup{γ (v, E(p, w)), v ∈
V T (εp)}, where S(p, w) = Sr (p, w) + E(p, w).

The statement says that the supremum of the JJ index is the composition of a
pseudonorm on the space of matrix functions and the mapping a, because it only
depends on the matrix E . This holds only if V T (εp) is a compact neighborhood. Evi-
dently, the SMN is a special case of the generalize definition that we have proposed in
this subsection. The SMN is essentially the only norm that is associated with the inner
product of the space M(Z), and for that reason, it provides the orthogonal decom-
position that allows us to classify violations of the Slutsky regularity properties, but
in some cases like the present one we can investigate other norms to understand its
connections with other notions of “distance” from rationality.

6.3 Convergence results

With the previous results in hand, the next result requires that the analyst be able to
sample at will from prices and wealth and that the Slutsky matrix be known at the
reference point, which requires infinite data. In contrast, we have been assuming in
this paper that we are given a data set OK so the sampling process is given. Hence, the
next proposition should be seenmainly as a way to connect theoretically the traditional
RPAfriat inefficiencymeasure of rationality and the SMNapproach in arbitrarily large
data sets. In words, it says that when the ratio εp → 0, the Afriat inefficiency index
converges to zero at the rate of ε−2

p , in proportion to the supremum of the JJ index in
the set of cycles considered. The key assumption is that wealth across the path is such
that |wt − w| ≤ εpη:

Proposition 5 Given a set of cycles V T (εp) and V
T (εp,η)
w , for a fixed T ≥ 1, the Afriat

inefficiency index converges to zero proportionally to the supremum of the JJ index of
the Slutsky matrix error norm E(p, w):

123



SERIEs (2018) 9:389–421 409

limεp→0ε
−2
p G((p, w) + V

T (εp,η)
w ) = sup{γ (v, E(p, w))/w : v ∈ V T (εp)}.

6.4 The behavioral nearness problem and the“Almost Implies Near” principle

We refer to the problem of trying to find the closest rational demand to a given demand
as the “behavioral nearness” problem (Anderson 1986). At a general level, as discussed
inAguiar and Serrano (2017), the behavioral nearness problempresents several serious
difficulties, which was our motivation to take the Slutsky matrix route. Intuitively,
there should be a close relationship between the two approaches. In order to make this
relationship explicit, we will make extensive use of Anderson (1986) “almost implies
near” (AN) principle and its recent elaboration, developed by Boualem and Brouzet
(2012). At the end of the subsection we adapt the principle to finite data sets.

Assume that the set of demand functions X (Z) is equipped with the norm
|| f ||C1 = max({|| fl ||C1,1}l=1,...,L), with || fl ||C1,1 = max(|| fl ||∞,1, ||∇ fl ||∞,L+1)

where f (z) = [ f1(z) . . . fL(z)]′ ∈ R
L .13 Let R(Z) ⊂ X (Z) be the set of rational

demand functions (i.e., xr ∈ R(Z) is the solution to maximizing a complete, locally
nonsatiated and transitive preference over a linear budget constraint).

Definition 12 Define the distance of x ∈ X (Z) to the set of rational demandsR(Z) by
the “least” distance froman element to a set: ||e||C1 = in f {||x−xr ||C1 |xr ∈ R(Z)}.
The matrix nearness problem allows us to represent propertyR—a shorthand to refer
to the Slutsky regularity properties—by the Slutsky correction map a with the AN
property, as defined next.

Definition 13 (Boualem and Brouzet 2012) A function a : G �→ Y (with G and Y
metric spaces) satisfies the “almost implies near” (AN) property at C ∈ Y , if for all
ε > 0, there exists δ > 0 such that for every g ∈ G, the inequality ||a(g) − C ||Y < δ

implies the existence of an element g0 ∈ G satisfying a(g0) = C and ||g0−g||G < ε.

The Slutsky correction mapping a : X (Z) �→ M(Z), with X (Z) and M(Z) as
defined above, represents property R when for every x ∈ R(Z):

a(x) = E = 0,

where 0 represents the zero matrix function of L × L dimension in the metric space
M(Z), and E = Sr − S denotes a solution of the program in the definition of the
Slutsky norm. The analytical expression of the (unique) solution to such a problem,
as well as its properties, were derived previously (Aguiar and Serrano 2017).

The “almost implies near” (AN) principle allows us to assert that for all ε > 0
there exists δ > 0 such that for all x ∈ X (Z), whenever a(x) = E and ||E || < δ,
one can find xr ∈ X (Z) such that a(xr ) = 0 and ||x − xr ||C1 < ε. In the name of

13 In fact, any norm that makesX (Z) complete works. We use also the related normed space of real-valued
functions with the norm || · ||∞,m = supz∈Z |g(z)| for g : Z �→ R

m , for finite m ≥ 1 and | · | the absolute
value. This norm will come in handy when dealing with some technical proofs in the sequel. By the set
C1(Z) we mean the set of functions that have C1 extensions to an open set containing the compact domain
Z .
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the principle, the “almost” part refers to δ > 0 or propertyR being δ-satisfied (matrix
nearness), and the “near” part to ε > 0 (behavioral nearness).14

Given the additional restriction thatX (Z) is compact, we have the following result,
which links the Slutsky matrix norm approach with the Varian and Jerison-Jerison
measure of the “least distance” to the closest rational demand function in the compact
subset X (Z).

Proposition 6 For all ε > 0, there exists δ > 0 such that for all x ∈ X (Z), the
inequality ||E || ≤ δ implies the existence of a rational demand function xr1 ∈ X (Z)

satisfying a(xr1) = 0 and ||x − xr ||C1 ≤ ε. Moreover if δ → 0 then ε(δ) → 0.

Thus, there is an ordinal equivalence between the two problems, in the sense that if one
takes two degrees of approximation ε1 ≤ ε2, we have that δ1 ≤ δ2. We underscore the
fact that the AN property is stated for everyε > 0, not necessarily arbitrarily small,
and therefore, we are able to account for violations of rationality of any “size”. In
particular, we have established an equivalence of testing rationality in the behavioral
nearness setting as in Epstein and Yatchew (1985) and in our Slutsky matrix norm
framework.

For the case of finite data sets, this result can be used to establish the equivalence
between the behavioral nearness problem and the Minimal SMN.

Definition 14 (Finite data behavioral nearness) The behavioral nearness measure of
bounded rationality for a given data set OK is given by

β∗(OK ) = in fxr∈RK (Z)||x − xr ||2C1 ≥ 0,

where RK (Z) = R(Z) ∩ X K (Z).

We can establish the following corrollary.

Corollary 3 For all ε > 0, there exists δ > 0 such that for all OK , the inequality
α∗(OK ) ≤ δ implies that β∗(OK ) ≤ ε. Moreover, if δ → 0 then ε(δ) → 0.

7 Literature review

The current research is related to the work initiated by Chiappori and Rochet (1987),
Matzkin and Richter (1991) and culminated by Lee and Wong (2005) that prove the
equivalence of SARP and rationalization by a smooth demand generated by maximiz-
ing a smooth utility function. Their work unifies the binary tests of rationality from
both RP and smooth approaches. Our results focus on the realm of quantifying depar-
tures from rationality. In particular, we provide a minimal Slutsky norm interpolator
of any finite data set, in the form of a continuously differentiable demand. When the
data set satisfies SARP, then the minimal Slutsky norm is zero and the interpolator can

14 Instead of relying on nonstandard analysis, Boualem and Brouzet (2012) use functions between metric
spaces to represent a property in Anderson’s language, and ametric to represent his formulas. This treatment
is also useful because it allows us to adapt our results in order to derive an explicit expression for ε(δ) for
an arbitrary Z ⊂ P × W when dealing with compact subsets of X (Z).

123



SERIEs (2018) 9:389–421 411

be generated by maximizing a twice continuously differentiable utility function as in
Hurwicz and Uzawa (1971). Our results provide a more general sense of integrability,
since if the data set fails SARP but satisfies WARP (known also as Weak WARP), the
minimal Slutsky norm interpolator can be generated by regular preferences in the sense
of Quah (2005), that are nontransitive. Also related is the recent work of Nishimura
et al. (2013), which provides a bridge between the revealed preference approach for
limited data sets and the Richter congruence axiom (1996) for complete data sets.

Jerison and Jerison (2012) is the closest work to ours. They provide a study of the
relation of the Slutsky matrix and revealed demand cycles that generalizes the findings
of Shafer (1977). However, our work differs fundamentally from Jerison and Jerison
(2012), among other things, in that we assume a finite data set of prices and observed
choices, while these authors assume an infinite amount of observations. Because we
never have access to infinite data, our work is the first to allow the use of the Slutsky
matrix in a laboratory data set environment.

We have provided a complementary framework to the RP approach to testing con-
sumer behavior, as initiated by Varian (1983), Afriat (1973), and continued in the
works of Echenique et al. (2011), Dean and Martin (2015), Apesteguia and Ballester
(2015) and others. Our measure differs from this tradition in that ours is a positive
measure of bounded rationality, in contrast to the more common welfare or normative
approaches tomeasure bounded rationality, which implicitly assume that the consumer
wants to optimize, failing in his goal. In contrast, we are concerned with failures in
doing comparative statics analysis for any given consumer behavior when we assume
rationality (possibly contrary to the fact).

We leave as an open avenue of research to relate our results with the contribution
of Halevy et al. (2014), which proposes a parametric procedure to recover preferences
based onminimizing ameasure of behavioral closeness that considers the specification
error (due to the choice of a parametric family) and an inconsistency index that uses the
money-metric notion (a normative index of distance from rationality). We conjecture
that we can replace the money metric by a parametric Slutsky matrix norm to produce
a demand function that minimizes the comparative statics errors in prediction given
the rationality restriction and the data.

8 Conclusion

We have provided a framework to adapt the results in our companion paper (Aguiar
and Serrano 2017) to finite data. In doing so, we have presented a unification of
the RP and Hurwicz-Uzawa characterizations of rationality in consumer theory. In
particular, we have concluded that: (i) a limited data set that satisfies SARP admits at
least one continuous differentiable extension (demand function that interpolates the
data) that is integrable in the sense of Hurwicz-Uzawa; and (ii) the violations of the
Slutsky regularity conditions by the set of extensions of a limited data set correspond
to demand cycles of different length in the RP approach. One advantage of our unified
approach is that it allows a classification of consumer behavior. Finally, the modified
SMN measure of departures from rationality is a positive or objective index, and
as such, it allows interpersonal comparisons. We have tested it in simulations, and
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applied it elsewhere to experimental data. Our empirical findings are that insisting on
the Slutsky matrix symmetry hypothesis leads to making a higher error than assuming
its NSD. To the best of our knowledge, this is the first evidence brought forward on
the claims of the higher robustness of WARP vis-á-vis the Ville axiom, as already
suggested in Kihlstrom et al. (1976).
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Appendix

Proof of Lemma 1

Proof Suppose that all elements x ∈ X K in the set of extensions have an associated
Slutsky matrix norm error that is non zero. Then the associated data set OK contains
at least one cycle. To show this, we use the contrapositive. When there are no revealed
demand cycles CD,T contained in OK , then OK satisfies SARP. By Chiappori and
Rochet (1987) and Lee and Wong (2005)15, we conclude that there is at least one
extension x ∈ X K that can be generated by utility maximization and thus has a
Slutsky matrix function with property σ, π and ν, a contradiction.

For the converse, if we observe a data set of K ≥ 2 observations we define the set
of walrasian demands passing through each of the observations, a subset of the set
X (Z):

X K (Z) = {x ∈ X (Z)|xk = x(pk, wk) ∀k ∈ {1, . . . , K }}
We argue by contradiction. Assume that the data set contains a revealed demand

cycle, yet at least one x ∈ XL(Z) has a Slutsky matrix that satisfies σ, π and ν. Then,
pick any of such x ∈ XL(Z) with Slutsky matrix satisfying σ, π and ν. Then, by
Hurwicz and Uzawa (1971), we know there exists a locally nonsatiated continuous
utility function defined on the region x(Z) ⊆ X ,u : X(Z) �→ R such that x(z)
for z ∈ Z , x ∈ XL is the unique maximizer of u subject to the budget constraint
{px(p, w) ≤ w|(p, w) ∈ Z ⊆ P × W }. By Kim and Richter (1986) and Mas-Colell
(1974), this implies that there is a strictly concave locally non satiated utility function

15 Lee and Wong (2005) showed that SARP is necessary and sufficient to obtain a smooth demand ratio-
nalization of a finite data set.
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such that u(xt−1) < u(xt ) + Du(xt )[xt−1 − xt ]. Since the demand x ∈ XL(Z) is the
maximizer of the utility function u, we have Du(xt ) = λt pt for λt > 0 by local non
satiation for all t ∈ T . This implies u(xt−1) < u(xt ) + λt pt [xt−1 − xt ]. Since we
have a revealed demand cycle, we have that pt [xt−1 − xt ] < 0 for all t , which implies
u(xt ) > u(xt−1) for t ∈ {1, . . . , T }. However, the presence of the cycle in the data
set also implies that u(xT ) = u(x0), given that xT = x0, which is a contradiction.
Therefore, every element x ∈ XL(Z) must have a Slutsky matrix that violate either
σ, π or ν. ��

Proof of Lemma 2

Proof First, we establish (i).
Say we observe a finite data set OK K ≥ 3, and we find a strict revealed demand

cycle CD,T = {pt , xt }Tt=0, for T ≥ 3. Consider X T ⊆ X to be the subset of demand
functions that are consistent with the observed decisions:

X T = {x ∈ X ([0, b]) : xt = x(pt , pt xt ) = x(τt ) ∀t ∈ {0, . . . , T } τt ∈ [0, b]}.

Weknow that theDGDFmust be an element ofX T byWalras’ law since pt xt = wt ,
so we must prove that all elements of X T have at least one Ville Cycle CV (S),b for
S ≥ 1.

Assume, to the contrary, that there is at least one x ∈ X T that satisfies the Ville
axiom. In particular, this implies that such a function can generate the data set OK

and at the same time exhibit no Ville cycles.
The absence ofVille cyclesCV (S),b for S ≥ 1 implies byHR that there is an integrat-

ing factor λ(x(τ )) that is positive for all τ ∈ [0, b] and a function z : x([0, b]) → R

such that ∂z(τ )
∂τ

= λ(τ)p(τ )′ ∂x(τ )
∂τ

, with λ(τ)p(τ ) = ∇x z(x(τ )) and with the prop-
erty that x(0) = x0, x(1) = x1, . . . , x(T ) = xT and x(0) = x(T ) and similarly p(τ )

goes through all observed prices. Let the distance between observations in the revealed
demand cycle define the length of the intervals of the grid τt+1−τt = ||xt+1− xt ||RL ,
fix τ0 = 0, and define recursively τt for t ≥ 1 (i.e., define b = ∑T−1

t=0 ||xt+1− xt ||RL ).
Integrating along the path, we have

∫ τT
0

∂z(τ )
∂τ

dτ = ∫ τT
0 λ(τ)[p(τ )

∂x(τ )
∂τ

]dτ =
z(x(T )) − z(x(0)) = 0 by the observation that xT = x0. However, by linearity
of the integral over an interval, we have∫ τT

0
∂z(τ )
∂τ

dτ = ∫ τ1
0

∂z(τ )
∂τ

dτ + ∫ τ2
τ1

∂z(τ )
∂τ

dτ + · · · + ∫ τT
τT−1

∂z(τ )
∂τ

dτ = 0.

Recall that by definition,
∫ τt
τt−1

∂z(τ )
∂τ

dτ = z(xt ) − z(xt−1). Now, since we have a

strict cycle pt xt ≥ pt xt−1 for all t ∈ {0, . . . , T }, and pxt > pt xt−1 for some t ∈
{0, . . . , T } and T ≥ 3. Also, by the assumption that there are no cycles CD,2 (T = 2)
and no Ville cycles, then there is a quasiconcave utility function z (in fact, strictly
quasiconcave since we ruled out revealed indifference) such that pt xt ≥ pt xt−1 ⇐⇒
z(xt ) − z(xt−1) ≥ 0 which implies that

∑T−1
t=0

∫ τt+1
τt

∂z(τ )
∂τ

dτ = ∑T−1
t=0 [z(xt+1) −

z(xt )] > 0. This contradicts the result that
∫ τT
0

∂z(τ )
∂τ

dτ = z(xT ) − z(x0) = 0 since
both quantities are numerically equivalent. Therefore, each x ∈ X T violates the Ville
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axiom so the DGDF must have at least one Ville cycle CV ,b
S for S ≥ 1 and some

b > 0.
Second, we establish (ii).
If there are CD,T f or T = 2, then by definition every x ∈ X T fails Weak WARP,

because every x ∈ X T has to interpolate the data set that has cycles for T = 2. Then
by Kihlstrom et al. (1976) we know that ν should fail for the given extension in Z ,
since every extension x ∈ X T fails Weak WARP. ��

Proof of Proposition 1

Proof Observe that the set of extensionsX K (Z) = {x ∈ X (Z)|xk = x(pk, wk) ∀k ∈
{1, . . . , K }} is compact and the objective function is continuous. Then, there is at least
one solution to the optimization problem. By Proposition 0, if OK is generated by
a rational DGDF, then Exr = 0 for some rational demand xr ∈ X K (Z) and since
||Ex || ≥ 0 for all x ∈ X K (Z), then xr = argminx∈XK (Z)||Ex ||2 . When OK is
not generated by a rational DGDF, then all x ∈ X K (Z) have ||E || > 0 and by con-
struction the value α∗K > 0 is the lower bound of the true value of the Slutsky error
norm, still part of the set, by compactness. The “moreover” statement dealing with the
decomposition of the norm in the different effects follows from Lemmas 1, and 2. ��

Proof of Proposition 2

Proof The first property follows from Hurwicz and Uzawa (1971) because Z is

assumed to be compact, Walras’ law holds and ExK ,∗ = 0 which means that the
Slutsky regularity conditions hold. Then it follows that xK ,∗ can be generated by
maximizing a twice continuously differentiable utility function subject to a linear
constraint. By Kim and Richter (1986) and Mas-Colell (1974), this implies that there
is a strictly concave locally non satiated utility function. The second property follows
from Quah (2005), where it is proved that a demand that has a singular in prices
Slutsky matrix that is NSD can be rationalized by preferences that are complete and
nontransitive, but that are regular as defined by the author.16 The third property fol-
lows from the proof of Hurwicz and Uzawa (1971) and Jerison and Jerison (1992)
that uses only symmetry of the Slutsky matrix, thus ||Eσ,xK∗ ||2 = 0 to construct a
scalar function φ : Z �→ R that can generate the data by the differential equation
x(p, w) = −∇pφ(p, w)/∇wφ(p, w) (Roy’s Identity) such that Walras’ law holds.
This means that while the demand system is integrable, in this case φ is not necessarily
an indirect utility function and in fact its Hessian may not be NSD. ��

Proof of Proposition 3

Proof Following Aguiar and Serrano (2017), we denote by a(x) = E the map that
assigns to each demand function the smallest (in the Frobenius norm sense) matrix

16 The upper contour set of x , B(x) must be closed, convex and fulfill two additional (mainly technical)
conditions explained in Definition 2.1 in Quah (2005).
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that would make its Slutsky matrix function inherit all the regularity properties. Now
we prove that the Gateaux derivative for the map a(x) = E exists.

Let a : X (Z) �→ M(Z), be such that a(x) = E andM(Z)= C(RL+1,RL ×R
L).

We are going to prove that a is Gateaux differentiable.
Relying on Aguiar and Serrano (2017), we define a = s − (�ν ◦ (�σ,π ◦ s)) where

s(x) = S assigns to a demand function its Slutsky matrix function, the projection
�σ,π : M(Z) �→ Mσ,π (Z) is a linear projection that maps any matrix function
into the set of symmetric and singular in p matrix functions, �σ,π (S) = Sσ,π , also
�ν : Mσ,π (Z) �→ Mν(Z) as the mapping that projects any Slutsky matrix into
the space of negative semidefinite matrix functions �ν(Sσ,π,ν) = Sσ,π

− , Aguiar and
Serrano (2017) proved that �ν(Sσ,π ) = Sr .

We first prove that s is Gateaux differentiable: ∂s(x+tv)
∂t |t=0 = s′

x (v) = Dpv +
Dw[xv′], along direction v ∈ C1(Z), the limit exists under the compactness of Z
and continuity assumptions on x and its derivatives, where C1(Z) is a compact set of
continuously differentiable functions that contains X (Z).

The mapping �σ,π by Aguiar and Serrano (2017) is linear, ∂�σ,π (S+tV )

∂t |t=0 =
ρσ,π (S).

The mapping ρν by Aguiar and Serrano (2017) is a polar-projection, and by
Higham (1986) (theorem2.5) this projection isGateaux differentiable ∂�ν(S+tV )

∂t |t=0 =
Lν(S, V ) exists and is a linear operator in the space of matrix functions V ∈ M(Z).

By the Gateaux derivative chain rule ∂a(x+tv)
∂t |t=0 = a′(v) exists and is defined as

a′(v) = s′
x (v) − Lν(s(x), �σ,π ◦ s′

x (v)).
Notice that letting � = �ν ◦ �σ,π and ι the identity function in the space of matrix

functions, we say that ∂(ι−�)(S+tV )
∂t |t=0 = Lr (S, V ) it exists by the previous argument.

Then a′(v) = Lr (s(x), s′
x (v)) by the fact that a′(v) is linear.We define κ = ||a′|| =

max
v∈C1

(Z)
||a′(v)|| we know this bound exists because of the compactness of C1(Z)

and continuity of a′ (it is linear).
The intermediate value theorem for the Gateaux derivative between Banach spaces

says that ||a(x) − a(xK )|| ≤ ||a′|| · ||x − xK ||.
Let ||a(x) − a(xK )|| = η, then η ≤ ||a′|| · ε, with
||a′|| ≤ ||ι − �|| · ||s′||.
We can get a sharp upper bound for the norm of the map a′, estimated, as follows.

Notice that �, being a projection map, has by definition ||�|| ≤ 1. Further, ι−� is also
a projection to the orthogonal space of the projection �, and hence, ||ι−�|| ≤ 1. Also,

||s′
x || = ||Dpv+Dw[xv′]||

||v|| ≤ ||Dpv||
||v|| + ||Dw[xv′]||

||v|| . With the norm of differential operators

under the norm chosen, then ||Dpv||
||v|| = 1, ||Dw[xv′]||

||v|| ≤ κ ′. Here, κ ′ = ||x ||+||Dw[x]||,
because ||Dw[xv′]||

||v|| ≤ ||Dw[v]||·||x ||
||v|| + ||Dw[x]||·||v||

||v|| = ||x || + ||Dw[x]||. ��

Proof of Proposition 4

Proof The result follows from the same reasoning as Proposition 3.By the intermediate
value theorem for the Gateaux derivative between Banach spaces, we have ||a(x) −
a(xh)|| ≤ ||a′|| · ||x − xh || with xh ∈ X K

h (Z) and x ∈ X K (Z). By the definition of
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the Sieves approximating spaces, there exists a (projection) mapping φh : X K → X K
h

such that φh ◦x ∈ Xh and such that φh ◦x → x , satisfying that ||x−φh ◦x || → 0when
h → ∞. We know also by Wong (1984) (Lemma 2.2) that there is a constant C > 0
independent of the data set OK such that for any x ∈ X K there exists a xh ∈ X K

h
satisfying ||xh − x || ≤ C ||φh ◦ x− x ||.17 This means in turn that ||a(x)−a(xh)|| → 0
as h → ∞, because ||a(x) − a(xh)|| ≤ ||a′|| · C ||x − φh ◦ x ||.

We have established so far that any x ∈ X K can be approximated by a sequence
with elements xh ∈ X K

h . Now, we notice that a is continuous under the C1 norm on
X (claim (3) in the “Appendix”), and that means that ||Ex || : X K �→ R+ is also
a continuous mapping under these conditions, by Theorem 3.1 in Chen (2007)18 we
conclude that α∗

h → α∗ as h → ∞, and by Wong (1984)19 (theorem 2.5) we also
conclude that for any x∗ ∈ argminx∈X K (Z)||Ex ||2 there is a sequence x∗,h → x∗ as
h → ∞ where x∗,h ∈ argminx∈X K

h (Z)||Ex ||2. ��

Continuity of the Slutsky error map

Claim 2 The map s : X (Z) �→ M(Z) defined as s(x) = S is continuous.

Proof First, we will prove that Dp : X (Z) �→ M(Z) and Dw : X (Z) �→ C(Z,RL)

are not only closed linear operators, but are also continuous maps. In general, dif-
ferential operators are closed but not continuous. However, in this specific domain,
Dp, Dw are defined everywhere by assumption, additionally Dp and Dw are closed
operators, and finally X (Z),M(Z) are Banach spaces with the norms || · ||C1 and
|| · || respectively, and so is C(Z ,RL), the space of continuous functions f : Z �→ R

L

with supremum norm || · ||∞,L . Then, by the closed graph theorem, we can conclude
that Dp and Dw are continuous maps.

Second, take a convergent sequence in X (Z), {xn}n∈N → x . To finish the proof
we want to show that limn→∞s(xn) = s(x). By continuity of Dp, Dw and by
the properties of the limit of a product of vectors, it follows that limn→∞s(xn) =
limn→∞Dpxn + limn→∞Dwxn[limn→∞x]′ = S, where s(x) = S, thus proving
continuity of s. ��
Claim 3 The map a : X (Z) �→ M(Z) defined elementwise as a(x) = S − Sr is
continuous.

17 The environment in Wong (1984) is different from ours in that the author requires a convex and closed
space of functions and we do not. But Lemma 2.2 does not use these properties. Note also that we consider
only the point interpolation case.
18 Our results are nonstochastic, thus we only require conditions 3.1–3.4 in Chen (2007), namely identifi-
cation, Sieves space convergence, continuity, and compact sieve space. The first condition holds vacuously
because we always have ||Ex || < +∞. Continuity of ||Ex || holds also, and the conditions on Sieves space
convergence and compactness of the sieves space hold by assumption.
19 The result in Wong (1984) (theorem 2.5) is proved in an environment with the space of functions that is
convex, for example by requiring Lipchitz continuous differentiability in our demand functions X , but this
assumption is not used in the convergence result. Its only role is to establish uniqueness. As we see from
the argument in this proof, we can approximate any x ∈ X , including x∗ ∈ argminx∈XK (Z)

||Ex ||2 there
is an approximation xh ∈ X K

h , the fact that xh = x∗,h ∈ argminx∈X K
h (Z)

||Ex ||2 is a consequence of

continuity of ||Ex || and the convergence properties of the sieves space increasing sequence Xh .
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Proof The continuity of the map a follows directly from the continuity of the Slutsky
map s and the continuity of the projections maps that generates Sr . Formally, a =
� ◦ s where � = (ι − ρν ◦ ρπ ◦ ρσ ) is a projection mapping, ι is the identity map
in M(Z) and ρσ is the projection on the space of symmetric matrices, ρπ is the
projection in the space of symmetric matrices that are singular with prices in its eigen-
space associated with the null eigen-value, and ρν is the projection on the space of
symmetric, singular in prices and negative semidefinite matrices. By Claim 2, we
know that s : X (Z) �→ M(Z) is continuous. It remains to show that the projection
maps are indeed continuous. For this we need that the range of the projection map
is a closed subspace under the metric induced by the norm of M(Z). In Aguiar and
Serrano (2017) this is proven to be the case for each projection, in fact each range is
convex and closed. It follows that a is continuous. ��

Simulations: methodological details

We use corollary (1) we approximate the lower bound of ||Es f ||W for the fixed sample
OK . The lower bound is αK = minx∈X K (Z)||Ex ||W where X K (Z) is the set of
extensions of OK that belongs to X (Z). In practice, we cannot optimize over the
whole X K (Z) numerically.

1. First, we recast the problem in terms of budget shares andwe refer to the functional
space of budget shares corresponding to X K (Z) as X K ,b(Z).

2. We replace this space by the approximate sieve space X K ,b
h (Z) that corresponds

to the set of extensions that are B-splines or piecewise polynomials of degree h. A
multivariate B-spline is obtain by the tensor product of L + 1 univariate B-splines
of degree h, with the same degree for all dimensions, and they are evaluated at the
data set. We obtain the matrix Bl of dimension K × H given fixed knots and the
given degree h for each good l.

(a) For this simulation we choose h ∈ {5, 7, 11}.
(b) The support of the univariate spline is computed using the empirical support

of the logarithm of prices.
(c) The number of experiments is K ∈ {20, 50, 100}.
(d) Weuse the function “spline.des()” in the Software “R”, in the package “splines”

by Douglas Bates and Bill Venables.
(e) The tensor product is computed using “tensor.prod.model.matrix” in the Soft-

ware “R”, in the package “mgcv” by Simon N. Wood.

3. We can obtain the vector bl = {bs fl (pk, wk)}Kk=1, for any element of the set of

extensions of the data set X K ,b
h (Z), by finding a ∈ R

H such that Ba = b in the
data points.

4. In addition, we need to compute the derivatives of the interpolated functions which
can be automatized since there are recursive formulas to obtain the derivatives of an
spline (Chambers 1992), which we exploit in the numerical implementation of our
exercise. In the same spirit as the previous step,we can obtain the partial derivatives
of any extension in X K ,h(Z) by the following automatic procedure. We choose a
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variable with respect to which we want to differentiate, say ln(p1), derive the uni-
variate B-spline corresponding to ln(p1) and obtain the tensor product with respect
to the remaining B-splines (for ln(p2), ln(p3), ln(w)) to obtain a matrix Bl,ln(p1)

of dimension K × H ,20 the partial derivative of the budget share bl with respect
to ln(p1) at the data points, or the vector bl,p1 = { ∂bl (ln(p),ln(w))

∂ln(p1)
|p=pk ,w=wk }Kk=1

can be obtain by multiplying Bl,ln(p1)a = bl,p1 for the same vector of weights as
before. Using this procedure for all partial derivatives, we can obtain the Slutsky
matrix evaluated at the data points. We call it Sb(pk, wk) to denote its dependence
on a given extension in the restricted space.

5. We obtain the Slutsky error matrix Eb(pk, wk) (applying the formula in Aguiar
and Serrano (2017)) for each data point and we approximate the integral ||Es f ||W ,
by the numerical approximation ||Ebh ||W = 1

K

∑K
k=1 ||Eb(pk, wk)||M,W for any

given bh ∈ X K ,b
h (Z).21

6. We use a Spectral Projection Gradient (SPG) large scale optimization algorithm
to solve this optimization problem. The reader can notice that the minimization is
with respect to the weights with a fixed X K ,b

h (Z).

(a) We initialize the algorithm by finding a feasible point, that is we first find any
extension x0 ∈ X K ,b

h (Z), and then we use it as an starting point for finding
the extension with the minimal Slutsky matrix norm.

(b) For this last point we providemore details. The problem of finding theMinimal
SMN for a finite data set is possibly non-convex:

α∗K = minx∈XK (Z)||Ex ||2 (SMN1).

The mapping Ex is not concave on the demand x ∈ XK (Z).
We note that the restriction that x ∈ X (Z) implies that x ∈ X (Z) and hk(x) =

x(pk, wk) − xk , such that hk(x) = 0 for all k = 1, · · · , K . Let h(x) = (hk(x))Kk=1 ∈
R

K . The euclidean norm in R
K is denoted by || · ||RK .

We can follow Bertsekas (1979) to pose the following penalized problem, for a
given constant c > 0:

α∗K
c = minx∈XK (Z)||Ex ||2 + 1

2
c||h(x)||2

RK (SMN2).

FromBertsekas (1979) we know that: (i) For any c > 0, if x∗ ∈ X(Z) solves SMN2
then it solves SMN1. (ii) For any c > 0, the Minimal SMN associated to SMN1 is
equivalent to the minimal SMN associated with SMN2, i.e., α∗K

c = α∗K . Finally,
(iii) for c > 0 sufficiently large, there exists a unique solution to SMN2. We have
transformed the non-convex SMN1 problem into a strictly convex problem SMN2.
For practical purposes c > 0 can be chosen as a very high positive number. For any
c > 0, the decomposition of α∗K

c = ασ∗K
c + απ∗K

c + αν∗K
c is going to be close to the

20 H is determined by the degree of the polynomial h and the step length of the univariate sieve, we use a
step of 3/4.
21 Alternatively, we could integrate in the region using automatic integration taking advantage of the B-
spline structure.
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true decomposition ||Exr ||2 = ||Exr ,σ ||2 + ||Exr ,π ||2 + ||Exr ,ν ||2, for the DGDF xr ,
when K is large as in Proposition 3. This is true, because the distance between the
DGDF and the interpolator that solves SMN2 (and SMN1) converges to 0. In practice,
the practitioner can pick a sufficiently large c > 0 and solve the problem above in
terms of its b-Spline approximation.

Proof of lemma (3)

Proof Aguiar and Serrano (2017) prove that we can decompose any observed Slutsky
matrix in two components S = Sr + E locally. Then we can write γ ({vt }Tt=1, S) =
γ ({vt }Tt=1, S

r (p, w)+E(p, w)) at the point (p, w). Then we observe that the JJ index

is linearly separable 1
T

∑T
t=0 v′

t S(p, w)[vt − vt−1] = 1
T

∑T
t=0 v′

t [Sr (p, w)][vt −
vt−1] + 1

T

∑T
t=0 v′

t [E(p, w)][vt − vt−1] so we can write γ ({vt }Tt=1, S(p, w)) =
γ ({vt }Tt=1, S

r (p, w)) + γ ({vt }Tt=1, E(p, w)). ��

Proof of lemma (4)

Proof Notice that by subadditivity of the supremum supvγ (v, S(p, w)−Sr (p, w)) ≤
supvγ (v, S(p, w)) − supvγ (v, Sr (p, w)) and by the properties of the JJ index
(Remark 2 in Jerison and Jerison 2012) we have supvγ (v, Sr (p, w)) = 0 because Sx

r

is symmetric and NSD. Then supvγ (v, S(p, w) − Sr (p, w)) ≤ supvγ (v, S(p, w)).
Now, recall that E(p, w) = S(p, w) − Sr (p, w), and we want to prove that
supvγ (v, E(p, w)) ≥ supvγ (v, S(p, w)). In fact, this inequality follows from the
properties of the JJ index (Remark 2 in Jerison and Jerison 2012), because the follow-
ing two conditions hold: (i) E(p, w) − S(p, w) = −Sr (p, w) is both symmetric and
PSD. (ii) E(p, w)′ p = S(p, w)′ p − Sr (p, w)′ p = 0 because p′S(p, w) = 0 and
p′Sr (p, w) = 0 by Walras’ law, and by construction respectively. Thus we conclude
that supvγ (v, S(p, w) − Sr (p, w)) ≥ supvγ (v, S(p, w)). Because of the previous
two inequalities we establish the result. ��

Proof of proposition (5)

Proof By Jerison and Jerison (2012) we know that limεp→0ε
−2
p GT ((p, w) +

V
T (εp,η)
w ) = sup{γ (v, S(p, w))/w : {vt }Tt=0 ∈ V T (εp)}. By Lemma 3 we know

that γ (v, S(p, w))−γ (v, Sr (p, w)) = γ (v, E(p, w)). Finally by Lemma 4 we know
that sup{γ (v, E(p, w))/w, v ∈ V T (εp)} = sup{γ (v, S(p, w))/w : v ∈ V T (εp)}.
Therefore, limεp→0ε

−2
p GT ((p, w) + V

T (εp,η)
w ) = sup{γ (v, E(p, w))/w : v ∈

V T (εp)}. ��

Proof of proposition (6)

Proof The proof uses the fact that the solution to the matrix nearness problem is E =
Sr − S, as shown in Aguiar and Serrano (2017). We want to show that a(x) = Sr − S
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is AN at 0 ∈ M(Z). By Claim 3, found in the “Appendix”, a : X (Z) �→ M(Z) is
continuous whenX (Z) is endowed with the || · ||C1 norm. Additionally, recall that the
set X (Z) is compact under our assumption. Then we conclude [applying Proposition
3.1 inBoualemandBrouzet (2012)] thata is (AN) everywhere, i.e.,a(x) = Sr−S = C
has the AN property for allC ∈ M(Z). In particular, a is AN at 0 ∈ M(Z). Moreover,
it follows that limδ→0ε(δ) = 0 (applying Proposition 2.6 in Boualem and Brouzet
(2012)). ��
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