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Abstract This article establishes versions of Moulin’s (Public Choice 35:437–455,
1980) characterizations of various classes of strategy-proof social choice functions
when the domain consists of all profiles of single-peaked preferences on an arbitrary
subset of the real line. Two results are established that show that the median of 2n + 1
numbers can be expressed using a combination of minimization and maximization
operations applied to subsets of these numbers when either these subsets or the num-
bers themselves are restricted in a particular way. These results are used to show
how Moulin’s characterizations of generalized median social choice functions can be
obtained as corollaries of his characterization of min–max social choice functions.

Keywords Generalized median social choice functions · Moulin min–max rules ·
Single-peaked preferences · Strategy-proofness

JEL Classification D71 · D82

1 Introduction

Black (1948) has argued that, in practice, there are many social choice problems in
which the set of alternatives A is one-dimensional (and so can be thought of as being
a subset of the real line R) and individual preferences are single-peaked. For exam-
ple, this is the case when the alternatives are either quantities of a divisible public
good or a finite set of political candidates arrayed on a left-right ideological spectrum.
Black was interested in the properties of pairwise majority rule when preferences are
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single-peaked. For an odd number of individuals, Black demonstrated that pairwise
majority rule selects the alternative that is the median of the individual preference
peaks and, furthermore, that this rule is strategy-proof.1 There is now a substantial
literature dealing with strategy-proof social choice with single-peaked preferences
and multidimensional generalizations of single-peakedness. For introductions to this
literature, see Sprumont (1995) and Barberà (2011).

A social choice function that only depends on each individual’s most-preferred
alternatives is said to satisfy the tops-only property. Black’s median-voter rule has this
property. Moulin (1980) has characterized the set of all strategy-proof social choice
functions that satisfy the tops-only property when the domain consists of all profiles
of single-peaked preferences on a one-dimension set of alternatives A. When there are
n individuals, each of these functions is characterized by 2n parameters each of which
is either one of the alternatives in A or the infimum or supremum of this set, with
one parameter assigned to each subset of the set of individuals.2 For each profile of
preferences, the chosen alternative is determined by (i) first identifying for each subset
S of individuals, the maximum of the parameter value assigned to S and the largest
preference peak of the individuals in S and (ii) then choosing the smallest of these val-
ues over all subsets of individuals. Sprumont (1995) calls such a social choice function
a min–max rule. Alternative, but equivalent, ways of specifying this class of social
choice functions have been developed by Barberà et al. (1993) and Ching (1997).

Moulin (1980) has also characterized the strategy-proof social choice functions sat-
isfying the tops-only property that are (i) anonymous and (ii) anonymous and Pareto
efficient. In case (i), a rule satisfying these properties is characterized by n +1 param-
eters drawn from the same set of admissible parameters as is used for the min–max
rules. For each profile of preferences, this rule chooses the median of the individual
preference peaks and these n +1 parameters. Because the median is being determined
from 2n +1 numbers, this rule is well defined. Black’s median-voter rule is the special
case in which half of the parameters are set equal to the infimum of A and half are set
equal to the supremum of A. In case (ii), the rules are constructed in the same way,
but use only n − 1 parameters. These two classes of rules are known as generalized
median social choice functions.

Because generalized median social choice functions are strategy-proof and sat-
isfy the tops-only property, they must be min–max rules. Moulin did not establish
his theorems about generalized median social choice functions as corollaries of his
min–max social choice function theorem. He instead provided independent proofs
of his generalized median and min–max results. The main purpose of this article is
to show how Moulin’s generalized median theorems can be obtained from his min–
max theorem. In order to do this, I establish two results that show that the median of
2n + 1 numbers can be expressed using a combination of minimization and maximi-
zation operations applied to subsets of these numbers when either these subsets or the
numbers themselves are restricted in a particular way.

1 When there are an even number of individuals, there may be two median peaks. In this case, Black
supposed that one of the individuals is given the power to break ties.
2 If A is unbounded from below (resp. above), then −∞ (resp. ∞) is used instead of the infimum (resp.
supremum).

123



SERIEs (2011) 2:529–550 531

Moulin (1980) established his results for the case in which the set of alternatives A
is all of R, but noted that they also apply to the case in which A is a finite set. Moulin’s
theorems are often applied to situations in which A is a closed interval of R. I show
that they are valid when A is any subset of A containing at least two alternatives. The
special structure placed on A in the previous literature is not needed.

Moulin’s proof of the min–max characterization theorem omits many of the details
of the argument. In view of the importance of Moulin’s min–max theorem for the
subsequent literature, I provide a more complete proof of this result. In addition,
I clarify how Moulin’s assumption that the social choice function satisfies the tops-
only property is related to the structure of its range.

In Sect. 2, I introduce the model and present some background results. In Sect. 3,
I consider the tops-only property. Moulin’s min–max social choice functions are intro-
duced in Sect. 4. In Sect. 5, I prove Moulin’s min–max theorem when the set of alter-
natives is an arbitrary subset of R and characterize the set of all min–max social choice
functions that are also Pareto efficient. In Sect. 6, I first establish two propositions that
identify situations in which a median can be expressed in terms of minimization and
maximization operations and then use these results to show how Moulin’s generalized
median theorems can be obtained as corollaries of his min–max theorem. Finally,
I provide some concluding remarks in Sect. 7.

2 The model and background results

The set of alternatives A is assumed to be a nonempty subset of R containing at least
two alternatives. As the examples in Sect. 1 illustrate, it is often natural to suppose
that A is either connected or discrete, but this is not assumed in the subsequent analy-
sis. Let a− = inf A if this infimum exists and let a− = −∞ otherwise. Similarly, let
a+ = sup A if this supremum exists and let a+ = ∞ otherwise. Let A∗ = A∪{a−, a+}
and R

∗ = R∪{−∞}∪{∞} (the extended real line). For an odd number of alternatives
x1, . . . , xm in A, let med {x1, . . . , xm} denote the median.

For any x, y ∈ R
∗, [x, y] denotes the closed interval of R

∗ that has x and y as its
endpoints. A subset S of A is an interval of A if [x, y] ∩ A ⊆ S for all x, y ∈ S. Even
though an interval S of A need not be connected relative to R, relative to A it includes
all points in A that lie between any two distinct points in S. The closure of any subset
of A is understood to be relative to A. Thus, for all x, y ∈ A∗, [x, y] ∩ A is a closed
interval of A. It is denoted by xy. Henceforth, it is understood that x ≤ y when I write
xy.

Let R denote the set of all orderings (that is, reflexive, complete, and transitive
binary relations) on A. An ordering R ∈ R is interpreted as being a preference.
For any R ∈ R and any nonempty set S ⊆ A, the top set of R in S is

τ(R, S) = {x ∈ S | x Ry for all y ∈ S}.

In other words, τ(R, S) is the set of best alternatives in S according to the preference R.
A preference R ∈ R is single-peaked if there exists an alternative π(R) =

τ(R, A) ∈ A, the peak of R, such that π(R)Px Py whenever x, y ∈ A and y <
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x < π(R) or π(R) < x < y. Let S denote the set of single-peaked preferences on
A. A preference R ∈ R is single-plateaued if there exist π−(R), π+(R) ∈ A with
π−(R) ≤ π+(R) such that τ(R, A) = π−(R)π+(R) and such that π−(R)Px Py for
x, y ∈ A for which y < x < π−(R) and π+(R)Px Py for x, y ∈ A for which
π+(R) < x < y. The interval π−(R)π+(R) is the plateau of R. A single-peaked
preference is a single-plateaued preference in which the plateau consists of a single
alternative.

The set of individuals is N = {1, . . . , n}, where n is finite. While there is no social
choice problem unless n ≥ 2, the results in this article also hold for n = 1. This
special case is used as part of an induction proof and provides some insight into the
structure of the social choice rules considered here. A profile is an n-tuple of individual
preference orderings R = (R1, . . . , Rn).

A social choice function is a function f : Dn → A, where D ⊆ R is the common
set of admissible preferences for each individual. Thus, the domain of f is Dn . In this
article, D = S, the set of all single-peaked preferences. The range of f is

A f = {x ∈ A | f (R) = x for some R ∈ Dn}.

Let RS = (Ri )i∈S denote the subprofile of preferences of the individuals in S,
where ∅ ⊂ S ⊂ N . A profile is sometimes written as R = (RS; R−S), where −S is
the complement of S. For the social choice function f , the option set generated by
RS is

O f
−S(RS) = {x ∈ A | x = f (RS; R−S) for some R−S ∈ Dn−|S|}.

The option set O f
−S(RS) is the set of alternatives that are attainable given that the

individuals in S have the subprofile RS . The widespread use of option sets to char-
acterize properties of strategy-proof social choice functions is due to the influence of
the seminal article of Barberà and Peleg (1990). The option-set methodology was first
introduced by Laffond (1980), Satterthwaite and Sonnenschein (1981), and Barberà
(1983).

A social choice function f is manipulable by individual i ∈ N at the profile R ∈ Dn

via R̄i ∈ D if f (R1, . . . , Ri−1, R̄i , Ri+1, . . . , Rn)Pi f (R). A social choice function
is strategy-proof if it is never manipulable.

Definition A social choice function f is strategy-proof if there is no individual i ∈ N ,
no profile R ∈ Dn , and no preference R̄i ∈ D such that f is manipulable by individual
i at R via R̄i .

Any strategy-proof social choice function for which the domain is the Cartesian
product of the same set of individual preferences has the property that if everybody
agrees that the same alternative is best on the range, then this alternative must be
chosen. See Le Breton and Weymark (1999, Proposition 2). For the domain Sn , this
property of a social choice function also follows from Zhou (1991, Lemma 2) and
Barberà and Jackson (1994, Lemma A-1).
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Lemma 1 If f : Sn → A is strategy-proof, then for all R ∈ Sn, if τ(Ri , A f ) = {x}
for all i ∈ N, then f (R) = x.

Strategy-proofness by itself also places structure on the range of a social choice
function. For the domain Sn considered here, note that for any x ∈ A, there is a pref-
erence R ∈ S such that π(R) = x . It therefore follows from Le Breton and Weymark
(1999, Proposition 5) that the range of a strategy-proof social choice function must be
a closed set when its domain is Sn .3

Lemma 2 If f : Sn → A is strategy-proof, then A f is closed.

The option set O f
−S(RS) generated by the subprofile RS , where ∅ ⊂ S ⊂ N , is

the range of the (n − |S|)-person social choice function g : Dn−|S| → A defined by
setting, for all R−S ∈ Dn−|S|,

g(R−S) = f (RS; R−S).

If f is strategy-proof, so is g. Therefore, Lemma 2 implies that is O f
−S(R

S) is closed
when D = S and f is strategy-proof.4

Lemma 3 If f : Sn → A is strategy-proof, then for all nonempty S ⊂ N and all
RS ∈ D|S|, O f

−S(RS) is closed.

Anonymity is the requirement that a social choice function treats individuals sym-
metrically.

Definition A social choice function f is anonymous if for all R, R′ ∈ Dn for which
R′ is a permutation of R, f (R) = f (R′).

An alternative x ∈ A is Pareto optimal if there does not exist an alternative y ∈ A
such that y Pi x for all i ∈ N .5 Pareto efficient social choice functions always choose
Pareto optimal alternatives.

Definition A social choice function f is Pareto efficient if for all R ∈ Dn, f (R) is
Pareto optimal.

3 The tops-only property

For a single-peaked preference, the top set on any closed interval of A can be identified
either (i) by performing a combination of minimization and maximization operations
that only consider the endpoints of the interval and the peak of the preference or (ii) by
determining the median of these three alternatives. Furthermore, in the first of these
cases, the two operations can be employed in either order.

3 Lemma 2 is also a special case of Lemma 1 in Barberà and Jackson (1994). See also Zhou (1991, p. 113).
4 Lemma 3 is a special case of Le Breton and Weymark (1999, Proposition 6).
5 More precisely, this is the definition of a weakly Pareto optimal alternative. For the problem considered
here, the sets of weakly and strongly Pareto optimal alternatives coincide.
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Lemma 4 For any closed interval xy of A and any R ∈ S,

τ(R, xy ) = min{y, max{π(R), x}}, (1)

τ(R, xy ) = max{x, min{π(R), y}}, (2)

and

τ(R, xy ) = med{x, y, π(R)}. (3)

Proof If x < π(R) < y, then τ(R, xy ) = π(R). Because max{π(R), x} = π(R)

and min{π(R), y} = π(R), (1) and (2) are satisfied.
If π(R) ≤ x , then τ(R, xy ) = x . Because max{π(R), x} = x and x ≤ y,

(1) holds. Because min{π(R), y} = π(R) and π(R) ≤ x , (2) holds.
If π(R) ≥ y, then τ(R, xy ) = y. Because max{π(R), x} = π(R) ≤ y, (1) holds.

Because min{π(R), y} = y ≥ x , (2) holds.
The characterization of the median in (3) follows immediately from either (1)

or (2). 
�
Thus, when S is a closed interval xy of A and R is single-peaked, the top set τ(R, S)

consists of a single alternative: x, y, or π(R). It also follows from Lemma 4 that the
median of three numbers can be computed using a combination of minimization and
maximization operations. If S is not an interval, τ(R, S) may include two alternatives,
but not more.

An immediate implication of Lemma 4 is that the top set of a single-peaked pref-
erence on a closed interval of A only depends on the preference peak and not on how
non-peak alternatives are ordered.6

Lemma 5 For any closed interval xy of A and any R, R′ ∈ S, if π(R) = π(R′), then
τ(R, xy ) = τ(R′, xy ).

If a social choice function takes account of all of the information contained in a
preference profile, then, in general, it is manipulable. One way to restrict the usable
information in a preference profile is for the social choice function to be sensitive only
to the top sets of the individual preferences, what is known as the tops-only property.

Definition A social choice function f satisfies the tops-only property if for all R, R′ ∈
Dn for which τ(Ri , A) = τ(R′

i , A) for all i ∈ N , f (R) = f (R′).

For a single-peaked preference R, τ (R, A) is simply the preference peak. Hence, a
social choice function f with domain Sn satisfies the tops-only property if the social
choice only depends on the peaks of the individual preferences. Moulin (1980) restricts
attention from the outset to social choice functions that satisfy the tops-only property.

6 All preferences in S with the same peak order alternatives on the same side of the peak in the same way,
but they may order alternatives on opposite sides of the peak differently.
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For a strategy-proof social choice function f with domain Sn , Theorem 1 demon-
strates that the tops-only property is equivalent to the range of f being an interval
of A.

Theorem 1 A strategy-proof social choice function f : Sn → A (a) has a range A f

which is an interval of A if and only if (b) it satisfies the tops-only property.

Proof For n ≥ 2, Weymark (2008, Theorem 1) has shown that for a strategy-proof
social choice function f : Sn → A, if A f is an interval of A, then f (R) = f (R′) for
any two profiles R, R′ ∈ Dn for which τ(Ri , A f ) = τ(R′

i , A f ) for all i ∈ N . That is,
the same alternative is chosen whenever two profiles have the same individual peaks
on the range of A. The same conclusion holds for n = 1 by Lemma 1. By Lemma 5,
for any R, R′ ∈ S, τ (R, A f ) = τ(R′, A f ) if τ(R, A) = τ(R′, A). Hence, f satisfies
the tops-only property if A f is an interval of A.

Now suppose that f : Sn → A is strategy-proof and satisfies the tops-only prop-
erty, but that A f is not an interval of A. Because A f is closed by Lemma 2, there
therefore exist alternatives x, y, z ∈ A with x < y < z such that x, z ∈ A f , but
(x, z) ∩ A f = ∅. Let Rx ∈ S be such that τ(Rx , A) = {y} and τ(Rx , A f ) = {x}.
Similarly, let Rz ∈ S be such that τ(Rz, A) = {y} and τ(Rz, A f ) = {z}. Clearly,
such preferences exist. By Lemma 1, f (Rx , . . . , Rx ) = x and f (Rz, . . . , Rz) = z,
which contradicts the assumption that f satisfies the tops-only property. 
�

Barberà and Jackson (1994, Theorem 1) were the first to note a connection between
the tops-only property and the structure of the range of a strategy-proof social choice
function f : Sn → A. They have shown that the restriction of f to the domain of pref-
erence profiles that are single-peaked on the range of f satisfies the tops-only property
if it is strategy-proof. Weymark’s result cited in the proof of Theorem 1 generalizes
Sprumont (1995, Lemma 2) and Ching (1997, pp. 485–486), both of which assume that
the range is a closed interval of R. On the larger domain of profiles of single-plateaued
preferences, Berga (1998, Proposition 1) has shown that strategy-proofness and the
tops-only property imply that the range is convex when A = [0, 1]. Range convexity
is equivalent to the range being an interval when A is an interval of R. Applied to the
domain Sn and any nondegenerate set A ⊆ R, Berga’s proof of her result provides
an alternative proof that (b) implies (a) in Theorem 1. The equivalence of (a) and (b)
when A is a closed interval of R can be inferred from Sprumont (1995, Theorem 2.4)
and Berga and Moreno (2009, Theorem 1), which show that strategy-proofness and
the range being an interval are equivalent to requiring a social choice function with
domain Sn to be a min–max rule.7

If a social choice function f : Sn → A is Pareto efficient, then for any x ∈ A, x is
chosen if everybody has a preference with peak at x . Hence, the range of f is all of A
and, by Theorem 1, any strategy-proof social choice function with domain Sn that is
Pareto efficient satisfies the tops-only property.

Proposition 1 If a strategy-proof social choice function f : Sn → A is Pareto effi-
cient, then it satisfies the tops-only property.

7 Sprumont (1995, p. 82) notes that there are discrete analogues of the results of his cited above.
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4 Min–max social choice functions

A voting scheme is a function v : An → A, where A ⊆ A. The domain of v is unre-
stricted ifA = A. Let x = (x1, . . . , xn) for any (x1, . . . , xn) ∈ R

n . If f : Dn → A is a
social choice function that satisfies the tops-only property, then f can be identified with
the voting scheme v f : An → A, where A = {x ∈ A | x = τ(R, A) for some R ∈
D}, by setting v f (x) = f (R1, . . . , Rn) for any profile R ∈ Dn for which xi =
τ(Ri , A) for all i ∈ N . If D = S in this definition, then A = A and, hence, v f

has an unrestricted domain. For a social choice function f that satisfies the tops-only
property, (i) f is anonymous if and only if v f is symmetric (i.e., the value of v f is
invariant to a permutation of its arguments) and (ii) if D = S, f is Pareto efficient if
and only if mini∈N {xi } ≤ v f (x) ≤ maxi∈N {xi } for all x ∈ An .

Moulin (1980) introduced a class of voting schemes known as min–max voting
schemes.

Definition For A ⊆ A ⊆ R, a voting scheme v : An → A is a min–max voting
scheme if for all S ⊆ N (including S = ∅), there exists an aS ∈ A∗ with (i) aT ≤ aS

if S ⊆ T ⊆ N , (ii) aN �= a+ if a+ �∈ A, and (iii) a∅ �= a− if a− �∈ A such that for all
x ∈ An ,

v(x) = min
S⊆N

[
max
i∈S

{xi , aS}
]

.8 (4)

Note that a min–max voting scheme is nondecreasing in its arguments and that it is
characterized by 2n parameters drawn from A∗, one for each subset of N .

For a domain of profiles of single-peaked preferences, the corresponding class of
min–max social choice functions is defined as follows.

Definition A social choice function f : Dn → A for which D ⊆ S is a min–max
social choice function if for all R ∈ Dn ,

f (R) = v f (π(R1, . . . , π(Rn)) (5)

for some min–max voting scheme v f : An → A, where A = {x ∈ A | x =
τ(R, A) for some R ∈ D}.
By definition, a min–max social choice function satisfies the tops-only property.

Without conditions (ii) and (iii) in the definition of a min–max voting scheme, the
function v defined in (4) need not be a voting scheme. If a+ �∈ A and aN is permitted
to equal a+ (and, hence, for aS to equal a+ for all S), then v(x) = a+ for all x ∈ An ,
in which case v is not a voting scheme because a+ �∈ A. Similarly, if a− �∈ A and a∅

is permitted to equal a− (and, hence, for aS to equal a− for all S), then v(x) = a− for
all x ∈ An (because a∅ = a−) and again v is not a voting scheme.

8 This definition extends the definition in Moulin (1980) for A = R to an arbitrary A ⊆ R. By convention,
maxi∈∅{xi , a∅} = a∅.
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To show that the function v defined in (4) is in fact a voting scheme, it is necessary
to confirm that v(x) ∈ A for all x ∈ An . By definition, v(x) ∈ A∗. There are four
cases to consider.

(i) Suppose that a− ∈ A and a+ ∈ A. Then, aS ∈ A for all S ⊆ N . In this case,
v(x) must be in A because each xi and aS is then in A.

(ii) Suppose that a− ∈ A and a+ �∈ A. Because aN �= a+, maxi∈N {xi , aN } ∈ A
and, therefore, by (4), v(x) �= a+. For any S ⊂ N , either aS = a+ or aS ∈ A.
Hence, by (4), v(x) ∈ A.

(iii) Suppose that a− �∈ A and a+ ∈ A. Because a∅ �= a−, maxi∈S{xi , aS} ∈ A for
all S ⊆ N . Hence, by (4), v(x) ∈ A.

(iv) Suppose that a− �∈ A and a+ �∈ A. Then, reasoning as in cases (ii) and (iii), it
follows that v(x) �= a− and v(x) �= a+, which implies that v(x) ∈ A.

If n = 1, then (4) simplifies to

v(x1) = min{a∅, max{x1, a{1}}}.

Note that v(x1) is the alternative that maximizes a single-peaked preference with peak
at x1 on the interval a{1}a∅ (of A). Hence, as has already been observed, v(x1) is also
the median of x1, a{1}, and a∅.

For later reference, the formula for v(x) in (4) when n = 2 is written out in full.
In this case,

v(x1, x2) = min{a∅, max{x1, a{1}}, max{x2, a{2}}, max{x1, x2, a{1,2}}}. (6)

In the characterization theorems for various classes of strategy-proof social choice
functions on the domain Sn , I only need to consider voting schemes with an unre-
stricted domain. For simplicity, I henceforth restrict attention to such voting schemes.

Consider a voting scheme v : An → A. For all S ⊆ N , let xS be the n-vector
defined by setting

x S
i =

{
a−, if i ∈ S,

a+, if i �∈ S.

In Proposition 2, I show that when both a− and a+ are in A, for all S ⊆ N , the param-
eter aS that appears in the definition of a min–max voting scheme v is v(xS). When
either a− or a+ are not in A, then xS is not in the domain of v. However, as I shall also
show in Proposition 2, in such cases, aS is the limiting value of v(x) as x approaches
xS . In order to establish these results, I first need some additional notation.

For all S ⊆ N and all λ,μ ∈ A, define the n-vector xS(λ, μ) by setting

x S(λ, μ)i =
{

λ, if i ∈ S,

μ, if i �∈ S,
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the n-vector xS(λ) by setting

x S(λ)i =
{

λ, if i ∈ S,

a+, if i �∈ S,

and the n-vector xS(μ) by setting

x S(μ)i =
{

a−, if i ∈ S,

μ, if i �∈ S.

Note that

lim
λ→a−
μ→a+

xS(λ, μ) = lim
λ→a−

xS(λ) = lim
μ→a+

xS(μ) = xS .

Proposition 2 Let v : An → A be a min–max voting scheme. Then, for all S ⊆ N,

(i) if a− ∈ A and a+ ∈ A, then

v(xS) = aS; (7)

(ii) if a− ∈ A and a+ �∈ A, then

lim
μ→a+

v(xS(μ)) = aS; (8)

(iii) if a− �∈ A and a+ ∈ A, then

lim
λ→a−

v(xS(λ)) = aS; (9)

(iv) if a− �∈ A and a+ �∈ A, then

lim
λ→a−
μ→a+

v(xS(λ, μ)) = aS . (10)

Proof Each of the four cases is considered in turn.
(i) In this case, (4) is used to compute the value of v(xS). For any T ⊆ S,

maxi∈T {x S
i , aT } = aT because aT ≥ a− = x S

i for all i ∈ T . For any T �⊆
S, maxi∈T {x S

i , aT } = a+ because aT ≤ a+ and there exists a j ∈ T with aS
j = a+.

Hence, v(xS) = minT ⊆S aT . Because aS ≤ aT if T ⊆ S, it follows that v(xS) = aS ,
which establishes (7).

(ii) For all μ ∈ A and all T ⊆ S, as in case (i), maxi∈T {xS(μ)i , aT } = aT . For any
T �⊆ S, maxi∈T {xS(μ)i , aT } = a+. Because aT ≤a+ if T ⊆ S, limμ→a+ v(xS(μ)) =
minT ⊆S aT = aS , which establishes (8).
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(iii) For all λ ∈ A and all T �⊆ S, as in case (i), maxi∈T {xS(λ)i , aT } = a+.
For all T ⊆ S, limλ→a− maxi∈T {xS(λ)i , aT } = aT because aT ≥ a−. Hence,
limλ→a− v(xS(λ)) = minT ⊆S aT = aS , which establishes (9).

(iv) Applying the argument in (ii) for the upper limit and the argument in (iii) for
the lower limit yields (10). 
�

I now show that a min–max voting scheme v on an unrestricted domain satisfies a
kind of unanimity property. Specifically, for any alternative x ∈ aN a∅, v(x, . . . , x) =
x . Moreover, I also show that for any other x ∈ A, v(x, . . . , x) is the closest alternative
to x in aN a∅. Thus, v(x, . . . , x) is the median of x, aN , and a∅.

Proposition 3 Let v : An → A be a min–max voting scheme. Then, for all x ∈
A, (i) v(x, . . . , x) = x if x ∈ aN a∅, (ii) v(x, . . . , x) = aN if x < aN , and (iii)
v(x, . . . , x) = a∅ if x > a∅.

Proof (i) For any x ∈ aN a∅, max{x, aN } = x . Because aS ≥ aN for all S ⊆ N , it
then follows from (4) that v(x, . . . , x) = min{x, a∅}. But, by assumption, x ≤ a∅.
Hence, v(x, . . . , x) = x .

(ii) The conclusion in this case follows from (4) and the assumption that aN ≤ aS

for all S ⊆ N .
(iii) The conclusion in this case follows from trivially from (4). 
�
In Proposition 4, I show that the range of a min–max voting scheme on an unre-

stricted domain is the closed interval of A defined by the parameters aN and a∅.
Hence, by Proposition 3, v(x, . . . , x) is the closest alternative to x in the range of v.

Proposition 4 The range of a min–max voting scheme v : An → A is aN a∅.

Proof Because aN ≤ aS for all S ⊆ N , it follows from (4) that v(x) ≥ aN for all
x ∈ An . Because a∅ is one of the values to which the minimization operator in (4) is
applied, v(x) ≤ a∅ for all x ∈ An . Hence, the range of v is contained in aN a∅. For
any x ∈ aN a∅, by Proposition 3, v(x, . . . , x) = x . Thus, every x ∈ aN a∅ is in the
range of v. 
�
Definition A voting scheme v : An → A is uncompromising if for all i ∈ N and all
x, x′ ∈ An for which x j = x ′

j for all j �= i , (i) v(x) = v(x′) if x ′
i > xi > v(x) and

(ii) v(x) = v(x′) if x ′
i < xi < v(x).

Uncompromisingness was first considered by Border and Jordan (1983). Infor-
mally, v is uncompromising if for any individual i and any vector x, raising (resp.
lowering) xi does not affect what is chosen whenever xi is larger (resp. smaller) than
v(x). Min–max voting schemes are uncompromising.

Proposition 5 A min–max voting scheme v : An → A is uncompromising.

Proof Consider any i ∈ N and any x, x′ ∈ An for which x j = x ′
j for all j �= i .

(i) Suppose that x ′
i > xi > v(x). For any S ⊆ N , increasing xi to x ′

i cannot
decrease the value of maxk∈S{ak, aS} and it can only increase this value if i ∈ S.
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By the definition of a min–max voting scheme in (4), there exists an S∗ ⊆ N such
that v(x) = maxk∈S∗{ak, aS∗}. Because xi > v(x), this implies that i �∈ S∗. Hence,
by (4), v(x′) = maxk∈S∗{ak, aS∗} = v(x).

(ii) Now suppose that x ′
i < xi < v(x). Because v is nondecreasing in its arguments,

v(x′) ≤ v(x). Contrary to what is to be shown, suppose that v(x′) < v(x). This is only
possible if there exists an S̄ ⊆ N with i ∈ S̄ such that both v(x) = maxk∈S̄{ak, aS̄}
and max{x ′

i , maxk∈S̄\{i} xk, aS̄} < v(x). But this implies that xi = maxk∈S̄{ak, aS̄} =
v(x), a contradiction to the assumption that xi < v(x). 
�

I now provide some examples of min–max voting schemes. In each of these exam-
ples, the voting scheme v has the domain An .

Example 1 Let aS = x̄ for all S ⊆ N . Note that the restrictions on the parameters of
v imply that x̄ ∈ A. By Proposition 4, the range of v is {x̄}. Hence, v is imposed. For
the corresponding min–max social choice function, x̄ is chosen regardless of what the
individual preferences are.

Example 2 Consider any k ∈ N . For all S ⊆ N , let aS = a+ if |S| < k and let aS = a−
otherwise. For any x ∈ An , let x̃ be a permutation of x for which x̃1 ≤ x̃2 ≤ · · · ≤ x̃n ,
with ties broken arbitrarily. Then, for all x ∈ An, v(x) = x̃k , the kth smallest compo-
nent of x. The corresponding min–max social choice function always chooses the kth
smallest preference peak.

Example 3 Suppose that n = 2. Let a∅ = a+, aN = a−, and a{1} = a{2} = b. Using
(6), for all x ∈ A2,

v(x) = min{a+, max{x1, b}, max{x2, b}, max{x1, x2, a−}}
= min{max{x1, b}, max{x2, b}, max{x1, x2}}
= med{x1, x2, b}
= med{x1, x2, b, a−, a+}.

Thus, v first augments x with the parameter b and then chooses the median value.
Equivalently, v first augments x with the parameters b, a−, and a+ and then chooses
the median value. The corresponding min–max social choice function always chooses
the median of the two preference peaks and b. Note that the median of x1, x2, and b
can be computed by first identifying the maximum values in any two-element subset
of these three alternatives and then choosing the smallest of them.

Example 4 Suppose that n = 2.
(i) Let a{2} = aN = α and a{1} = a∅ = β. Thus, the range of v is αβ. Using (6),

for all x ∈ A2,

v(x) = min{β, max{x1, β}, max{x2, α}, max{x1, x2, α}}
= min{β, max{x2, α}},

which is the alternative in the range that is closest to x2. That is, v(x) = med{x2, α, β}.
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(ii) Let a{1} = aN = α and a{2} = a∅ = β. Reasoning as in (i), for all x ∈ A2, v(x)

is the alternative in the range that is closest to x1. That is, v(x) = med{x1, α, β}.
For the corresponding min–max social choice function, person 2 is a dictator on

the range in case (i) and person 1 is a dictator on the range in case (ii).

There is a duality between minimization and maximization operators that allows
one to rewrite the formula for the min–max voting scheme defined in (4) as a max-min
voting scheme in which the order in which the minimization and maximization opera-
tions are employed is reversed. An illustration of this kind of role reversal is provided
by the equivalence of (1) and (2) in Lemma 4.

Barberà et al. (1993) have proposed an alternative, but equivalent, formulation of a
min–max voting scheme v using left-winning coalition systems. A left-winning coa-
lition system assigns to each alternative a (possibly empty) set of of subsets of N (the
winning coalitions) satisfying a number of restrictions. The value of v(x) is then the
smallest alternative x̄ for which the set {i ∈ N | xi ≤ x̄} is a winning coalition for
x̄ . Using the duality between ≤ and ≥, this rule can also be expressed in terms of a
right-winning coalition system. Formal definitions of left- and right-winning coalition
systems may be found in Barberà et al. (1993) when A is discrete and in Barberà et
al. (1998) when A is a closed interval. Sprumont (1995), Barberà (2011), and Massó
and Moreno de Barreda (2011) have provided interpretations of these rules that high-
light how these constructions are related to the definition of min–max and generalized
median voting schemes.

Yet another equivalent formulation of a min–max voting scheme was provided by
Ching (1997). An augmented median voting scheme is characterized by 2n parameters,
one for each subset of the individuals, as in the definition of a min–max voting scheme.
However, now the value of v(x) is computed by taking the median of the components
of x and n + 1 of the parameters, with the choice of the parameters depending on x.
See Sprumont (1995) and Ching (1997) for a formal definition and discussion of this
class of rules.

5 Strategy-proof min–max social choice functions

Theorem 2 generalizes the characterization of min–max social choice functions in
Moulin (1980, Proposition 3) by allowing A to be any subset of R containing at least
two alternatives, not just R itself. It also replaces Moulin’s assumption that f satisfies
the tops-only property with the equivalent assumption that the range of f is an interval
of A.

Theorem 2 Let f : Sn → A be a social choice function whose range A f is an inter-
val of A. Then, (a) f is strategy-proof if and only if (b) f is a min–max social choice
function.

Proof (a) First, suppose that f is strategy-proof. By Lemma 2, A f is closed. Hence
A f = αβ for some α, β ∈ A∗ with α ≤ β. Furthermore, if a+ �∈ A, then α �= a+ and
if a− �∈ A, then β �= a−, for otherwise A f would be empty. By Theorem 1, f satisfies
the tops-only property and, hence, can be identified with its associated voting scheme
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v f . For all x ∈ A, there exists an R ∈ S such that τ(R, A) = {x}. Thus, v f has the
unrestricted domain An . The proof proceeds using induction on n. Let f n denote the
social choice function when there are n individuals.

(i) Suppose that n = 1. By Lemma 1, f 1(R1) = τ(R1, αβ) for all R1 ∈ S. By (1),
τ(R1, αβ) = min{β, max{π(R1), α}}. Letting a∅ = β and v{1} = α, it follows that
f 1 is a min–max social choice function.

(ii) Now suppose that n ≥ 2 and that (a) implies (b) when the number of individuals
is less than or equal to n. Also suppose that f n+1 is strategy-proof. I need to show
that f n+1 is a min–max social choice function.

Consider any x ∈ An . Because f n+1 has the tops-only property, by Lemma 3, for
all (R1, . . . , Rn) ∈ Sn for which π(Ri ) = xi for all i = 1, . . . , n, the option set

O f n+1

{n+1}(R1, . . . , Rn) is a closed interval αxβx. Because this option set is the range of

the strategy-proof one-person social choice function obtained from f n+1 by fixing
(R1, . . . , Rn), by case (i) this one-person social choice function is a min–max social
choice function. In terms of the voting scheme v f n+1

associated with f n+1,

v f n+1
(x, xn+1) = min{βx, max{xn+1, αx}} (11)

for all (x, xn+1) ∈ An+1.
For any fixed xn+1 ∈ A, by the induction hypothesis,

v
f n

xn+1(x) := v f n+1
(x, xn+1) = min

S⊆{1,...,n}

[
max
i∈S

{xi , aS(xn+1)}
]

(12)

for all x ∈ An , where now the parameters aS(xn+1) of the n-person voting scheme
v

f n

xn+1 are conditional on xn+1.
Some of the details of the next part of the proof depend on whether a− and a+ are

in A. I provide the argument for the case in which they are not. If either a− or a+ is
in A, the relevant case in Proposition 2 is instead used to determine the analogue of
(13). If both a− and a+ are in A, then no limiting arguments are needed.

By (12) and case (iv) of Proposition 2,

lim
λ→a−
μ→a+

v f n+1
(xS(λ, μ), xn+1)) = aS(xn+1) (13)

for all xn+1 ∈ A and all S ⊆ {1, . . . , n}. It then follows from (11) and (13) that for all
xn+1 ∈ A and all S ⊆ {1, . . . , n},

aS(xn+1) = lim
λ→a−
μ→a+

min{βxS(λ,μ), max{xn+1, αxS(λ,μ)}}

or, equivalently,

aS(xn+1) = min

⎧⎨
⎩ lim

λ→a−
μ→a+

βxS(λ,μ), max{xn+1, lim
λ→a−
μ→a+

αxS(λ,μ)}
⎫⎬
⎭ . (14)
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For all S ⊆ {1, . . . , n}, let

αxS = lim
λ→a−
μ→a+

αxS(λ,μ) (15)

and

βxS = lim
λ→a−
μ→a+

βxS(λ,μ).
9 (16)

Substituting (15) and (16) into (14), it follows that

aS(xn+1) = min{βxS , max{xn+1, αxS }} (17)

for all xn+1 ∈ A and all S ⊆ {1, . . . , n}. Substituting (17) into (12), for all (x, xn+1) ∈
An+1,

v f n+1
(x, xn+1) = min

S⊆{1,...,n}

[
max
i∈S

{xi , min{βxS , max{xn+1, αxS }}}
]

= min
S⊆{1,...,n}

[
min

{
max
i∈S

{xi , βxS }, max
i∈S

{xi , xn+1, αxS }
}]

(18)

because max{X, min{Y, Z}} = min{max{X, Y }, max{X, Z}}.
For all S ⊆ {1, . . . , n}, let aS = βxS and aS∪{n+1} = αxS . Using these definitions

in (18), it follows that for all (x, xn+1) ∈ An+1,

v f n+1
(x, xn+1) = min

S⊆{1,...,n}

[
min

{
max
i∈S

{xi , aS}, max
i∈S∪{n+1}{xi , aS∪{n+1}}

}]
.

Hence, for all (x, xn+1) ∈ An+1,

v f n+1
(x, xn+1) = min

S⊆{1,...,n+1}

[
max
i∈S

{xi , aS}
]

. (19)

Consider any S ⊂ T ⊆ {1, . . . , n + 1}. If aS < aT , then for all (x, xn+1) ∈
An+1, maxi∈T {xi , aT } ≥ maxi∈S{xi , aS}. Reducing the value of aT to aS preserves
this inequality and has no effect on the value of v f n+1

(x, xn+1) in (19). Hence, it can
be assumed that if S ⊂ T ⊆ {1, . . . , n + 1}, then aT ≤ aS .

By Proposition 4, aN∪{n+1} = α and a∅ = β, where αβ is the range of v f n+1
. It

has already been shown that α �= a+ if a+ �∈ A and β �= a− if a− �∈ A. Therefore,
v f n+1

is a min–max voting scheme and f is a min–max social choice function.

9 Note that if either a− and a+ are not in A, then xS is not in An . However, if they are, then αxS and βxS

are the values used in (11) when x = xS .
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(b) Now suppose that f is a min–max social choice function and v f is the cor-
responding min–max voting scheme. Consider any R ∈ Sn and any i ∈ N . Let
x = (π(R1), . . . , π(Rn)).

(i) If v f (x) = xi , then individual i obtains his most-preferred alternative and so
cannot manipulate the outcome.

(ii) If v f (x) < xi , because preferences are single-peaked, a necessary condition for
individual i to be able to manipulate the outcome is that there exists a preference with
peak x ′

i that he could report that would increase what is chosen. By Proposition 5, v f

is uncompromising. Because v f is also nondecreasing in its arguments, individual i
cannot increase what is chosen.

(iii) If v f (x) > xi , then individual i can only manipulate the outcome by reducing
its value, which by the reasoning in (ii) is not possible.

Thus, it has been shown that f is strategy-proof. 
�
Moulin (1980) did not characterize the set of strategy-proof social choice functions

that are also Pareto efficient. By Proposition 1, such functions also satisfy the tops-
only property. Theorem 3 shows that the only restriction on a min–max social choice
function that Pareto efficiency imposes is that the range must be all of A, which is
ensured by setting a∅ = a+ and aN = a−.

Theorem 3 A social choice function f : Sn → A is (a) strategy-proof and Pareto
efficient if and only if (b) it is a min–max social choice function with a∅ = a+ and
aN = a−.

Proof (a) First, suppose that f is strategy-proof and Pareto efficient. By Proposi-
tion 1, f satisfies the tops-only property. Consider any x ∈ A and any R ∈ S for
which π(R) = x . Because f is Pareto efficient, f (R, . . . , R) = x . Hence, A f = A
and the range of f is trivially an interval of A. Theorem 2 then implies that f is a
min–max social choice function. By Proposition 4, A f = aN a∅. Therefore, a∅ = a+
and aN = a−.

(b) Now suppose that f is is a min–max social choice function with a∅ = a+ and
aN = a−. Let v f be the corresponding min–max voting scheme. By Proposition 4,
A f is the interval aN a∅. Hence, by Theorem 2, f is strategy-proof.

Because aN = a−, maxi∈N {xi , aN } = maxi∈N {xi } for all x ∈ An . Hence, by (4),
v f (x) ≤ maxi∈N {xi } for all x ∈ An . Because a∅ = a+, it follows from (4) that for all
x ∈ An there exists an S̄ ⊆ N with S̄ �= ∅ such that v f (x) = maxi∈S̄{xi , aS̄}. Hence,
v f (x) ≥ x j for all j ∈ S̄, which implies that v f (x) ≥ mini∈N {xi }. It has thus been
shown that for all x ∈ An, mini∈N {xi } ≤ v f (x) ≤ maxi∈N {xi }. Because preferences
are single-peaked, these inequalities imply that f is Pareto efficient. 
�

6 Generalized median social choice functions

The objective in this section is to show how Moulin’s min–max theorem can be used to
help establish his two characterization theorems for generalized median social choice
functions. This demonstration makes use of two propositions about the computation
of medians using a combination of minimization and maximization operations.
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In Example 3, the computation of v(x) exploited the fact that the median of three
numbers can be determined by first identifying the maximum on any two-element
subset of these three numbers and then choosing the smallest of these three maxima.
Proposition 6 generalizes this observation. It shows that for any positive integer n and
any collection of 2n + 1 (extended real) numbers, the median can be computing by
first identifying the maximum on any (n + 1)-element subset of these numbers and
then choosing the smallest of these maxima.

Proposition 6 Let n be a positive integer, Y = {a1, . . . , a2n+1} where ai ∈ R
∗ for all

i = 1, . . . , 2n + 1, and Yn+1 = {X ⊆ Y | |X | = n + 1}. Then,

med Y = min
X∈Yn+1

[max{ai | ai ∈ X}]. (20)

Proof Without loss of generality, the alternatives in Y can be relabelled so that a1 ≤
a2 ≤ · · · ≤ a2n+1. Then med Y = max{a1, . . . , an+1} = an+1. For any X ∈ Yn+1

with X �= {a1, . . . , an+1}, max{ai | ai ∈ X} ≥ an+1. 
�
In Proposition 6, no order structure was placed on the elements of Y . Now suppose

that Y = {a1, . . . , an, b0, b1, . . . , bn}, where bi ≥ bi+1 for i = 0, . . . , n − 1. With
this structure on the elements of Y , there is an alternative way of characterizing the
median alternative in Y . Before providing this characterization for an arbitrary n, the
general result is first illustrated for the special cases in which n = 1 and n = 2.

When n = 1, from (20),

med{a1, b0, b1} = min{max{b0, b1}, max{a1, b0}, max{a1, b1}}. (21)

Because b0 ≥ b1, (21) can be simplified by replacing max{b0, b1} with b0 and by
replacing {max{a1, b0}, max{a1, b1}} with the minimum of these two values, which
is max{a1, b1}. Hence,

med{a1, b0, b1} = min{b0, max{a1, b1}}. (22)

When n = 2, from (20),

med{a1, a2, b0, b1, b2} = min{max{b0, b1, b2}, max{a1, b0, b1},
max{a1, b0, b2}, max{a1, b1, b2}, max{a2, b0, b1},
max{a2, b0, b2}, max{a2, b1, b2}, max{a1, a2, b0},
max{a1, a2, b1}, max{a1, a2, b2}}.

(23)

Because b0 ≥ b1 ≥ b2,

(i) max{b0, b1, b2} = b0;
(ii) min{max{ai , b0, b1}, max{ai , b0, b2}, max{ai , b1, b2}} = max{ai , b1},

for i = 1, 2;
(iii) min{max{a1, a2, b0}, max{a1, a2, b1}, max{a1, a2, b2}} = max{a1, a2, b2}.
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Hence, (23) simplifies to

med{a1, a2, b0, b1, b2}
= min{b0, max{a1, b1}, max{a2, b1}, max{a1, a2, b2}}. (24)

When n = 1 and n = 2, as can be seen from (22) and (24), the median is deter-
mined in two steps. First, for each S ⊆ N , maxi∈S{ai , b|S|} is computed. Second, the
minimum of these values is chosen. In order for this procedure to identify the median,
it is essential that bi ≥ bi+1 for i = 0, . . . , n − 1. Proposition 7 shows that this is
a general procedure for identifying the median of Y = {a1, . . . , an, b0, b1, . . . , bn}
when the bi are ordered in this way.

Proposition 7 Let n be a positive integer and Y = {a1, . . . , an, b0, b1, . . . , bn} where
ai ∈ R

∗ for all i = 1, . . . , n, bi ∈ R
∗ for all i = 0, . . . , n, and bi ≥ bi+1 for

i = 0, . . . , n − 1. Then,

med Y = min
S⊆N

[
max
i∈S

{ai , b|S|}
]

. (25)

Proof Define Yn+1 as in Proposition 6. Let Y A = {a1, . . . , an} and Y B = {b0, b1,

. . . , bn}. For j = 1, . . . , n + 1, let Yn+1
j = {X ∈ Yn+1 | |X ∩ Y B | = j}. By

Proposition 6,

med Y = min
j∈{1,...,n+1}

{
min

X∈Yn+1
j

[max X ]
}

. (26)

For each j = 1, . . . , n + 1, because b0 ≥ b1 ≥ · · · ≥ bn ,

min
X∈Yn+1

j

[max X ] = min
S⊆N

|S|=n+1− j

[
max
i∈S

{ai , b|S|}
]

. (27)

Combining (26) and (27) establishes (25). 
�
An (n+1)-parameter generalized median voting scheme v is characterized by n+1

parameters drawn from A∗ with, for all x in the domain of v, the value of v(x) given
by the median of the components of x and these n + 1 parameters.

Definition For A ⊆ A ⊆ R, a voting scheme v : An → A is an (n + 1)-parameter
generalized median voting scheme if there exist bi ∈ A∗ for i = 0, . . . , n with (i) not
all bi = a+ if a+ �∈ A and (ii) not all bi = a− if a− �∈ A such that for all x ∈ An ,

v(x) = med{x1, . . . , xn, b0, . . . , bn}. (28)

For a domain of profiles of single-peaked preferences, the corresponding class of
(n + 1)-parameter generalized median social choice functions is defined as follows.
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Definition A social choice function f : Dn → A for which D ⊆ S is an (n + 1)-
parameter generalized median social choice function if for all R ∈ Dn , (5) holds
for some (n + 1)-parameter generalized median voting scheme v f : An → A, where
A = {x ∈ A | x = τ(R, A) for some R ∈ D}.

Border and Jordan (1983) have interpreted the parameters in a generalized median
social choice function as being the fixed preference peaks of “phantom” voters. Exam-
ples 1, 2, and 3 are examples of such rules. In Example 1, bi = x̄ for all i . In Example 2,
k of the bi are set equal to a+, with the rest of them set equal to a−. In Example 3,
the three parameter values are b, a−, and a+. If n is odd, then by setting half of the
parameters equal to a− and the other half to a+, the median of x is always chosen,
which is Black’s median-voter rule when x is the profile of preference peaks.

Theorem 4 is my version of the characterization theorem for (n+1)-parameter gen-
eralized median social choice functions established by Moulin (1980, Proposition 2).

Theorem 4 Let f : Sn → A be a social choice function whose range A f is an inter-
val of A. Then, (a) f is strategy-proof and anonymous if and only if (b) f is an
(n + 1)-parameter generalized median social choice function.

Proof (a) First, suppose that f is strategy-proof and anonymous. By Theorem 2, f is
a min–max social choice function. Let v f : An → A be the corresponding min–max
voting scheme.

It is first shown that aS = aT for all S, T ⊆ N with |S| = |T |. Note that because
f is anonymous and, by Proposition 1, it satisfies the tops-only property, the value of
v f is invariant to a permutation of its arguments. Consider the case in which neither
a− nor a+ are in A. Because |S| = |T |, for all λ,μ ∈ A, xS(λ, μ) is a permutation of
xT (λ, μ). Hence, by anonymity,

v f (xS(λ, μ)) = v f (xT (λ, μ)) (29)

for all λ,μ ∈ A. By (10), the limit of the left-hand side of (29) as λ goes to a− is
aS and the corresponding limit for the right-hand side of (29) is aT . By (29), these
two limits must be the same and, hence, aS = aT . If either a− or a+ are in A, then
the relevant case in Proposition 2 is used instead to determine the analogue of (29).
If both a− and a+ are in A, the conclusion that aS = aT follows without taking any
limits.

For j = 0, . . . , n, let b j = aS for any S ⊆ N for which |S| = j . By the preceding
argument, b j is well-defined. Substituting b|S| for aS in (4),

v f (x) = min
S⊆N

[
max
i∈S

{xi , b|S|}
]

. (30)

Note that b0 ≥ b1 ≥ · · · ≥ bn because v f is a min–max voting scheme and aS ≥ aT

whenever S ⊆ T . Furthermore, (i) if a+ �∈ A, then bn �= a+ and (ii) if a− �∈ A,
then b0 �= a−. By (30) and Proposition 7, it then follows that v f is an (n + 1)-
parameter generalized median voting scheme and, hence, that f is an (n+1)-parameter
generalized median social choice function.
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(b) Now suppose that f is an (n + 1)-parameter generalized median social choice
function. Without loss of generality, suppose that b0 ≥ b1 ≥ · · · ≥ bn . By letting
aS = b|S| for all S ⊆ N , it then follows from Proposition 7 that f is a min–max social
choice function. Because aS = aT if |S| = |T |, f is anonymous. 
�

Another class of generalized median rules can be obtained by using n − 1 instead
of n + 1 parameters.

Definition For A ⊆ A ⊆ R, a voting scheme v : An → A is an (n − 1)-parameter
generalized median voting scheme if there exist bi ∈ A∗ for i = 1, . . . , n − 1 such
that for all x ∈ An ,

v(x) = med{x1, . . . , xn, b1, . . . , bn−1}. (31)

Definition A social choice function f : Dn → A for which D ⊆ S is an (n − 1)-
parameter generalized median social choice function if for all R ∈ Dn , (5) holds
for some (n − 1)-parameter generalized median voting scheme v f : An → A, where
A = {x ∈ A | x = τ(R, A) for some R ∈ D}.

Because there are fewer parameters than individuals, for any generalized median
voting scheme v with n − 1 parameters, v(x) ∈ A for all x ∈ An even if all bi = a−
or all bi = a+. Thus, there is no need to place any restrictions on the choice of these
parameters other than that they are in A∗. Note that a generalized median voting scheme
(resp. social choice function) with n − 1 parameters can be rewritten as a generalized
median voting scheme (resp. social choice function) with n + 1 parameters by adding
the parameters b0 = a+ and bn = a− (and using (31) instead of (28)).

When A = R, Moulin (1980, Theorem) has shown that the set of all social choice
functions on the domain Sn that are strategy-proof, anonymous, Pareto efficient, and
satisfy the tops-only property is the set of all (n − 1)-parameter generalized median
social choice functions. Because the range of a strategy-proof social choice function
with domain Sn is all of A, by Theorem 1, the tops-only property is redundant in
this characterization. Theorem 5 shows that Moulin’s theorem (without assuming the
tops-only property) is valid for any set A ⊆ R containing at least two alternatives.

Theorem 5 A social choice function f : Sn → A is (a) strategy-proof, anonymous,
and Pareto efficient if and only if (b) it is an (n − 1)-parameter generalized median
social choice function.

Proof (a) First, suppose that f is strategy-proof, anonymous, and Pareto efficient.
By the argument in the proof of Theorem 3, A f = A, which is trivially an inter-
val of A. Hence, by Theorem 4, f is a generalized median social choice func-
tion with n + 1 parameters. In order for A f to be equal to A, at least one of the
parameters bi in (28) must be equal to a− and at least one of them must be equal
to a+. Without loss of generality, let b0 = a− and bn = a+. But then, for all
x ∈ An, med{x1, . . . , xn, b0, . . . , bn} = med{x1, . . . , xn, b1, . . . , bn−1}. Hence, f
is a generalized median social choice function with n − 1 parameters.

(b) Now suppose that f is a generalized median social choice function with n − 1
parameters and let v f be the corresponding voting scheme. By adding the parameters
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b0 = a− and bn = a+ when computing medians, f is a generalized median social
choice function with n + 1 parameters because not all of these n + 1 parameters bi

can be equal to a−, nor can they all be equal to a+. Therefore, by Theorem 4, f is
strategy-proof and anonymous.

Because D = S, f is Pareto efficient if and only if mini∈N {xi } ≤ v f (x) ≤
maxi∈N {xi } for all x ∈ An . Because med{x1, . . . , xn, b1, . . . , bn−1} is the nth smallest
of these values (with ties broken arbitrarily) and because there are fewer parameters
than components of x, it follows that mini∈N {xi } ≤ v f (x) ≤ maxi∈N {xi } for all
x ∈ An . Hence, f is Pareto efficient. 
�

7 Concluding remarks

Moulin (1980) has noted that his characterization theorems are also valid with strategy-
proofness replaced by the stronger requirement of group strategy-proofness.
A social choice function is group strategy-proof if for any profile of preferences
in the domain, there is no subgroup of individuals who could manipulate the outcome
in a way that would make them all better off by jointly reporting different preferences.
Recently, Le Breton and Zaporozhets (2009) and Barberà et al. (2010) have identified
restrictions on the domain of a social choice function for which strategy-proofness is
satisfied if and only group strategy-proofness is satisfied. The domain of single-peaked
preference profiles satisfies their conditions. Hence, all of the theorems in this article
that employ strategy-proofness could instead use group strategy-proofness.

A single-peaked preference is continuous on either side of its peak, but it need
not be continuous on the whole set of alternatives. The arguments used here do not
exploit possible discontinuities in preferences in any way. As a consequence, the char-
acterization theorems also hold for the smaller domain of all profiles of continuous
single-peaked preferences.

For the domain of all profiles of single-peaked preferences on the real line, Barberà
and Jackson (1994) have provided a characterization of the class of all strategy-proof
social choice functions when these functions are not a priori required to satisfy the
tops-only property or, equivalently, for the range to be an interval. This character-
ization employs strategy-proof tie-breaking rules for selecting one of the alternatives
from an individual’s top set on the range when this set contains more than one alterna-
tive (recall that it can contain at most two).10 Their description of these tie-breaking
rules is expressed in terms of a property that they must satisfy, but they do not provide
a procedure for constructing such rules. For the subdomain of all profiles of Euclidean
spatial preferences (i.e., single-peaked preferences that rank alternatives in reverse
order of their distances from the peak), Massó and Moreno de Barreda (2011) have
provided a characterization of the class of all strategy-proof social choice functions
on a closed interval of the real line that explicitly describes how these tie-breaking

10 For the domain of profiles of single-plateaued preferences on A = [0, 1], Berga (1998, Theorem 2) has
shown that a social choice function f is strategy-proof and satisfies the tops-only property if and only if f
is a min–max rule in which the peaks the rule is applied to are selected from the preference plateaus in a
strategy-proof way. Thus, with this larger domain, the need for tie-breaking rules arises even if the tops-only
property is satisfied.
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rules are constructed. This class consists of Moulin’s min–max social choice functions
augmented by additional social choice functions that are obtained by perturbing the
min–max social choice functions so as to allow for specific kinds of discontinuities.
The results presented here help explain why when Massó and Moreno de Barreda
require anonymity in addition to strategy-proofness, the resulting class of rules are
based on generalized median social choice functions with n + 1 parameters.
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