Skip to main content
Log in

Real-time Monitoring of Biomarkers in Serum for Early Diagnosis of Target Disease

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Real-time monitoring of biomarkers has important applications in immediately determining, for example, disease progress or therapeutic effects to clinical decisions in the fields of diagnosis, prognosis and therapy. However, technologies developed in this area require frequent sample drawings, unattended analysis in situ, secure online monitoring, and, above all, patient’s safety, so from this point of view are still in their infancy. Current research activity in the area has been restricted to the extent of monitoring physical signals while glucose is the only biomarker generally monitored in real-time. To realize the future of unattended analysis, our research group has investigated various immuno-analytical concepts that enable, in particular, repetitive measurements of target biomarkers in a continuous or semi-continuous manner. The key actors in these achievements were monoclonal antibodies with unique characteristics, raised in our group, that potentially allow for real-time monitoring of target disease markers from tiny ionic molecules to complex proteins. Furthermore, we have investigated surrogate elements (e.g. receptors and cytokines) that translate cellular response to measurable signals, enabling us to determine the functional properties of analytes. In this review, continuous and semi-continuous monitoring techniques of different markers for acute myocardial infarction are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Liu, C., Lei, T., Ino, K., Matsue, T., Tao, N. & Li, C.Z. Real-time monitoring biomarker expression of carcinoma cells by surface plasmon resonance biosensors. Chem. Commun.48, 10389–10391 (2012).

    CAS  Google Scholar 

  2. Shao, H., Chung, J., Balaj, L., Charest, A., Bigner, D.D., Carter, B.S., Hochberg, F.H. Breakefield, X.O., Weissleder, R. & Lee, H. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med.18, 1835–1841 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Arroyo-Currás, N., Somerson, J., Vieira, P.A., Ploense, K.L., Kippin, T.E. & Plaxco, K.W. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl. Acad. Sci. U. S. A.114, 645–650 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Patel, S., Park, H., Bonato, P., Chan, L. & Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil.9, 21 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. Girardin, C.M., Huot, C., Gonthier M. & Delvin, E. Continuous glucose monitoring: A review of biochemical perspectives and clinical use in type 1 diabetes. Clin. Biochem.42, 136–142 (2009).

    CAS  PubMed  Google Scholar 

  6. Renard, E. Implantable closed-loop glucose-sensing and insulin delivery: the future for insulin pump therapy. Curr. Opin. Pharmacol.2, 708–716 (2002).

    CAS  PubMed  Google Scholar 

  7. Tucholski, K., Sokolowska, M., Tucholska, D., Kaminska, H. & Jarosz-Chobot, P. Assessment of optimal insulin administration timing for standard carbohydrates-rich meals using continuous glucose monitoring in children with type 1 diabetes: A cross-over randomized study. J. Diabetes Invest.10, 1237–1245 (2019).

    CAS  Google Scholar 

  8. Vashist, S.K. & Luong, J.H.T. Handbook of immunoassay technologies. 1st Edition, pp.1–18 (2018).

  9. Puiu, M. & Bala, C. SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors16, 870 (2016).

    Google Scholar 

  10. Concepcion, J., Witte, K., Wartchow, C., Choo, S., Yao, D., Persson, H., Wei, J., Li, P., Heidecker, B., Ma, W., Varma, R., Zhao, L.-S., Perillat, D., Carricato, G., Recknor, M., Du, K., Ho, H., Ellis, T., Gamez, J., Howes, M., Phi-Wilson, J., Lockard, S., Zuk, R. & Tan H. Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization. Comb. Chem. High Throughput Screening12, 791–800 (2009).

    CAS  Google Scholar 

  11. Wegner, K.D., Lindén, S., Jin, Z., Jennings, T.L., el Khoulati, R., van Bergen en Henegouwen, P.M.P. & Hildebrandt, N. Nanobodies and nanocrystals: Highly sensitive quantum dot-based homogeneous FRET immunoassay for serum-based EGFR detection. Small10, 734–740 (2014).

    CAS  PubMed  Google Scholar 

  12. Ngoc Le, H.T., Kim, J., Park, J. & Cho, S. A review of electrical impedance characterization of cells for label-free and real-time assays. Biochip J.13, 295–305 (2019).

    Google Scholar 

  13. Karachaliou, N., Mayo-de-las-Casas, C., Molina-Vila, M.A. & Rosell, R. Real-time liquid biopsies become a reality in cancer treatment. Ann. Transl. Med.3, 36 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Kim, D.H., Seo, S.M., Paek, S.H., Lim, G.S. & Paek, S.H. Premature antibodies with rapid reaction kinetics and their characterization for diagnostic applications. Anal. Biochem.420, 54–60 (2012).

    CAS  PubMed  Google Scholar 

  15. Kim, D.H., Cho, I.H., Park, J.N., Paek, S.H., Cho, H.M. & Paek, S.H. Semi-continuous, real-time monitoring of protein biomarker using a recyclable surface plasmon resonance sensor. Biosens. Bioelectron.88, 232–239 (2017).

    CAS  PubMed  Google Scholar 

  16. Paek, S.H., Park, J.N., Kim, D.H., Kim, H.S., Ha, U.H., Seo, S.K. & Paek, S.H. Semi-continuous, label-free immunosensing approach for Ca2+-based conformation change of a calcium-binding protein. Analyst139, 3781–3789 (2014).

    CAS  PubMed  Google Scholar 

  17. Paek, S.H., Cho, I.H., Seo, S.M., Kim, D.H. & Paek, S.H. Production of rapidly reversible antibody and its performance characterization as binder for continuous glucose monitoring. Analyst136, 4268–4276 (2011).

    CAS  PubMed  Google Scholar 

  18. Paek, S.H., Cho, I.H., Kim, D.H. Jeon, J.W., Lim, G.S. & Paek, S.H. Label-free, needle-type biosensor for continuous glucose monitoring based on competitive binding. Biosens. Bioelectron.40, 38–44 (2013).

    CAS  PubMed  Google Scholar 

  19. Seo, D., Paek, S.H., Oh, S., Seo, S. & Paek, S.H. A human serum-based enzyme-free continuous glucose monitoring technique using a needle-type bio-layer interference sensor. Sensors16, 1581 (2016).

    Google Scholar 

  20. Cho, H.K., Seo, S.M., Cho, I.H., Paek, S.H., Kim, D.H. & Paek, S.H. Minimum-step immuno-analysis based on continuous recycling of the capture antibody. Analyst136, 1374–1379 (2011).

    CAS  PubMed  Google Scholar 

  21. Kim, D.H., Paek, S.H., Lim, G.S., Jeon, J.W. & Paek, S.H. Performance characteristics of monoclonal antibodies as recyclable binders to cardiac troponin I. Anal. Biochem.431, 11–18 (2012).

    CAS  PubMed  Google Scholar 

  22. Kim, D.H., Seo, S.M., Cho, H.M., Hong, S.J., Lim, D.S. & Paek, S.H. Continuous immunosensing of myoglobin in human serum as potential companion diagnostics technique. Biosens. Bioelectron.62, 234–241 (2014).

    CAS  PubMed  Google Scholar 

  23. Wang, J. Electrochemical glucose biosensors. Chem. Rev.108, 814–825 (2008).

    CAS  PubMed  Google Scholar 

  24. Cho, I.H., Jeon, J.W., Paek, S.H., Kim, D.H., Shin, H.S., Ha, U.H., Seo, S.K. & Paek, S.H. Toll-like receptor-based immuno-analysis of pathogenic micro-organisms. Anal. Chem.84, 9713–9720 (2012).

    CAS  PubMed  Google Scholar 

  25. Jeon, J.W., Cho, I.H., Ha, U.H., Seo, S.K. & Paek, S.H. Chemiluminometric immuno-analysis of innate immune response against repetitive bacterial stimulations for the same mammalian cells. Sci. Rep.4, 6011 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeon, J.W., Ha, U.H. & Paek, S.H. In vitro inflammation inhibition model based on semi-continuous toll-like receptor biosensing. PLoS One9, e105212 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Seo, S.M., Jeon, J.W., Kim, T.Y. & Paek, S.H. An innate immune system-mimicking, real-time biosensing of infectious bacteria. Analyst140, 6061–6070 (2015).

    CAS  PubMed  Google Scholar 

  28. Neumann, J.T., Sörensen, N.A., Ojeda, F., Renné, T., Schnabel, R.B., Zeller, T., Karakas, M., Blankenberg, S. & Westermann, D. Early diagnosis of acute myocardial infarction using high-sensitivity troponin I. PloS One12, e0174288 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Lindahl, B., Venge, P. & Wallentin, L. Early diagnosis and exclusion of acute myocardial infarction using biochemical monitoring. The BIOMACS study group. Biochemicals markers of acute coronary syndromes. Coron. Artery Dis.6, 321–328 (1995).

    CAS  PubMed  Google Scholar 

  30. Kontos, M.C., Anderson, F.P., Hanbury, C.M., Roberts, C.S., Miller, W.G. & Jesse, R.L. Use of the combination of myoglobin and CK-MB mass for the rapid diagnosis of acute myocardial infarction. Am. J. Emerg. Med.15, 14–19 (1997).

    CAS  PubMed  Google Scholar 

  31. Capes, S.E., Hunt, D., Malmberg, K. & Gerstein, H.C. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet355, 773–778 (2000).

    CAS  PubMed  Google Scholar 

  32. Ishihara, M. Acute hyperglycemia in patients with acute myocardial infarction. Circ. J.76, 563–571 (2012).

    CAS  PubMed  Google Scholar 

  33. O’Regan, T.M., O’Riordan, L.J., Pravda, M., O’Sullivan, C.K. & Guilbault, G.G. Direct detection of myoglobin in whole blood using a disposable amperometric immunosensor. Anal. Chim. Acta460, 141–150 (2002).

    Google Scholar 

  34. Cox, M. An overview of continuous glucose monitoring systems. J. Pediatr. Health Care23, 344–347 (2009).

    PubMed  Google Scholar 

  35. Green, S.F. in Cardiac Markers. edited by Wu, A.H.B. (Humana Press, Totowa, NJ) pp.143–157 (1998)

  36. Gibler, W.B., Runyon, J.P., Levy, R.C., Sayre, M.R., Kacich, R., Hattemer, C.R., Hamilton, C., Gerlach, J.W. & Walsh, R.A. A rapid diagnostic and treatment center for patients with chest pain in the emergency department. Ann. Emerg. Med.25, 1–8 (1995).

    CAS  PubMed  Google Scholar 

  37. Yoo, E.H. & Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors10, 4558–4576 (2010).

    PubMed  Google Scholar 

  38. Bright, F.V., Betts, T.A. & Litwiler, K.S. Regenerable fiber-optic-based immunosensor, Anal. Chem.62, 1065–1069 (1990).

    CAS  PubMed  Google Scholar 

  39. Chiu, A.Y., Matthew, W.D. & Patterson, P.H. A monoclonal antibody that blocks the activity of a neurite regeneration-promoting factor: studies on the binding site and its localization in vivo. J. Cell Biol.103, 1383–1398 (1986).

    CAS  PubMed  Google Scholar 

  40. Nguyen, H.H., Park, J., Kang, S. & Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors15, 10481–10510 (2015).

    CAS  PubMed  Google Scholar 

  41. Kelly, K.L., Coronado, E., Zhao, L.L. & Schatz, G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B107, 668–677 (2003).

    CAS  Google Scholar 

  42. Lee, S. & Choi, I. Fabrication strategies of 3D plasmonic structures for SERS. Biochip J.13, 30–42 (2019).

    CAS  Google Scholar 

  43. Rycenga, M., Cobley, C.M., Zeng, J., Li, W., Moran, C.H., Zhang, Q., Qin, D. & Xia, Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev.111, 3669–3712 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lim, J., Cho, E., Lee, K., Choi, Y., Seo, Y., Jeon, H. & Choi, J. Current immunotherapy approaches for malignant melanoma. Biochip J.13, 105–114 (2019).

    CAS  Google Scholar 

  45. Lee, J.C., Kim, S.J., Hong, S. & Kim, Y.S. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp. Mol. Med.51, 53 (2019).

    PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, Korea (Project number NRF-2019R1H1A2079962) and the Technology Innovation Program (Grant number 10064060) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Hwan Paek.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Paek, SH., Choi, DY. et al. Real-time Monitoring of Biomarkers in Serum for Early Diagnosis of Target Disease. BioChip J 14, 2–17 (2020). https://doi.org/10.1007/s13206-020-4102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4102-x

Keywords

Navigation