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Abstract
This study aimed to analyze the effect of nutritional supplements on improving conidia production of Metarhizium rileyi 
Nm017 at laboratory scale (yields of conidia/substrate and biomass/substrate, and substrate consumption). Also, the influ-
ence on quality parameters were evaluated (germination at 36 and 48 h, enzymatic activity, and insecticidal activity on Heli-
coverpa zea). Six treatments (T1–T6) were assessed and all of them reached maximum conidia concentration after 7 days 
fermentation, a feasible production timetable. Yields from treatment T6 (yeast extract + V8 juice) were 1.5–threefold higher 
than the other treatments. Conidia from T6 reached germinations of 56% and 12% at 36 and 48 h, respectively, higher than 
T1 (without supplements), which had the lowest values found. M. rileyi conidia obtained from treatment T6 had the highest 
enzymatic activity (0.45 U chitinase g−1, 0.28 U lipase g−1, and 1.29 U protease g−1). However, treatments with the high-
est conidia yields and enzymatic activity were not positively correlated to the efficacy against H. zea. When M. rileyi was 
produced on T5 (yeast hydrolysate + V8 juice), conidia were 35% more virulent than treatment T6. The findings evidenced 
the noticeable impact of nutritional substrate amended for conidia production and quality. This work showed the relevance 
of insecticidal activity assessment as a selection criterion in the mass production development of a biocontrol agent.
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Introduction

Metarhizium rileyi Farlow (previously known as Nomuraea 
rileyi) is a widespread dimorphic entomopathogenic fun-
gus, used to control lepidopterans pests including more than 
60 species such as Anticarsia gemmatalis, Spodoptera fru-
giperda, Heliothis virescens, and Helicoverpa zea (Boucias 
et al. 2016; Fronza et al. 2017; Liu et al. 2019). Its virulence 
is due in part to its high genetic variability, enzyme produc-
tion, and stress tolerance that drive epizootics (Bertholdo 
et al. 2003; Boucias et al. 2016; Butt et al. 2016; Edelstein 
et al. 2005). M. rileyi is a very desirable microorganism as 

a biocontrol agent due to its narrow host specificity (Sinha 
et al. 2016).

The adoption of a microorganism as a biological control 
agent as part of integrated pest management will require 
more predictable performance and higher efficiency in 
propagule production (Lacey et al. 2001). Mass production 
of entomopathogenic fungi should show high versatility, 
require relatively low nutritional requirements for growth, 
and can be carried out using two main techniques: sub-
merged fermentation and solid-state fermentation (Hölker 
and Lenz 2005; Mascarin et al. 2019). Submerged fermen-
tation is preferred because of its high profitability, shorter 
production time, and easy control of process parameters. 
Nevertheless, propagules have a short life span and poor 
tolerance to adverse environmental conditions (Muñoz et al. 
1995; Zaki et al. 2020; Jaronski 2023). Solid-state fermenta-
tion is the most used cultivation system for fungi, because 
it recreates the natural way they grow and produces aerial 
conidia (De la Cruz-Quiroz et al. 2016; Lara-Juache et al. 
2021). These propagules are the main active ingredient in 
mycopesticides due to their process reproducibility, toler-
ance to abiotic stresses, infection performance, and easy 
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mass production on a low-cost substrate (Hölker and Lenz 
2005; Ibrahim et al. 2015; Mascarin and Jaronski 2016; Sala 
et al. 2019).

The major challenge for aerial conidia obtention is to 
stabilize its highly variable growth and low productivity by 
solid-state fermentation (Fronza et al. 2017; Iwanicki et al. 
2020). The manipulation of culture medium composition 
positively alters conidia physiological growth to provide sta-
bility during fermentation and into formulation prototypes 
(Muñiz-Paredes et al. 2017; Zaki et al. 2020). Although 
the demonstrated virulence of M. rileyi against important 
economic insect pests, its high sensitivity to abiotic factors, 
poor sporulation, and demanding nutritional requirements 
have not allowed the development of an optimum culture 
medium for aerial conidia production (Boucias et al. 1984; 
Edelstein et al. 2005; Faria et al. 2017; Goettel and Roberts 
1991; Grijalba et al. 2018). Among Metahizium species, con-
centrations of propagules have been reported in submerged 
fermentation (2 × 108 blastospores mL−1 for M. anisopliae, 
5 × 107 blastospores mL−1 for M. robertsii, 7 × 107 blasto-
spores mL−1 for M. rileyi) and solid-state fermentation 
(1.2 × 109 conidia g−1 for M. anisopliae, 3.9 × 109 conidia 
g−1 for M. rileyi); demonstrating the highest productivity 
with solid systems (Grijalba et al. 2018; de Sá Santos et al. 
2020; Iwanicki et al. 2021; Gotti et al. 2023). Furthermore, 
lethal times are shorter with aerial conidia than with blasto-
spores for Metarhizium sp. (Gotti et al. 2023).

The selection of strategies to improve production effi-
ciency is crucial for commercially developing biopesti-
cides. Consequently, the screening of favorable and cost-
effective conditions and additives to enhance conidial yield 
can expend considerable effort (Devi et al. 2001; Jaronski 
et al. 2023; Ravensberg 2011; Thakre et al. 2011). Moreover, 
quality specifications for biopesticides (microbiological, bio-
chemical, and biological parameters) are necessary to ensure 
pre-determined quality and efficacy under the prescribed 
conditions for its use. Therefore, it is imperative to design a 
mass production to obtain fungal structures that withstand 
the downstream process and unfavorable field-application 
conditions, and provide consistent control of plant disease 
(Jeyarajan and Nakkeeran 2000). For solid-state fermenta-
tion, rice (high proportion of starch and amylase) is the most 
suitable substrate for quicker and better mass multiplication 
of M. rileyi (Thakre et al. 2011). Currently, M. rileyi conidia 
production systems are time-consuming (10 to 15 days) and 
conidial yields are unstable at times (2.2 × 106 to 8.4 × 109 
conidia g−1 substrate) (Devi et al. 2001; Villamizar et al. 
2004; Caro et al. 2005; Méndez et al. 2010; Thakre et al. 
2011; Bich et al. 2018). Therefore, mass production of M. 
rileyi conidia is not sufficient to successfully incorporate it 
as a biological control agent in pest management.

Nutritional supplementation in a culture medium is the 
most effective way to improve quality conidia (germination, 

enzyme production, and virulence) in shorter fermentation 
times. For instance, the percentage of germination has been 
correlated with the addition of some substances, such as 
sugars and polyols (Hallsworth and Magan 1995; Jin et al. 
1996), organic nitrogen sources (Caro et al. 2005; Devi et al. 
2001), inorganic compounds (Aguirre et al. 2009; Jin et al. 
1996), and cofactors (Elson et al. 1998; Jin et al. 1996). 
Likewise, substrate composition affects the production of 
virulence factors such as lipases, chitinases, and proteases. 
Therefore, the induction of these enzymes by different cul-
ture media could enhance biocontrol efficacy (Dhawan and 
Joshi 2017; Safavi et al. 2007; Mondal et al. 2016; Moon 
and Mun 2017).

Numerous studies on Metarhizium sp. production have 
demonstrated that specifically modifications of the nutri-
tional environment impact significantly conidia develop-
ment, pathogenicity, and conidial tolerance (Hallsworth and 
Magan 1995; Jackson and Jaronski 2009). However, to our 
knowledge, there is scarce information on how nutritional 
supplementation in M. rileyi cultures holistically affects its 
production, enzymatic activity, and virulence. Therefore, 
this study aimed to evaluate the effect of nutritional manipu-
lation in the production of M. rileyi Nm017 on conidia qual-
ity (microbiological, enzymatic, and insecticidal activities) 
and process performance.

Materials and methods

Microorganism

The Colombian fungus strain used in this study was Metarhi-
zium rileyi, encoded as Nm017, previously isolated from 
Anticarsia gemmatalis larvae and deposited at the Collection 
of Microorganisms with Interest in Biological Control of 
AGROSAVIA (Colombia), with an accession number 129. 
This isolate was cryopreserved at − 70 °C and propagated 
on MAYP (Edelstein et al. 2005) plus 0.1% w/v chloram-
phenicol (Colmed® International, Colombia), and incubated 
at 25 ± 0.5 °C for 7 days.

Fermentation process

Preparation of culture media

Five culture media supplements were evaluated for solid-
state fermentation to produce aerial conidia at laboratory 
scale (Fig. 1). Each experimental unit had a mixture of bro-
ken rice supplemented with a nutritive solution (1:0.5 w/v), 
loaded into aluminum trays (10 cm × 6 cm × 3 cm), and sub-
sequently sterilized at 121 °C, 15 psi for 20 min (TC-612, 
Gemmy Industrial Corp., China). The composition of the 
studied nutrient solutions was designed from three additives: 
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yeast hydrolysate, yeast extract, and V8 juice. These were 
utilized in the following treatments (Fig. 1): T1, without 
supplements; T2, 8.2% v/v yeast hydrolysate, prepared with 
100 mL hot water plus 8.2 g dehydrated yeast (Levapan®, 
Levapan S.A, Colombia; Caro et al. 2005); T3, 2% w/v yeast 
extract; T4, 2% w/v V8 juice; T5, 8.2% v/v yeast hydrolysate 
plus 2% w/v V8 juice; and T6, 2% w/v yeast extract plus 2% 
w/v V8 juice. Three replicated production sets were run for 
each experiment, with 15 experimental units per repetition.

Inoculation and incubation

The inoculum was prepared from M. rileyi Nm017 conidia 
grown for seven days on MAYP agar, as a conidia suspen-
sion in 0.1% v/v Tween® 80 solution (Millipore, Merck® 
KGaA, Germany). Conidia concentration was adjusted to 
4.6 × 106 conidia mL−1, and the suspension was sprayed 
in each substrate tray. Then, the trays were wrapped in a 
LLDPE film (porosity 45.2%) and placed in an incubation 
room for 7 days, at a temperature of 25 ± 2 °C and internal 
relative humidity (IRH) of 70 ± 10% (Fig. 1).

Drying process and conidia recovery

After inoculation, the weight of the substrate for each experi-
ment was measured. After fermentation, each tray was cov-
ered with a porous cellulose membrane, placed in a room at 
25 ± 2 °C and external relative humidity (ERH) of 40 ± 10%, 

for 4 days to enhance hyphal maturation, sporulation, and 
drying until reaching a moisture content of ≤ 10%. M. rileyi 
Nm017 (Fig. 1). Spore powder from the dried substrate was 
harvested by vibratory sifting through a mesh sieve (800 μm 
mesh size; U.S. Standard sieve series No. 50, The W. S. 
Tyley Company, U.S.A.). The weight and moisture content 
of the conidial powder collected were measured.

Conidial germination

Germination was assessed from each culture medium, using 
the recovered dry conidia (conidial powder). The microbio-
logical parameter percentage of germination at 36 and 48 h 
was assessed. For each treatment, 1 g samples picked up 
aseptically were diluted in 0.1% v/v Tween® 80 solution, 
and decimal dilutions were done until 10–2. An aliquot of 
100 µL of 10–2 dilution was plated on water agar plus 2% w/v 
yeast extract (Difco®, Thermo Fisher Scientific, U.S.A.), 2% 
v/v V8 juice (V8® Vegetable Juice, Campell’s, U.S.A.), and 
0.00008% w/v benomyl [Benlate 50% w/w (WP), DuPont, 
Spain]. The Petri plates were incubated at 25 ± 2 °C for 36 
and 48 h, and the germ tube growth was stopped with a lac-
tophenol blue solution at each time (Sigma-Aldrich®, Merck 
KgaA, Germany). Germinated and non-germinated conidia 
were read in an optical microscope (400X magnification; 
CH30, Olympus®, Japan), and at least 100 conidia were 
scored per replicate. Conidia was considered germinated 
when its germ tube was at least twice its diameter (Ekesi 

Fig. 1   Schematic representation for Metarhizium rileyi Nm017 
conidia production with substrate supplemented: 1. Nutritive solu-
tions preparation: T1 (without supplements), T2 (8.2% v/v yeast 
hydrolysate), T3 (2% w/v yeast extract), T4 (2% w/v V8 juice), T5 
(8.2% v/v yeast hydrolysate + 2% w/v V8 juice), and T6 (2% w/v 
yeast extract + 2% w/v V8 juice); 2. Substrate soaking: hydration 
with nutritive solutions; 3. Sterilization: 121  °C, 15 psi for 20 min; 

4. Spray inoculation: conidia suspension adjusted to 4.6 × 106 conidia 
mL−1; 5. Incubation: incubation room at 25 ± 2 °C and 70 ± 10% IHR, 
for seven days; 6. Drying process: incubation room at 25 ± 2 °C and 
40 ± 10% EHR, for four days or until reaching a moisture content 
of ≤ 10%; 7. Harvesting process: vibratory sifting through a 800 μm 
mesh size
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et al. 1999; Milner et al. 1991). The results were reported as 
a percentage of germination at 36 and 48 h.

Performance parameters

The conidia/substrate yield was evaluated by counting 
microscopically (400X magnification; CH30, Olympus®, 
Japan) with a Neubauer hemocytometer (BOE 01, Boeco, 
Germany) from the dilutions used in conidial germination. 
The moisture content of the substrate samples was also 
determined using a halogen balance (MLS 50–3, Kern, Ger-
many) at 121 °C to determine the moisture content (% kg 
water kg−1 dry material). Subsequently, concentrations were 
corrected as conidia per dry substrate gram (conidia g−1).

Fungus colonized substrate, conidial powder, and sub-
strate after harvesting from each tray and treatment was 
taken to estimate the biomass/substrate yield (g biomass per 
kg dry substrate, g kg−1) (Shay et al. 1987). The percentage 
of the consumed substrate in each tray was calculated as 
the difference between weight of the dry substrate before 
inoculation and after harvesting (Tumuhaise et al. 2018).

Enzymatic activity

Conidia crude extracts were prepared as described by Vil-
lamizar et al. (2001), with modifications. 1 g of the colo-
nized dried substrate of each treatment was suspended in 
10 mL 1% v/v Tween® 80 solution and stirred at 3000 rpm 
for 1 h at room temperature. Suspensions were centrifuged 
for 10 min at 4000 rpm to obtain the supernatant, which was 
used in enzymatic assays.

Lipase activity was determined according to Beys da 
Silva et al. (2010) and Glogauer et al. (2011). 20 µL of crude 
extract were mixed with 230 µL of substrate [3 mg p-nitro-
phenyl palmitate, pNPP (Sigma®, Merck KgaA, Germany)] 
in 1 mL isopropanol (Sigma®, Merck KgaA, Germany) 
and 9 mL 50 mM Tris–HCl pH, containing 40 mg Triton 
X-100 (Sigma®, Merck KgaA, Germany) and 10 mg Ara-
bic gum (Sigma®, Merck KgaA, Germany). The resulting 
solution was incubated at 37 ± 1 °C for 30 min. Absorbance 
was measured at 400 nm, and released p-nitrophenol was 
estimated using a standard curve. One unit of the enzyme 
was defined as the amount of enzyme that released 1 µmol 
p-nitrophenol per minute.

Chitinase activity was measured using 20 µL crude 
extract and 100 µL p-nitrophenyl-N-acetylglucosamine 
(Sigma®, Merck KgaA, Germany) (1 mg mL−1 in citrate 
buffer 0.1 M pH 5). The mixture was incubated at 37 ± 1 °C 
for 30 min and stopped with 150 µL NaOH-glycine pH 
10.4 (Sigma®, Merck KgaA, Germany). Absorbance was 
measured at 400 nm, and the amount of p-nitrophenol was 
estimated using a standard curve. One unit of the enzyme 

was defined as the amount of enzyme that released 1 µmol 
p-nitrophenol per minute (Mejía et al. 2020).

Protease activity was determined using casein (Sigma®, 
Merck KgaA, Germany) at 0.65% as substrate. The reaction 
mixture contained 130 µL of 0.65% w/v casein and 25 µL 
of crude extract. The reaction was incubated for 10 min at 
37 ± 2 °C, and stopped by adding 130 µL of 110 mM trichlo-
roacetic acid (Sigma®, Merck KgaA, Germany), with incu-
bation at 37 ± 2 °C for 20 min. The mixture was centrifuged 
at 10,000 rpm, for 15 min. 250 µL supernatant was mixed 
with 625 µL 500 mM of sodium carbonate (Sigma®, Merck 
KgaA, Germany) and 125 µL of 0.5 M Folin–Ciocalteu 
(Sigma®, Merck KgaA, Germany) solution. The mixture 
was incubated 30 min at 37 ± 2 °C. The absorbance was 
measured at 660 nm. One unit of the enzyme was defined as 
the amount of enzyme to release 1 µmol tyrosine per minute 
(Cupp-Enyard 2008).

Insecticidal activity

Insect rearing

The larvae of Helicoverpa zea were reared on an artificial 
diet prepared according to Greene et al. (1976) with modifi-
cations (Gómez et al. 2010), by Rearing Unit of AGROSA-
VIA – Tibaitatá Research Center. The rearing was in a con-
trolled environment room at 28 ± 1 °C and a photoperiod of 
12 h light/darkness.

Bioassay

Bioassays were carried out with second-instar larvae of H. 
zea, following the methodology described by Mejía et al. 
(2020). Larvae dorsum was inoculated by applying 2 µL of 
fungal suspension prepared in 0.1% v/v Tween® 80 solution 
and concentration adjusted to 1 × 106 conidia mL−1. Control 
larvae were inoculated with 0.1% v/v Tween® 80 solution. 
Inoculated larvae (sampling unit) were individually trans-
ferred to 15 mL plastic cups containing one maize grain as 
a feeding substrate. Twelve cups were placed in a 473 mL 
plastic box (experimental unit) and incubated under con-
trolled conditions (25 ± 2 °C, 60% ERH) and a light/darkness 
photoperiod of 12 h. Larval mortality was recorded daily for 
10 days. Each treatment had three replicates (3 experimental 
units) for a total of 36 larvae per treatment. The percent-
age of corrected mortality (treatment mortality corrected by 
mortality in the control treatment) was calculated using the 
Schneider-Orelli formula (Zar 1999).

Data analysis

The experiments in this study had three repetitions in time 
and three replicates per treatment. For statistical purposes, 
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germination and efficacy were arcsine or square root trans-
formed, and conidia concentration was log10 transformed. 
The results were verified for data normality (Shapiro–Wilk 
test) and the homoscedasticity (Bartlett's test). Statistical 
significance of the results was determined using one-way 
analysis of variance (ANOVA), and mean comparison test 
(Tukey HSD; confidence level of 95%), using Minitab® 19 
Statistical Software (Minitab®, LLC, USA).

Results and discussion

Fermentation and drying processes

Metarhizium rileyi Nm017 grew and sporulated in all of 
the treatments assessed. The fermentation started with the 
colonization of white mycelium during the first 3–4 days 
for treatments T1 through T5 (Fig. 2a), and then production 
of olive-green aerial conidia started within 5–7 days for all 
media (Fig. 2b). However, T6 (2% w/v yeast extract + 2% 
w/v V8 juice) culture medium showed mycelium as early as 
the second day, and patches of conidia on its mycelial mat 
on the fourth day (Fig. 2). Different published protocols of 
mass multiplication have used yeast extract to increase aerial 
conidia production (Jaronski 2023; Mishra et al. 2016). Also, 
Devi et al. (2001) reported that yeast extract is required for 
the fungi mycelial growth. On the other hand, clarified V8 
Juice at agar produces substantially more conidia in less 
time for Fusarium sp. strains (Elson et al. 1998). Moreover, 

these two nutritional supplements provided cheap carbon 
and nitrogen sources to boost better fungal growth (Jaronski 
2023). Therefore, for a fungus such as M. rileyi with slow 
growth and sporadic sporulation on solid media, the nutri-
tion augmented with yeast extract and V8 juice significantly 
influenced conidiation, and their action allowed increasing 
the effect that each one had individually (treatments T3 and 
T4).

All nutritional supplementation proposed herein shorted 
the culture time of Nm017 to 7 days, traditionally rang-
ing from 10 to 15 days (Devi et al. 2001; Villamizar et al. 
2004; Caro et al. 2005; Méndez et al. 2010; Thakre et al. 
2011; Bich et al. 2018). During the drying process, the loss 
of surface water over time caused the volume reduction 
of the fermentation solid matrix and, probably, the aerial 
conidia, which made the conidia dustier and less linked to 
the substrate.

Conidial germination

Germinations of conidial powder from each culture medium 
assessed at 36 h and 48 h were less than 80%, except conidia 
from T6 (Fig. 3a and b). The findings showed that the three 
nutritional sources and their interaction were significantly 
relevant for germination at 36 h; while germination at 48 h 
was affected significantly by yeast extract and V8 juice (Ger-
mination at 36 h: F5,48 = 16.6, p < 0.0001; Germination at 
48 h: F5,48 = 4.84, p = 0.0012). Early germination at 36 h 
was defined by Faria et al. (2017) as conidial vigor, which 

Fig. 2   Process fermentation of Metarhizium rileyi Nm017 with sub-
strate supplemented (T1, without supplements; T2, 8.2% v/v yeast 
hydrolysate; T3, 2% w/v yeast extract; T4, 2% w/v V8 juice; T5, 

8.2% v/v yeast hydrolysate + 2% w/v V8 juice; and T6, 2% w/v yeast 
extract + 2% w/v V8 juice): a Third day of fermentation; b Seventh 
day of fermentation



	 3 Biotech (2024) 14:8989  Page 6 of 12

relates to the strength of conidia germination and germ tube 
growth. Vigor is strongly influenced by the fermentation sys-
tem and downstream processing. For instance, rice substrate 
has been supplemented with additives to increase sporula-
tion and germination, unlike substrates such as barley, oats, 
or wheat, probably due to their nitrogen and micronutrient 
content (Jaronski 2023). Likewise, rice contains a higher 
content of starch and amylase, and its hydrolysis produces 
glucose and maltose. Maltose released by fungal enzymes 

induces a series of mechanisms to accelerate fungi multipli-
cation, including germination for mycelium production and 
subsequent sporulation (Thakre et al. 2011). Therefore, the 
substrate and additives used must provide a high availability 
of nutrients over a large surface area to promote germina-
tion and conidia formation (Machado et al. 2010; Mascarin 
et al. 2010).

The germination at 36 h revealed that Nm017 conidia 
production requires slower drying to maintain high conidial 

Fig. 3   Conidial germination and performance parameters of Metarhi-
zium rileyi Nm017 conidia obtained from substrate supplemented 
(T1, without supplements; T2, 8.2% v/v yeast hydrolysate; T3, 2% 
w/v yeast extract; T4, 2% w/v V8 juice; T5, 8.2% v/v yeast hydro-
lysate + 2% w/v V8 juice; and T6, 2% w/v yeast extract + 2% w/v 
V8 juice): a Germination at 36  h (% conidia germinated per total 

conidia); b Germination at 48  h (% conidia germinated per total 
conidia); c Conidia/substrate yield (conidia g−1 dry substrate); d 
Biomass/substrate yield (g biomass kg−1 dry substrate); e Consumed 
substrate (% kg substrate consumed per kg−1 initial substrate). Treat-
ments with no common letters are significantly different according to 
Tukey HDS test (α = 95%). Means are represented with the symbol × 
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viability, as was demonstrated with other Metarhizium sp. 
(Jaronski and Jackson 2012). Moreover, a previous evalu-
ation to this study using Nm017 strain and T1 medium 
(without supplements), demonstrated the protective effect 
of the slower drying process. It was found that the colonized 
substrate had an initial moisture content of 54.4% and an ini-
tial conidial germination at 48 h of 81.1%, and after 4 days 
of drying, the substrate ended up with a moisture content 
of 8.9% and a conidial germination of 78.6% (unpublished 
data). Hence, the reduction in germination was only 3%.

The greatest increase in germination among the two eval-
uation times was observed with treatment T1 (30%), while 
the smallest increase was observed with T6 (3%). Thus, the 
highest and most vigorous conidia were those obtained in 
the T6 substrate. The V8 juice micronutrient source used 
in T4, T5, and T6 is rich in trace elements, vitamins, and 
amino acids, which are essential cofactors that stimulate the 
metabolic processes involved in germination (Elson et al. 
1998; Jin et al. 1996). It also has a remarkable calcium con-
tent (16 mg 100 mL−1), which has been shown to modulate 
the growth rate of the germ tube, i.e., it is a precursor to 
the hyphae extension and medium colonization (Aguirre 
et al. 2009; Jin et al. 1996). Furthermore, Ca2+ is a signal-
ling molecule involved in tolerance to stress conditions and 
virulence. Six major types of Ca2+ transporters have been 
reported for homeostasis and signalling (Roy et al. 2020).

Performance parameters

The highest values of the process parameters assessed were 
reached with the T6 treatment (Fig. 3c, d, and e). All treat-
ments had a notable impact on conidia/substrate yield, in 
which T6 and T2 showed the highest and most significant 
values (Fig. 3c; F5,48 = 21.1, p < 0.0001), while biomass/sub-
strate yields were statistically different between treatments 
(Fig. 3d; F5,48 = 41.3, p < 0.0001). However, the variable 
substrate consumption demonstrated equitable nutritional 
use of culture medium (24–31%), without significant dif-
ferences between media (Fig. 3e; F5,48 = 2.22, p = 0.0678).

The culture medium without extra sources, T1, did not 
show significant sporulation (Fig. 3c), which may be due to 
the lack of suitable extra nutritional sources for conidiogen-
esis (Caro et al. 2005; Keppanan et al. 2018; Kumar et al. 
2011; Webb and Manan 2017). On the contrary, the mas-
sive growth of M. rileyi Nm017 observed in treatments T2 
(8.2% yeast hydrolysate) and T6 (2% yeast extract plus 2% 
V8 juice) stand out, possibly due to the presence of organic 
nitrogen sources, recognized as essential for mycelial growth 
and conidiogenesis (Devi et al. 2001). Although T2 con-
tained a germination promoter (Caro et al. 2005) and showed 
significant effects over yields, its sporulation and germina-
tion had significant differences compared to T6 (Fig. 3a–c).

The commercial viability of potential biopesticides is 
defined by their suitability for mass production. Values 
achieved with both media, T2 and T6, were higher than 
those observed with other commercial entomopathogenic 
fungus, e.g., M. rileyi strains growth on a medium rich in 
soybeans (1.5 × 109 conidia g−1 substrate; Caro et al. 2005), 
wheat bran enriched with malt soda (3.0 × 109 conidia g−1 
substrate; Villamizar et al. 2004), and crushed sorghum 
(1.4 × 109 conidia g−1 substrate; Devi et al. 2001). Also, 
Nm017 production presented appropriate biomass yields for 
commercial entomopathogenic species, like M. anisopliae 
(27–42.2 g kg−1) and B. bassiana (20–40 g kg−1) (Kep-
panan et al. 2018; Tumuhaise et al. 2018; Liu et al. 2015; 
Pham et al. 2010; Posada-Flórez 2008; Renuka et al. 2015). 
This could be due to the substrate used in this study (rice), 
in which most fungi reach the highest biomass production 
(Gouli et al. 2013; Li et al. 2010; Jaihan et al. 2016; Sal-
darriaga et al. 2017). Moreover, M. anisopliae isolates and 
Nm017 had similar substrate consumption patterns, e.g., 
Tumuhaise et al. (2018) reported a consumption percent-
age of 32.8%, and Agbessenou et al. (2021) reached values 
close to 25%.

Enzymatic activity

Similarly, fungal enzymes produced on solid-state fermenta-
tion have been highly regulated by the availability of carbon 
and nitrogen, pH, relative humidity, moisture content, and 
temperature, among other factors (Mondal et al. 2016; St. 
Leger and Wang, 1998). In this research, yeast hydrolysate, 
yeast extract, and V8 juice with vitamin content increased 
the three groups of evaluated enzymes (lipase, chitinase, and 
protease activity), and improved the conidial yield. Among 
the enzymatic activities evaluated, M. rileyi produced a 
higher level of proteases compared to chitinases and pro-
teases (F17,144 = 249, p < 0.0001). The lipase activity was 
between 0.03 and 0.15 U g−1 in all of the treatments except 
T5, which was the lowest value found. The chitinase activity 
was substrate dependent in mass production (Fig. 4a) and the 
highest value was obtained in conidia produced on substrates 
T2 and T5 (0.10 and 0.23 U g−1, respectively). Similar to 
lipases, the lowest chitinase activity was measured in treat-
ment T5. Significant differences were found in the protease 
activity of conidia produced on the six substrates in solid-
state fermentation, with values between 0.77 and 1.3 U g−1. 
The highest protease activity was reached with treatments 
T2 and T6, like chitinases, and the lowest values were found 
with treatments T3 and T5.

The results analysis showed that the enzymatic activ-
ity was affected by the nitrogen and micronutrient sup-
plementation (Fig. 4b). Lipase activity was influenced 
by the three nutritional sources (yeast hydrolysate, yeast 
extract, and V8 juice) and their interactions, whereas the 
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protease activity was influenced by yeast extract, and V8 
juice. The chitinase activity only presented relevant effects 
with nitrogen and micronutrient interaction. Overall, T2, 
T4, and T6 supplementation affected both conidia yield 
and enzymatic activity (Fig. 4b). Comparably, Ferreira 
et al. (2021) showed that culture medium supplemented 
with sodium nitrate and riboflavin enhanced protease 
activity and conidia production of Metarhizium robert-
sii. Similarly, additives such as soybean protein com-
bined with wheat bran induced the protease activity of 
M. anisopliae (Kim et al. 2020), and the supplementation 
with yeast extract improved the chitinase composition of 
M. anisopliae (Dhar and Kaur 2009). Also, it was dem-
onstrated that C:N ratio is a crucial variable that induces 
enzyme expression, e.g., the use of potato flour substrate 
with a C:N ratio of 30:1 increased the enzymatic activity 
of B. bassiana, compared with rice powder substrate with 
a C:N of 10:1 (Mejía et al. 2020). Likewise, an isolate of 
B. bassiana produced greater protease Pr1 activity in solid 
media with a C:N ratio of 10:1 (Safavi et al. 2007).

Insecticidal activity

The use of supplements as enhancers of virulence has been 
tested before for entomopathogenic fungi. For instance, B. 
bassiana conidia harvested from wheat bran, rice bran, and 
SDAY reached the highest mortalities on the browntail moth 
Euproctis chrysorrhoea, compared to conidia obtained from 
other nutritional substrates such as millet, rice paddy, wheat, 
rice, and corn flour (Bena-Molaei et al. 2011). The nutri-
tional composition of substrates could induce several viru-
lence factors related to larvae mortality, e.g., proteins such as 
hydrophobins and adhesins that mediate conidia attachment 
to cuticle insect surface. (Butt et al. 2016; Sevim et al. 2012; 
Schrank and Vainstein 2010).

Although enzymes have been considered crucial vir-
ulence factors of entomopathogenic fungi, and several 
authors described the relatedness between enzymes and 
mortality (Dhawan and Joshi 2017; Gebremariam et al. 
2022; Pelizza et al. 2012; Svedese et al. 2013), we did 
not find correlation among the high enzymatic activity of 

Fig. 4   a Enzymatic activity of Metarhizium rileyi Nm017 conidia 
obtained from substrate supplemented (T1, without supplements; T2, 
8.2% v/v yeast hydrolysate; T3, 2% w/v yeast extract; T4, 2% w/v 
V8 juice; T5, 8.2% v/v yeast hydrolysate + 2% w/v V8 juice; and T6, 
2% w/v yeast extract + 2% w/v V8 juice); b Conidia/substrate Yield 
(conidia g−1 dry substrate) vs. Enzymatic activity (U g−1 conidia); 

c Mortality against Helicoverpa zea second instar larvae caused by 
Metarhizium rileyi Nm017 conidia obtained from substrate supple-
mented (%); d Conidia/substrate Yield (conidia g.−1 dry substrate) vs. 
Mortality (% dead larvae per total larvae). Mean values (± SD) fol-
lowed with no common letters are significantly different according to 
Tukey HDS test (α = 95%)
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M. rileyi and the uppermost insecticidal activity against 
H. zea. In this study, conidia with the lowest levels of 
enzymes caused higher mortalities of H. zea. Accord-
ingly, treatments T3 (2% yeast extract) and T5 (8.2% yeast 
hydrolysate + 2% V8 juice) with low levels of enzyme 
activity, significantly influenced the insecticidal activity 
of M. rileyi against H. zea second instar larva (Fig. 4c; 
F5,53 = 50.2, p < 0.0001). The lowest efficacy (18%) was 
found in conidia from T2. Efficacies between 48 and 50% 
were obtained with conidia produced in treatments T1, 
T4, and T6, with no significant differences between them. 
The highest values of efficacy were related to yeast extract 
and sources interaction effects (Fig. 4c). Also, Petlamul 
and Prasertsan (2012) characterized several Beauveria 
and Metarhizium isolates based on their germination rate, 
conidia production, radial growth, enzyme activity, and 
virulence against Spodoptera litura. They found that a 
strain of B. bassiana had the highest germination rate and 
was the most virulent, but the lowest enzymatic activity. 
On the other hand, M. anisopliae strains produced the 
highest chitinase and protease activities.

These results suggest that the nutritional composition 
could be inducing other relevant virulence factors dur-
ing fungal attachment and colonization of the insect. For 
instance, nutrients and fermentation system have been 
reported to influence the expression of different viru-
lence factors such as collagen-like protein to evade the 
insects´ immune response, trehalases to use trehalose 
from the hemolymph, and regulation of heat-shock pro-
teins and enzymes involved in response to oxidative stress 
(Gotti et al. 2023; Iwanicki et al. 2023). Pang et al. (2023) 
evidenced that the virulence of M. rileyi against S. fru-
giperda was determined by both expression of protective 
and detoxifying enzymes from the host and resistance to 
oxidative stress of the fungus.

Conclusions

Through the research, we have demonstrated the effects of 
nutritional supplementation of the substrate on production 
and quality of M. rileyi Nm017 conidia. Results showed 
that the designed nutritional enrichment strategies enhanced 
the fungal viability and enzymatic activity. However, no 
nutritional relationship was found between conidia qual-
ity, enzyme activity, and biological activity. These findings 
supported the relevance of including the insecticidal activity 
for production strategies of potential biocontrol microorgan-
isms as a selection criterion, in addition to germination and 
productivity. Further research is required to determine dif-
ferent virulence factors associated with insecticidal activity 
and production development on higher scales.
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