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Abstract In this paper we look for a solution to a land division problem that could
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constraint of the limited information available to the arbitrator. To this scope, we pro-
pose to use the concept of equal-opportunity equivalence defined by Thomson (Soc
Choice Welfare 11:137–156 1994). We prove the existence of an efficient and equal
opportunity equivalent allocation for a land division problem and we present a simple
procedure to implement a rule that selects such allocation at each preference profile.
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1 Introduction

There are several situations where the solution of a land division problem cannot be
found using instruments like prices or monetary compensations. This may be due to
liquidity constraints; or to the psychological difficulty of bringing a dispute down to
monetary evaluations; or the division of the land has to be in kind under the provisions
of the law. According to the common law, co-owners of land (or of any other assets)
in case of inharmonious association have the right to partition in kind (see Miceli
and Sirmans 2000). In case the partition of the land causes excessive fragmentation,
a second remedy is the sale of the undivided parcel with division of the proceeds in pro-
portion to each owner’s share. This second remedy, however, is considered an extrema
ratio that courts should implement only in case there is a strong evidence that land
division is inefficient.1 In absence of scale economies, division in kind is de facto the
only remedy according to the common law. Division in kind is not problematic if the
land (or the asset) to be divided is homogeneous, but even if the land is homogeneous
for the market value, it could be heterogeneous with respect to owners’ preferences:
owners’ evaluation may depend, in fact, on sentimental considerations, or on private
information about the land (for instance, the presence of natural resources in some
parcels). If according to owners’ preferences the good is not homogeneous, a division
in kind can be inefficient, and therefore courts have to try to elicit private informations
from the parties.

The case of two countries disputing over their border has similar features. Often,
the only feasible remedy is the division in kind. The territory object of the dispute is
rarely homogeneous, since many characteristics are relevant to determine the prefer-
ence of each country: the presence of ethnic groups, of natural resources, geographic
characteristics (access to the sea for instance), or strategic and military considerations,
etc.. Also in this case a land division may be not efficient and, moreover, it is far from
being obvious which normative properties can be called for.

The solution we are looking for and the mechanism to implement it, should hold
for a large class of problems. The solution should be applied to solve disputes between
co-owners in case of division of land, as also between countries. The solution must
be fair and efficient under the constraint of the limited information available to any
external party called to settle the dispute (the arbitrator). We assume, in fact, that the
arbitrator has not much information about the litigants’ preferences, while parties have
complete information about each other. Namely the only information available to the
arbitrator is that the value of the parcel an agent receives is positively affected by its
size; that is, a larger parcel it is always preferred to a smaller one that is contained
by it (set-inclusion property). This informational framework fits many real world
situations. A judge who has to partition a piece of land between two co-owners, two
heirs or a divorcing couple, hardly knows parties’ preferences, while it is very likely
that each party knows the preferences of the other party over the good to be divided.
Similarly, an international organization, like United Nations, which tries to solve a

1 “Physical division does not compel a person to sell his property against his will. which, it has been said,
should not be done except in case of imperious necessity” Miceli and Sirmans (2000) p.794 quoting the
court of the case of Trowbridge v. Donner (1950).
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dispute over a territory in the border of two countries cannot claim to know which are
the preferences of each country, even if they are common information.

It is important to note that set-inclusion property does not mean that in general any
parcel of larger size is preferred to a smaller parcel, since as we pointed out, the land
to be divided is heterogenous. However, if preferences satisfy this property, then the
following easily follows. For any size μ, consider the preferred parcel of that size by
agent i , and call it a best parcel of size μ for agent i (which of course is not necessarily
unique). For each agent, his best parcel of size μ is preferred to his best parcel of size
μ′ if and only if μ ≥ μ′.

As regards the properties that the solution has to satisfy, both efficiency and fairness
appear as necessary requirements. An inefficient solution can be renegotiated between
the parties: any property of an inefficient solution is not necessarily preserved after
renegotiation, and therefore to ask for normative properties without requiring effi-
ciency turns to be a vacuous exercise. In the fair division literature, there are two main
ordinal concepts of distributive justice.2 The first is the envy-free principlewhich states
that each party should (weakly) prefers its share to anyone else’s. This was proposed
byGamow and Stern (1958), but became known in the economics literature after Foley
(1967). Efficient and envy-free allocations are ex post stable because no one desires
to exchange what he received with anyone else’s share. However, there may be many
efficient envy-free allocations, and individuals may dispute on which one should be
selected. The divide-and-choosemechanism under complete information, for instance,
selects among all the efficient envy-free allocations the division that maximizes the
payoff of the divider so conflict is likely to shift over how the divider is chosen.

An alternative normative concept is the egalitarian equivalent criterion which states
that each party should be indifferent between getting her share and some reference bun-
dle, identical for all agents. However, in this case the conflict is likely to shift on which
reference bundle should be chosen, as different reference bundles lead to different
shares. Pazner and Schmeidler (1978) suggests eluding the problem by focusing only
on those reference bundles that are proportional to the total endowment (assuming effi-
ciency, this leads to a unique selection.). It is not immediately obvious how to extend
the “Pazner–Schmeidler” rule when the endowment is a single heterogeneous good.
LiCalzi and Nicolò (2009) suggests a way of constructing a reference bundle for a
heterogeneous infinitely divisible good. Each agent partitions the good in finitely, or
countably many, parcels that she considers as homogeneous. The common refinement
of all the agents’ partitions divides the good in parcels that are homogeneous for each
agent. Hence by choosing the reference bundle among those that are proportional to
this common refinement, we end up with a reference bundle that is “proportional” to
the total endowment as suggested by Pazner and Schmeidler. However, if the heter-
ogeneous good cannot be partitioned in finitely, or countably many, parcels, then the
problem of how to choose the reference bundle still arises.

In this paper we propose to overcome the informational constraints and avoid an
arbitrary choice of a reference bundle, using the concept of equal-opportunity equiv-
alence defined by Thomson (1994). Thomson (1994) combines the ideas of equal

2 See for instance Berliant et al (1992) andMoulin (2004) for a complete overview of modern contributions
to the problem of distributive justice in economics.
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opportunities and egalitarian-equivalence in the context of economies with private
and public goods. In such environments, an allocation is said to be equal-opportunity
equivalent relative to a family of choice sets if there exists some reference set of this
family such that each agent is indifferent between the allocation and his best alterna-
tive in this reference set. Since here the only commonly known characteristic is the
set-monotonic inclusion property of the preference domain, and the size is the unique
commonly observable (verifiable) characteristic of any set, we define the concept of
equal-opportunity equivalence with respect to a family of sets with the same size. Our
solution implies that each agent receives a parcel of the land who makes him indiffer-
ent with respect to his best parcel of a given size μ,where the size of the reference set
must be the same for both agents. The last question to solve is which size μ should
be considered. Efficiency requires to choose as reference set the largest size μ∗ such
that both agents are indifferent between the parcel they receive and their best parcel
of that size μ∗.

In the rest of the paper we first prove the existence of an efficient and equal oppor-
tunity equivalent allocation for our problem and we propose a simple procedure to
implement a rule that selects such allocation at each preference profile under the
assumption that agents have complete information about their preferences. The mech-
anism is the same used in Nicolò and Perea (2005) that generalizes a mechanism
suggested in Crawford (1979) and ameliorated in Demange (1984).

2 The Model

The problem we consider is how to divide a piece of land between two agents. Let
X ⊆ R

n, represent a piece of land which is bounded, connected and Lebesgue-
measurable. The set X is the total piece of land to be divided among the two agents.
Let L(X) be the set of all Lebesgue-measurable subsets of X . By μ we denote the
Lebesgue measure on R

n . The utility function ui of agent i, i = 1, 2, is assumed to
be a measure on L(X) that is absolutely continuous w.r.t. μ. That is, if μ(A) = 0
for some A ∈ L(X), then also ui (A) = 0. The number ui (A) represents the utility
that agent i assigns to the piece of land A. Since ui is absolutely continuous w.r.t. μ
we know by the Radon–Nykodym theorem that there exists a non-negative function
vi : X → R such that

ui (A) =
∫

A

vi dμ

for all A ∈ L(X).

Definition 2.1 A land division problem is a tuple P = (X, u1, u2) where X is a con-
nected and Lebesgue measurable subset of Rn, and u1, u2 are measures on L(X) that
are absolutely continuous w.r.t. the Lebesgue measure.

For a given land division problem P = (X, u1, u2), a feasible land division is a
pair (A1, A2) of subsets such that A2 = X\A1 and both A1 and A2 belong to L(X).
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Definition 2.2 A land division rule is a function D that assigns to every land division
problem P a feasible land division D(P).

We shall focus on land division rules satisfying two properties: efficiency and (a spe-
cific form of) equal opportunity equivalence. Efficiency is defined in the usual sense,
that is, a feasible land division (A1, A2) for P = (X, u1, u2) is efficient if there is no
other feasible division (B1, B2) for which ui (Bi ) > ui (Ai ) and u j (B j ) ≥ u j (A j ) for
i, j = 1, 2 and i �= j. Equal opportunity equivalence states that there should be some
number λ > 0 such that both agents are indifferent between the part assigned to them
and their most preferred piece of land of size λ.

Definition 2.3 For a given land division problem P = (X, u1, u2), a feasible land
division (A1, A2) is equal opportunity equivalent if there is some λ > 0 such that

u1(A1) = max{u1(A) | A ∈ L(X) and μ(A) = λ} and
u2(A2) = max{u2(A) | A ∈ L(X) and μ(A) = λ}.

A land division rule is said to be efficient (equal opportunity equivalent) if its
assigns to every land division problem a feasible land division which is efficient (equal
opportunity equivalent).

3 Efficient and equal opportunity equivalent rules

In this section we prove that there exist land division rules which are both efficient
and equal opportunity equivalent. For the proof of the following theorem we need first
the following lemmas:

Lemma 1 For every R ≤ ui (X), r ∈ [0, R] and for every measurable B ⊂ X such
that ui (B) = R there exists a measurable subset A ⊂ B such that ui (A) = ri , where
i = 1, 2.

Proof Given the absolute continuity of ui we can apply Theorem 1 in Dubins and
Spanier (1961). The convexity of the range ui (C), C ⊂ B, guarantees that exists
A ⊂ B such that ui (A) = ri .

Lemma 2 If u j ( Ã\A) = 0 for every A ⊂ Ã such that ui (A) = r we have u j ( Ã) = 0,
where Ã ⊂ X, r < ui ( Ã) and i, j ∈ {1, 2}, i �= j .

Proof Let us suppose by contradiction that u j ( Ã) �= 0. That means that there is a
set A ⊂ Ã such that the Radon–Nikodym derivative f j of u j is larger than 0 almost
everywhere on A. There are three possibilities: ui ( Ã\A) can be larger, equal or less
than r . If it is equal to r then we have found a contradiction, because u j (A) > 0. If
ui ( Ã\A) > r , using Lemma 1 we can find a set Ā ⊂ Ã\A such that ui ( Ā) = r and
u j ( Ã\ Ā) > 0, contradicting the assumption. If ui ( Ã\A) < r for Lemma 1 we can
find a set B ⊂ A such that ui (B) = r − ui ( Ã\A), then defining C := B ∪ ( Ã\A) we
have that ui (C) = r , and u j (A\B) > 0, which implies u j ( Ã\C) > 0.
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Lemma 3 The function

f (λ) := max{ui (A) : μ(A) = λ, A ∈ L(X)} (3.1)

exists for every 0 ≤ λ ≤ μ(X).

Proof The max{ui (A) : μ(A) = λ, A ∈ L(X)} can be transformed into max{ui (A) :
μ(AC ) = μ(X) − λ, A ∈ L(X)}. From the compactness theorem of Dubins and
Spanier (1961) we know that the range of the vector (ui (A), μ(AC )) as A varies in
L(X) is compact. The vertical section of this range is compact as well so f (λ) exists.

Theorem 3.1 (Existence)Let P = (X, u1, u2) be a land division problem. Then, there
exists a feasible land division (A1, A2) which is both efficient and equal opportunity
equivalent.

Proof We first need some notation. Let L∗
1(X) be the collection of those subsets

A ∈ L(X) such that u1(A) ≥ u1(B) for all B ∈ L(X) with μ(B) = μ(A). Let
R1 := u1(X) and R2 := u2(X). We define functions U2, Û2 : [0, R1] → [0, R2] by

U2(r1) := max{u2(A2) | A2 ∈ L(X), ∃A1 ∈ L(X) such that

u1(A1) = r1 and A2 = X\A1},

and

Û2(r1) := max{u2(B2) | B2 ∈ L(X), ∃B1 ∈ L∗
1(X) such that

u1(B1) = r1, and μ(B2) = μ(B1)}.

In the same fashion we define U1(r2) and Û1(r2).

First we need prove that:

1. The functions Û1 and Û2, U1 and U2 exist,
2. Û2(0) ≤ U2(0) = R2,
3. U2(R1) ≤ Û2(R1) = R2,

4. U2 and U1 are weakly decreasing, Û2 and Û1 are weakly increasing (monotonicity
property),

5. the functions U2 and Û2 are continuous in r1,
6. U1 is the inverse function of U2, and Û1 is the inverse function of Û2, namely

U2(r1) = U−1
1 (r1) and Û2(r1) = Û−1

1 (r1).

• (Existence) To prove the existence of Û2 we need to prove that for every r1 ∈
[0, R1] there exists a set B ⊂ X such that B ∈ L∗

1(X) and u1(B) = r1. This
is equivalent to prove that the function f : [0, μ(X)] → [0, u1(X)], f (λ) :=
max{u1(B)|μ(B)=λ} is continuous. The existence of f is guaranteed by Lemma 3.
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f (λ) is a weakly increasing function. Let us suppose by contradiction that in λ̄ f is
not continuous. Then there is an r1 such that limλ→λ̄− f (λ) < r1 < limλ→λ̄+ f (λ).
For that r1 consider the function g(x) := min{λ|μ(A) = λ, u1(A) = x}. g(r1)
cannot be smaller than λ̄, because it would violate the maximum condition of f (λ).
Moreover it cannot be larger than λ̄, because there would be a couple (λ, f (λ)) such
that λ < g(r1) and f (λ) > r1. If we call A1 the set generated by f (λ), for Lemma 1
there would be an Ã1 ⊂ A1 such that u1( Ã1) = r1 and λ̃ = μ( Ã1) < g(r1) which
violates the definition of g. So g(r1) = λ̄, for every r1 that respects the inequality.
Then g(x) would be constant on [limλ→λ̄− f (λ), limλ→λ̄+ f (λ)]. This is not possi-
ble because g(limλ→λ̄+ f (λ)) generates a set A that, for Lemma 1, strictly contains
an Â such that u1( Â) = limλ→λ̄− f (λ). So μ( Â) < λ̄, violating the definition of
g. The existence of the maximum in Û2 is given by Lemma 3. The existence of U2
is guaranteed by the compactness theorem in Dubins and Spanier (1961), using the
same reasoning of the proof of Lemma 3. The proof of existence of Û1 and U1 can
be done in the same way.

• The second and the third points are straightforward.
• (Monotonicity) If U2 were not decreasing there would be r̃1 and r̂1 such that

r̃1 < r̂1 and U2(r̃1) < U2(r̂1). Defining ( Â1, Â2) the partition generated by U2(r̂1)
and ( Ã1, Ã2) the partition generated by U2(r̃1) for Lemma 1 there must be an
A1 ⊂ Â1 such that u1(A1) = r̃1 and, using the set inclusion property, either
u2(X\A1) > u2( Â2), so u2( Ã2) cannot be a maximum or u2(X\A1) = u2( Â2).
If there is no A1 such that the strict inequality is satisfied then for Lemma 2
u2( Â1) = 0 and U2(r̂1) = R2 and it is constant in [0, r̂1].
Similarly we can prove the monotonicity property of U1.
To prove that Û2 isweakly increasingwe take r̃1 and r̂1 such that r̃1 < r̂1.Û2(r̃1) gen-
erates (B̃1, B̃2) such that u1(B̃1) = r̃1, u2(B̃2) = Û2(r̃1) andμ(B̃1) = μ(B̃2).Then
for any set B1 ∈ L(X) such that u1(B1) = r̂1 we will have μ(B1) ≥ μ(B̃1),
otherwise B̃1 /∈ L∗

1(X). Thenμ(B1) ≥ μ(B̃2) and any set B2 such that B̃2 ⊂ B2 and
μ(B2) = μ(B1) will satisfy the following inequality: u2(B2) ≥ u2(B̃2), proving
that Û2 is weakly increasing. We can be more specific and state that Û2 can be con-
stant only if it is equal to R2. In fact if Û2 is constant on

[
r̄1, r̂1

]
then calling Â1 and Ā1

themaximal sets where r̂1 and r̄1 are assumed, it must beμ( Â1) > μ( Ā1). The same
must hold for the maximal sets Â2 and Ā2: μ( Â1) = μ( Â2) > μ( Ā2) = μ( Ā1).
Then if u2( Â2) = u2( Ā2) the Radon–Nikodym derivative f2 must be zero almost
everywhere on X\ Ā2 and Û2(r̄1) = R2.
In the same fashion we can prove that Û1 is weakly increasing.

• (Continuity) To prove the continuity of U2 let us do it by contradiction: suppose
that in r̃1 U2 is not a continuous. For the monotonicity property it must be a jump
discontinuity and moreover limr̃−

1
U2(r1) > limr̃+

1
U2(r1). Consider U1(r̃2), where

we take limr̃+
1

U2(r1) < r̃2 < limr̃−
1

U2(r1). Then U1(r̃2) cannot be larger than r̃1,
otherwiseU2(U1(r̃2)) < r̃2 and would not be a maximum. Moreover U1(r̃2) cannot
be smaller than r̃1. Indeed for the monotonicity property there would be a couple
(r1, U2(r1)) such that U2(r1) > r̃2 and r1 > U1(r̃2). This is not possible because,
calling ( Ā1, Ā2) the partition generated by U2(r1), for Lemma 1 there would be
an A2 ⊂ Ā2 such that u2(A2) = r̃2 and u1(X\A2) ≥ r1, and U1(r̃2) would not
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be a maximum. So U1(r̃2) = r̃1. Being r̃1 any real number between limr̃+
1

U2(r1)
and limr̃−

1
U2(r1)U1 must be constant in [limr̃+

1
U2(r1), limr̃−

1
U2(r1)]. This is not

possible because U1 and U2 can be constant only when they are respectively equal
to R1 and R2, where there would be no matter of discontinuity. Indeed let’s call

( Â1, Â2) the partition generated byU1

(
limr̃−

1
U2(r1)

)
. Then for all the feasible sets

A2 ⊂ Â2 such that u2(A2) = limr̃+
1

U2(r1) it must be that u1( Â2\A2) = 0. Then for

Lemma 2 u1( Â2) = 0, which implies u1( Â1) = R1 and U1

(
limr̃−

1
U2(r1)

)
= R1.

Then it must be limr̃−
1

U2(r1) = limr̃+
1

U2(r1) so U2 must be continuous. We can

prove in the same fashion the continuity of U1, Û2, Û1.

• (Inverse functions) Let us suppose by contradiction that in r1U2(r1) < U−1
1 (r1).

This is not possible because U2(r1) should be the maximum of u2(A2) such
that u1(X\A2) = r1 but U−1

1 (r1) would generate a partition ( Ã1, Ã2) such that
u1( Ã1) = r1 and u2( Ã2) > u2(A2). Instead if U2(r1) > U−1

1 (r1) for the monoto-

nicity propertywewould have that r1 < U−1
2

(
U−1
1 (r1)

)
= r∗

1 , but thatwouldmean

that there is partition ( Ã1, Ã2) generated by U2(r∗
1 ) such that u2( Ã2) = U−1

1 (r1)
but u1( Ã1) > r1. This is a violation of the maximum condition of U1.
SoU2(r1) = U−1

1 (r1). The proof that Û2(r1) = Û−1
1 (r1) comes from the definition

of the two functions.

By these properties, applying the Bolzano Theorem to the function (U2 − Û2)(r1),
there must be some r∗

1 such that U2(r∗
1 ) = Û2(r∗

1 ). Let r∗
2 := U2(r∗

1 ) = Û2(r∗
1 ). By

definition of U2, there are subsets A1, A2 ∈ L(X) such that

1. u1(A1) = r∗
1 and u2(A2) = r∗

2 ,

2. A2 = X\A1, and
3. given that U2(r1) = U−1

1 (r1) and Û2(r1) = Û−1
1 (r1) there is no feasible land divi-

sion (A′
1, A′

2) with u1(A′
1) ≥ r∗

1 and u2(A′
2) ≥ r∗

2 such that
(
u1(A′

1), u2(A′
2)

) �=
(r∗

1 , r∗
2 ).

Since the function U2 is weakly decreasing and Û2 is weakly increasing it follows
from (1), (2) and (3) that (A1, A2) is a feasible and efficient land division with
u1(A1) = r∗

1 and u2(A2) = r∗
2 .

On the other hand, by definition of Û2 there are subsets B1, B2 ∈ L(X) and a
number λ > 0 such that

4. u1(B1) = r∗
1 and u2(B2) = r∗

2 ,

5. μ(B1) = μ(B2) = λ,

6. u1(B1) = max{u1(B)|B ∈ L(X) and μ(B) = λ}, and
7. u2(B2) = max{u2(B)|B ∈ L(X) and μ(B) = λ}.
Here, (6) follows from the assumption that B1 ∈ L∗

1(X). By (4)–(7), and our previous
insight that (A1, A2) is a feasible and efficient land division with u1(A1) = r∗

1 and
u2(A2) = r∗

2 , it follows that the feasible land division (A1, A2) is efficient and equal
opportunity equivalent. This completes the proof. �

123



SERIEs (2012) 3:133–142 141

Theorem 3.2 (Uniqueness) All the efficient and equal opportunity equivalent land
divisions (A1, A2) yield a unique utility pair (u1(A1), u2(A2)) if the Radon–Nikodym
derivatives f1 and f2 respectively of u1 and u2 are different from zero almost every-
where on X.

Proof If the Radon–Nikodym derivatives f1 and f2 are different from zero a.e. on
X the function U2 is strictly decreasing and the function Û2 is strictly increasing on
[0, R1]. Then they cross just in one point (r1, r2) which is the unique utility pair that
can be obtained by any efficient and equal opportunity equivalent land division. �

4 The mechanism

In this section we present a simple mechanism to implement an efficient and equal
opportunity equivalent allocation when agents have complete information.

Round 1.Agent 1 announces λ ∈ [0, μ(X)]. Agent 2 can take any portion B2 such that
μ(B2) ≤ λ or propose a land division (A1, A2) ∈ L(X) × L(X). If agent 2 takes B2,

agent 1 gets X\B2. If agent 2 proposes a land division (A1, A2) ∈ L(X) × L(X),

then round 2 is played

Round 2. Agent 1 can accept agent 2’s proposal and in this case the proposal is imple-
mented, or reject it and take any portion B1 withμ(B1) ≤ λ. In case of rejection agent
2 gets the portion X\B1.

For anyλ ∈ [0, μ(X)] and for any i = 1, 2 let Bλ
i = {B ∈ L(X)|argmax ui (B) s.t.

μ(B) ≤ λ}.
The equilibrium concept used is subgame perfection; for short, we simply speak of

“equilibrium”.

Theorem 4.1 The mechanism described above has unique equilibrium payoffs, with
final allocations that are efficient and equal opportunity equivalent. In every equi-
librium allocation, each agent i is indifferent between the parcel he receives and
getting ui (Bλ∗

i ), where λ∗ = max {λ: there exists (A1, A2) ∈ L(X) × L(X) with
ui (Ai ) ≥ ui (Bλ

i ) for each i}.
Proof We proceed by backward induction. Consider first round 2 and suppose that
agent 1 has announced λ at round 1 and agent 2 has made a proposal (A1, A2).
It is straightforward to note that agent 1 accepts agent 2’s proposal if and only if
u1(A1) ≥ u1(Bλ

1 ), otherwise he takes Bλ
1 . Consider round 1. Suppose that agent 1 has

announced λ. We show now that agent 2 proposes the allocation

(Aλ
1, Aλ

2) ∈ {(A1, A2) ∈ L(X) × L(X)|argmaxu2(·) s.t. u1(A1) = u1(Bλ
1 )} (4.1)

if and only if u2(Aλ
2) ≥ u2(Bλ

2 ); if u2(Aλ
2) < u2(Bλ

2 ) then he takes the portion Bλ
2 .

We have already argued that agent 1 accepts a proposal if and only u1(A1) ≥ u1(Bλ
1 ).

Since agent 2 can chop off a morsel of agent 1’s portion and give it to himself, then
if he makes a proposal (A1, A2) it must be that u1(A1) ≤ u1(Bλ

1 ). Hence agent
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2’s best proposal satisfies the constraint u1(A1) = u1(Bλ
1 ). Agent 2 makes a pro-

posal only if there exists a proposal which guarantees to him a payoff higher than
the payoff he gets by taking the portion Bλ

2 (note that any agent 2’s proposal that
is rejected by agent 1 is payoff equivalent to a (acceptable) proposal (A1, A2) =
(Bλ

1 , X\Bλ
1 )). Let A = {(Aλ

1, Aλ
2) for some λ ∈ [0, μ(X)] and u2(Aλ

2) ≥ u2(Bλ
2 )} and

Aλ∗ = (Aλ∗
1 , Aλ∗

2 ) ∈ A be such that for all Aλ ∈ A, λ ≤ λ∗.We show as last step of
the proof that at round 1, agent 1 proposes λ∗. Suppose agent 1 proposes λ∗ at round
1; agent 2 proposes the allocation (Aλ∗

1 , Aλ∗
2 ) and agent 1 accepts. By proposing λ∗ at

round 1 agent 1 gets u1(Aλ∗
1 ) = u1(Bλ∗

1 ). Suppose agent 1 proposes λ < λ∗. For all
λ < λ∗(Aλ

1, Aλ
2) ∈ A, agent 2 proposes an allocation that satisfies condition (4.1) and

agent 1 obtains u1(Bλ
1 ) < u1(Bλ∗

1 ). Suppose, finally, that agent 1 proposes λ > λ∗.
By definition of λ∗, (Aλ

1, Aλ
2) /∈ A and u2(Aλ

2) < u2(Bλ
2 ). But then agent 2 takes Bλ

2
and agent 1 gets X\Bλ

2 . Since λ > λ∗,then u2(Bλ
2 ) > u2(Bλ∗

2 ). Since by construction
(Aλ∗

1 , Aλ∗
2 ) is an efficient allocation, it follows that u1(X\Bλ

2 ) < u1(Aλ∗
1 ) = u1(Bλ∗

1 ).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution and reproduction in any medium, provided the original author(s) and
source are credited.
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