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Abstract
Since coronavirus disease 2019 (COVID-19) pandemic rapidly spread worldwide, there is an urgent demand for accurate 
and suitable nucleic acid detection technology. Although the conventional threshold-based algorithms have been used for 
processing images of droplet digital polymerase chain reaction (ddPCR), there are still challenges from noise and irregular 
size of droplets. Here, we present a combined method of the mask region convolutional neural network (Mask R-CNN)-
based image detection algorithm and Gaussian mixture model (GMM)-based thresholding algorithm. This novel approach 
significantly reduces false detection rate and achieves highly accurate prediction model in a ddPCR image processing. We 
demonstrated that how deep learning improved the overall performance in a ddPCR image processing. Therefore, our study 
could be a promising method in nucleic acid detection technology.
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1 Introduction

Infectious diseases, such as middle east respiratory syn-
drome coronavirus (MERS), Zika virus (ZIKV), and coro-
navirus diseases 2019 (COVID-19), have spread worldwide, 
causing a number of casualties [1, 2]. To prevent the rapid 
spread of the pandemic diseases, the early detection is of 
great significance and various diagnosis technologies includ-
ing immunoassay, enzyme-linked immunosorbent assay 
(ELISA), lateral flow assay (LFA) have previously been 
reported [3–6]. Among these methods, a polymerase chain 
reaction (PCR) has aroused a great deal of attention due to 
its high precision and superior specificity as compared to 
other detection techniques. For these reasons, a quantitative 
real-time PCR (qPCR) is currently used as a gold stand-
ard for COVID-19 diagnosis [7, 8]. Although a number of 
advances have previously been made in a qPCR, the difficult 

quantification and non-specific amplification are still limita-
tions [9].

A digital PCR (dPCR) has been demonstrated as a solu-
tion to resolve the abovementioned limitations [10]. Unlike 
the qPCR, dPCR fractionates the reaction mixture into tens 
of thousands of compartments, such as microwells or drop-
lets [11–13]. Since the PCR reaction is massively conducted 
in a small volume (pL-nL), dPCR offers better inhibitor tol-
erance than qPCR. The compartments are classified into a 
positive and negative according to the presence of target 
nucleic acids (NAs). After DNA amplification is conducted 
on each compartment, the positive one exhibits distinct fluo-
rescence signals [14]. The ratio of positive compartments is 
analyzed by end-point fluorescence detection and the initial 
concentration of the NAs is calculated by Poisson’s distribu-
tions. Due to the unique properties, dPCR enables absolute 
quantification without any calibration or reference. In this 
process, a dPCR essentially entails thresholding process, 
which detect the positive compartments based on fluores-
cence intensity. For precise quantification of target NAs, the 
accurate determination of the threshold is of critical impor-
tance [15]. In general, the threshold segmentation method 
is widely used to set the threshold value [16]. By applying a 
single threshold value to all dPCR images, the ratio of posi-
tive compartments can be simply estimated. However, this 
method involves parameter modification for each analysis, 
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which is labor-intensive and time-consuming [17, 18]. More 
importantly, these manual thresholding methods can cause 
significant errors at low concentrations, where the positive 
signals are rarely observed [19].

One way to overcome these limitations is to automatically 
distinguish the positive compartments without any manual 
intervention [20]. For this, various methods, such as seg-
mentation algorithms [21], clustering [22], and automatic 
thresholding [23], have previously been applied to the dPCR 
analysis. These methods allow fully automated analysis of 
the dPCR images and enable high-throughput, accurate, and 
rapid detection. With the recent advances of deep learning 
technology, the image processing methods have further been 
improved [24]. After training dataset of the images, the loca-
tion of the compartments is predicted by a convolutional 
neural network (CNN) and segmentation is conducted with 
remarkable accuracy. In particular, a mask region CNN 
(Mask R-CNN) method exhibits outstanding performance 
as compared to other image analysis algorithms [25]. How-
ever, most of the Mask R-CNN method only detect positive 
compartments and the capability of an absolute quantifica-
tion remains relatively unexplored.

In this paper, we present deep learning-assisted droplet 
dPCR (ddPCR) analysis combining Mask R-CNN-based 
image processing and Gaussian mixture model (GMM) 
clustering. The structure of the Mask R-CNN is designed 
with open source libraries and augmentation process is con-
ducted to improve the accuracy. Next, the image processing 
is characterized and the parameters for training and valida-
tion are optimized. The Mask R-CNN algorithm is compared 
with the conventional methods and detection performance is 
validated using homogeneous and non-homogeneous droplet 
images. Furthermore, the absolute quantification of the tar-
get is successfully demonstrated with various concentrations 
of human coronavirus DNA. Therefore, our ddPCR analysis 
method could be a powerful tool in the field of the molecular 
diagnosis and digital healthcare.

2  Materials and Methods

2.1  ddPCR Experiment

For ddPCR experiment, the sample mixtures were prepared 
in a 50 µL of master mix (one-step RocketScript™ Reverse 
Transcriptase, Bioneer, Korea) containing 1 µL of the tem-
plate RNA, 1 µL of primers (10 µM each) and 1 µL of probes 
(10 µM) following the manufacturer’s protocol. Highly 
concentrated samples were diluted in nuclease-free water 
(Sigma-Aldrich, USA). The initial concentration was quanti-
fied by Nanodrop UV spectrophotometry (NanoDrop 2,000, 
Thermo Scientific, USA). The samples were partitioned by a 
droplet-based microfluidic chip as previously reported in our 

research group [26]. The droplets were collected in a tube 
and isothermal ddPCR was conducted at 39 °C for 20 min. 
The resulting droplets were pipetted onto slide glass and the 
fluorescence images were taken by a fluorescence micros-
copy (IX73, Olympus, Japan).

2.2  Computation Platform and Structure

The software environment for the experiment platform was 
based on Google Colab Pro and all steps were performed 
in Python 3.7.12 software (Python Software Foundation, 
Wilmington, NC, USA). The frameworks used in image 
analysis were tensorflow 1.15.0 and keras 2.2.5 for train-
ing Mask Region Convolutional Neural Network (Mask 
R-CNN).

2.3  Data Preparation

The image dataset consisted of fluorescence images taken 
through ddPCR experiments and 20 images were finally 
selected for training and validation process. The initial 
resolution of images was 1920 × 1200 pixels and modified 
to 1200 × 1200 pixels. Training dataset was preprocessed 
by VGG image annotation tool for masking and labeling. 
After annotation process, the training set was symmetri-
cally augmented in the horizontal and vertical symmetry to 
quadruple the dataset. Through augmentation process, 64 
training images and 16 validation images of ddPCR were 
finally selected.

2.4  Comparative Methods and Training

The simple detection and comprehensive detection algorithm 
were selected as the comparative methods for droplet detec-
tion. For the simple detection algorithm, the images were 
converted to 8-bit images, and Gaussian blur was applied. 
The preprocessed images were analyzed by watershed bina-
rization and particle analysis tool in Image J software, which 
could quantify the number of droplets by their size and cir-
cularity. For the comprehensive detection algorithm, the 
HoughCircles function in OpenCV library was utilized to 
obtain coordinates and radius of targets.

2.5  Evaluation of Detection Performance

To compare detection performance of algorithms, the accu-
racy (ACC) and false positive rate (FPR) of detection algo-
rithms were calculated by following equations:

ACC =
TP

TP + FP + TN
, FPR =

FP

TP + FP + TN
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where true positive (TP) is positive targets with accurate 
detection, true negative (TN) is negative targets with accu-
rate detection, and false positive (FP) is negative targets with 
inaccurate detection.

2.6  Absolute Quantification

After the detection process, the dataset of the augmented 
images was processed through the absolute quantification 
algorithm. GMM clustering algorithm was adopted for 
bisection process. Through GMM clustering, a fluores-
cence intensity distribution of droplets was classified into 
positive and negative. The mean radius of the droplets was 
obtained from the image and was used to calculate the 
mean volume of droplets. The initial concentration of the 
samples was calculated by Poisson distribution formula 
[14]:

where � is the average number of target NAs per droplet, k 
is the number of target NAs per droplet, c is the initial con-
centration of the target NAs, and V  is the average volume 
of the droplet.

P(k, �) =
e
−�

⋅ �
k

k!

P(k ≥ 1) = 1 − P(k = 0) = 1 − e
−�

c =
�

V

=
−ln(1 − P(k ≥ 1))

V

3  Results and Discussion

3.1  Workflow of the ddPCR Analysis Method

We developed a ddPCR analysis method combining detec-
tion algorithm and quantification algorithm. The workflow 
of the method is shown in Fig. 1. The ddPCR images were 
used for training 3 modules of Mask R-CNN: box regres-
sion, classification, and binary masking. The images were 
validated by the trained Mask R-CNN and detection per-
formance was evaluated. During detection process, the 
information of the droplets containing location, radius, and 
fluorescence intensity was extracted and transferred to quan-
tification algorithm. The intensity was plotted on the histo-
gram and the signals were segmented by GMM clustering. 
Finally, the concentration of target NAs was calculated by 
Poisson distribution using the fraction of positive compart-
ments and volume of the droplets.

3.2  Design and Optimization of the Mask R‑CNN 
Method

For detection process, we adopted the Mask R-CNN method 
due to its unique properties. The Mask R-CNN method, one 
of the effective object detection algorithms, can achieve 
sufficient accuracy even with a small amount of dataset 
[27]. Before training the Mask R-CNN, the architecture 
was implemented and the training dataset was augmented 
with the Python language and open source of Tensorflow 
and Keras libraries (Fig. 2). The overall architecture of the 
Mask R-CNN is shown in Fig. 2a. Classification branch was 

Fig. 1  Workflow of deep learning-assisted quantitative analysis of 
ddPCR images. The method consisted of a combination of two algo-
rithms: (1) In the detection algorithm, three models of Mask R-CNN 
are trained using training dataset. Based on the trained weights, the 
droplets were detected from ddPCR images and extracted data were 

transferred to the quantification process. (2) In the quantification 
algorithm, a histogram plotting was performed with the extracted 
data and absolute quantification was performed with the parameters 
obtained through GMM clustering
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added to predict object class with respect to region of inter-
est (RoI) as previously reported [28]. The RoI was obtained 
from region proposal network (RPN) and a mask branch that 
could predict the segmentation mask in parallel with bound-
ing box regression branch. The Mask R-CNN consisted of 
4 parts: the backbone, RPN, fully connected (FC) layers, 
and fully convolutional network (FCN). The backbone was 
designed with Resnet 101 + feature pyramid networks (FPN) 
to extract feature maps of various sizes from each specified 
layer. The process of constructing a pyramid by extracting 
the feature map was proceeded according to a bottom-up 
path, a top-down path, and a side connection. The RPN, a 
light neural network, received the feature map generated by 
the backbone and found the RoI containing the object with a 
high probability. The resulting RoI was sent to FC layer and 
FCN to generate 3 outputs: the bounding box, the classifica-
tion of RoI, and the masked output. To effectively perform 
the segmentation task, the RoI align layer was added to FC 
layer and FCN for preserving the spatial location of objects. 
In general, the deep neural network requires a large number 
of training dataset to achieve accurate models. However, the 
preparation of a large number of ddPCR dataset is difficult 
and time-consuming. To achieve higher performance with 
the small amount of the dataset, the data augmentation pro-
cess was conducted [29]. Instead of traditional augmentation 
methods including adjustment in fluorescence, saturation, 
and RGB channel, we performed the data augmentation 
through spatial transformation, such as flipping the train-
ing image data horizontally or vertically (Fig. 2b). Through 
the augmentation process, we obtained a sufficient training 
dataset for neural network training by increasing the number 

of droplets by 4 times. The detection accuracy has reached 
an adequate value after the augmentation which was not suf-
ficient before the process.

3.3  Characterization of the Mask R‑CNN

To achieve the best performance, a Mask R-CNN was 
trained with the augmented image dataset and the optimum 
weight was characterized. Before training process, the 
ddPCR images were divided into training and validation 
sets in a ratio of 8:2. Mask R-CNN training was performed 
up to 2,000 iterations using the prepared dataset and the 
loss value was recorded every 100 iterations (Fig. 3). Dur-
ing the training procedure, the models of the box regres-
sion, classification, and binary mask in the Mask R-CNN 
algorithm were simultaneously trained. As shown in the 
Fig. 3a, the detection performance increased as the itera-
tion number increased. In the image of the 10 iterations, 
the performance of the box regression model was poor. 
However, we observed improved results from the 100 itera-
tions. After 1,000 iterations, the masking model showed 
excellent regression performance and most of the droplets 
were detected. These results indicated that the training 
process was successfully conducted to predict the location 
of the droplets. We further evaluated the accuracy of the 
algorithm based on the loss values. The measured loss val-
ues of the training and validation datasets were plotted in 
Fig. 3b. Train box loss decreased as the iteration increased 
and validation loss converged to 0.1 from 1,000 iterations. 
In general, the excessive repetition of the training results in 
overfitting, which decreases the detection performance [30]. 

Fig. 2  Design of the Mask 
R-CNN-based detection 
algorithm. a The architecture 
of Mask R-CNN, b Annotated 
image and augmented results. 
The scale bars are 100 μm
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The overfitting can be confirmed by the difference in loss 
values between the training and validation. As shown in the 
results, the tendency of the loss value was consistent in both 
cases, indicating that the augmentation process successfully 
prevented the overfitting. We further validated the segmenta-
tion performance using the prepared validation dataset and 
measured the accuracy every 500 iterations (Fig. 3c). The 
accuracy was proportional to the iteration number up to a 
certain limit. After 1000 iterations, the accuracy increased 
to more than 90% and eventually converged to 93.56% at 
2,000 iterations. Based on those results, we selected 2,000 
iterations as an optimum weight and trained parameters were 
implemented to the subsequent detection process.

3.4  Validation of Mask R‑CNN with Comparative 
Methods

Since the detection performance was generally dependent 
on the size distribution of droplets, we classified the image 
dataset based on the size distribution of droplets (Fig. 4) 
[31]. The size of the droplet is one of the main parameters 
in ddPCR assay as the concentration of target DNA is cal-
culated as based on the volume of the fractions. In general, 
the detection performance decreased as the variance of 
droplet size increased. For comparative analysis, we pre-
pared the droplet images with various size distribution, and 
the images were categorized into homogeneous and non-
homogeneous groups based on the CV of 10%. The CV in 
the non-homogeneous group varied from 10 to 30%, whereas 
the CV in the homogeneous group was less than 10%. In 
both groups, 1200 droplets obtained from 8 images were 
used for evaluation, and the total area of the droplets was 
slightly higher in a non-homogeneous group. We compared 
the Mask R-CNN method with the conventional detection 

algorithms (Fig. 4a). In a homogeneous group, the positive 
droplets were successfully detected by three methods. How-
ever, the simple method failed to detect negative droplets, 
because this method segmented the droplets based on the 
single threshold. As the negative droplets generally exhibit 
negligible fluorescence similar to the background, the simple 
method is not suitable for ddPCR applications. In contrast, 
the comprehensive method showed good performance as it 
detected droplets using the various parameters, such as size, 
distance, and sensitivity. However, the accuracy decreased 
in the non-homogeneous groups due to the wide size distri-
bution (Fig. 4b). In the ddPCR assay, droplet merging fre-
quently occurs during the amplification process [32].

For universal application of ddPCR, it needs to cope with 
the irregular size of droplets. The Mask R-CNN showed 
higher accuracy than other methods in both homogenous 
and non-homogenous groups as it detected in the feature 
maps of various sizes through FPN. The detection accuracy 
of Mask R-CNN was 94.42% for homogenous, 93.12% for 
non-homogenous, and standard deviation was less than 2%. 
The difference of the accuracy between two groups was 
1.38%, indicating the durability of Mask R-CNN method. 
The FPR is another key parameter for ddPCR as it can cause 
fatal errors in quantitative analysis [33]. As shown in the 
Fig. 4c, a Mask R-CNN showed lower FPR (< 4%) and 
higher reproducibility (CV < 2%) in both cases as compared 
to the other methods. The differences in false positive rate 
(FPR) between groups in the simple, comprehensive, and 
Mask R-CNN methods were 13.5, 6.7, and 1.15%, respec-
tively. Compared with the Mask R-CNN method, the simple 
method showed a 11.7 times, the complex method showed 
a 5.8 times higher increment in FPR. Unlike the traditional 
detection methods, the Mask R-CNN exhibited excellent 
detection performance regardless of the size variance. These 

Fig. 3  Mask R-CNN train-
ing and performance. a 
Original image and processed 
image after 10 iterations, 100 
iterations, and 1000 iterations, b 
Loss curves of training and vali-
dation dataset by iteration (red: 
accuracy on the training; black: 
accuracy on the validation), c 
Accuracy curve of validation 
dataset by iteration. The scale 
bars are 100 μm
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results show the robustness of the Mask R-CNN-based 
detection algorithm. The results of the detection analysis 
using the Mask R-CNN method were displayed in a confu-
sion matrix (Fig. 4d). The confusion matrix consisted of 
93.84% of true positive values, 2.94% of true negative val-
ues, and 3.22% of false positives. These results indicate the 
high precision and robustness of Mask R-CNN method. In 
addition, it is worth mentioning that the Mask R-CNN does 
not require any manual intervention in the detection process.

3.5  Absolute Quantification of Human Coronavirus

The ddPCR enables an absolute quantification of target 
NAs based on the fraction of positive droplets. To evalu-
ate the performance of quantitative analysis, three meth-
ods were compared using human coronavirus DNA with 
a concentration of 100 copies/µL (Fig. 5a/c). The simple 
method showed a 75.6% higher value as compared to the 
expected concentration, because the negative droplets 
were not effectively detected in the detection process. The 
comprehensive method relatively showed higher preci-
sion, however, the errors were still significant as com-
pared to the expected concentration (26.9%). It seems to 
be caused by high FDR and errors in the measurement of 
the droplet size. In contrast, the Mask R-CNN predicted 
the concentration with the high accuracy and low standard 
deviation due to the high detection performance and low 
FDR. To further demonstrate the quantitative analysis of 

the Mask R-CNN, a ddPCR assay was conducted using 
various concentrations of human coronavirus DNA. For 
precise quantitative analysis, it is necessary to perform 
accurate thresholding process, which can distinguish the 
positive droplets from negative ones. Here, we adopted 
the GMM clustering method for classification of the 
fluorescence intensities [34]. The intensity data were 
assumed to be a hypothetical function consisting of the 
sum of two Gaussian functions, representing positive and 
negative partitions. The parameters for the Gaussian func-
tions were predicted by maximum likelihood estimation 
and optimized by the expectation–maximization algo-
rithm. Through this process, the fractions of the positive 
and negative partitions were calculated, and the absolute 
quantification was performed by Poisson distribution. The 
images of the droplet segmentation are shown in Fig. 5b. 
To visually confirm the performance, the droplets were 
captioned as positive and negative. As expected, the frac-
tion of the positive droplets increased as the concentra-
tion of the target DNA increased. The fluorescence data of 
each concentration was plotted on histograms and the posi-
tive partitions were segmented through GMM clustering 
(Fig. 5d). After thresholding process, the measured con-
centrations were compared with the initial concentrations 
(Fig. 5e). The results showed the high linearity over the all 
concentrations (R2 = 0.9973), demonstrating the excellent 
performance of the combination of Mask R-CNN-based 
detection and GMM clustering algorithm. Therefore, our 

Fig. 4  Comparative analysis of the detection performance with three 
detection methods: Simple, Comprehensive, and Mask R-CNN. a 
Processed image of homogenous droplet size (CV < 10%) and non-
homogeneous (CV > 10%) dataset, b Bar graph of detection accu-

racy evaluated from detection process, c Bar graph of detection FPR 
evaluated from detection process, d Confusion matrix of the Mask 
R-CNN detection results. The scale bars are 100 μm



118 BioChip Journal (2023) 17:112–119

1 3

analysis method with robustness, high accuracy, and low 
FPR can enhance the precision of the ddPCR assay.

4  Conclusions

In this paper, we developed a deep learning-assisted ddPCR 
analysis for absolute quantification of target DNA. The 
analysis combined image processing for droplet detection 
and clustering algorithm for distinguishing positive drop-
lets. The training iteration was optimized to improve the 
Mask R-CNN model. Over 2,000 iterations, the loss value 
decreased to less than 0.1 and the accuracy increased to 
more than 90%. We further compared the Mask R-CNN 
with the conventional methods using homogeneous and non-
homogeneous droplets. The Mask R-CNN exhibited higher 
accuracy (> 93%) and lower FPR (< 4%) than other meth-
ods in both cases. Additionally, the capability of the abso-
lute quantification was validated using human coronavirus 
DNA. The positive and negative droplets were segmented 
using GMM clustering algorithm and the results were in 
good accordance with the fluorescence images. Furthermore, 
the estimated concentration of target DNA agreed well with 
the actual concentration ranging from 10 to 1,000 copies/µL 
(R2 = 0.9973). To further improve the accuracy of the analy-
sis, the number of droplets can be increased. Therefore, our 
machine learning algorithm could be considered as an effec-
tive tool for digital analysis of various infectious diseases.
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