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Abstract
Durability and affordability are two main reasons for the widespread consumption of plastic in the world. However, the 
inability of these materials to undergo degradation has become a significant threat to the environment and human health 
To address this issue, bioplastics have emerged as a promising alternative. Bioplastics are obtained from renewable and 
sustainable biomass and have a lower carbon footprint and emit fewer greenhouse gases than petroleum-based plastics. The 
use of these bioplastics sourced from renewable biomass can also reduce the dependency on fossil fuels, which are limited 
in availability. This review provides an elaborate comparison of biodegradation rates of potential bioplastics in soil from 
various sources such as biomass, microorganisms, and monomers. These bioplastics show great potential as a replacement 
for conventional plastics due to their biodegradable and diverse properties.
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Introduction

Plastics are crucial materials in modern life, and due to 
their resistance to chemical, physical and biological deg-
radation, society relies majorly on them (Bhogayata and 
Arora 2018). However, the overexploitation of plastics by 
the ever-growing human society has led to various environ-
mental and health risks (Wright and Kelly 2017; Bradney 
et al. 2019). Two of the main factors why plastics are so 
widely used are their durability and inexpensiveness, allow-
ing them to be used for various applications like food pres-
ervation, packaging, transportation, building, construction, 
etc. Unfortunately, the poor post-production management 
of plastics becomes a significant problem in aggravating its 
impact on the environment. The inefficient waste manage-
ment and deliberate littering have resulted in tons of plas-
tic waste floating in the oceans, causing damage to marine 
ecosystems. Global petroleum-based plastic production 

rose from 1.7 million tons in 1950 to 322 million tons in 
2015 (Suman et al. 2020). It was also estimated that due to 
the increased use of plastic personal protective gear during 
the COVID-19 pandemic, 585 million tons of single-use 
plastic waste would be generated by the end of 2020. The 
major contributing countries to generating plastic waste are 
China, India, the USA, and Brazil (Benson et al. 2021). This 
demands an alternative to the ubiquitous plastics, and bio-
plastics have emerged as promising alternatives. ‘Biodegrad-
able bioplastics’ are plastics that are derived from renewable 
biomass which are bio-based such as starch, cellulose, col-
lagen, polylactic acid, and polyesteramides (Coppola et al. 
2021). The use of bioplastics can reduce the dependency 
on fossil fuels which are present in limited amounts. Unlike 
petroleum-based plastics, bioplastics emit a lesser amount 
of greenhouse gases (Mittal et al. 2022). The term bioplastic 
does not necessarily mean that they are biodegradable or 
eco-friendlier. Some of the bioplastics are not biodegradable 
or may require a very long time to disintegrate. Bio-polyeth-
ylene (bio-PE), bio-polypropylene (bio-PP), bio-polyethyl-
ene-terephthalate (bio-PET), bio-polytrimethylene tereph-
thalate (Bio-PTT), and bio-polyamide (bio-PA) are some of 
the most common non-biodegradable bioplastics (Rahman 
and Bhoi 2021). Biodegradable polymers are defined as 
polymers that can be degraded into carbon dioxide, water, 
methane, and other low-molecular-weight compounds (Ishi-
gaki et al. 2004).
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In biodegradation assays, two fundamental approaches are 
used: aerobic and anaerobic digestion (Ruggero et al. 2019). 
Biodegradation is a set of chemical reactions that take place 
in the presence of living organisms such as bacteria, fungi, 
yeast, algae, and insects under optimum light, temperature, 
and oxygen. The degradation process is also influenced by 
the microstructure of the polymer. Furthermore, the rate of 
biodegradation might differ, depending on the environmental 
conditions and the polymer’s integral molecular structure 
(Scaffaro et al. 2019). Most of the plastic wastes are dumped 
as landfills and in soil, leading to the emission of green-
house gases and leachate. Using compost in the degrada-
tion of different biodegradable bioplastics has been studied. 
Composting is classified into three types: aerobic, anaero-
bic, and vermicomposting. Aerobic composting occurs in 
the presence of plenty of oxygen. Aerobic microorganisms 
degrade organic matter, producing carbon dioxide  (CO2), 
ammonia, water, heat, and humus. Anaerobic composting 
involves decomposition in the absence or limited supply of 
oxygen. Anaerobic microorganisms produce intermediate 
compounds such as methane, organic acids, and hydrogen 
sulfide. Vermicomposting is the decomposition process that 
involves the use of various species of earthworms to produce 
a decomposition mixture (Jouhara et al. 2017; Sanchez-Her-
nandez et al. 2020). However, composting rates at home and 
in industrial conditions may differ. Home composting is a 
basic process that creates nutrient-rich soil by decomposing 
organic waste such as vegetable waste and food leftovers in 
compost bins. However, the conditions and temperatures for 
home composting are not efficient in breaking down bioplas-
tics like PLA. Industrial composting on the other hand pro-
vides a strictly monitored composting process that includes 
measured inputs of water, air, and carbon and nitrogen-rich 
materials to ensure rapid biodegradation of organic material. 
The residues produced can be integrated into the natural geo-
chemical cycle (Schrader et al. 2017; Narancic et al. 2018). 
Further, most industrial composting sites have leachate col-
lection and storage systems where the stored leachate can 
be pumped into the wastewater treatment plant for further 
processing. This will prevent the leachate from running into 
the freshwater bodies and causing eutrophication.

Biodegradability is the foremost important factor to be 
considered when bioplastics are considered over regular 
plastics (Din et al. 2020). Bioplastics from various sources 
exhibit different mechanisms and rates of biodegradation. 
Biodegradation also depends on several aspects such as 
environmental factors, moisture, and microbial presence. 
Extracellular enzymes secreted by microorganisms assist 
the biodegradation of polymers in processes involving the 
hydrolysis of ester linkages to release monomers. Both 
biotic and abiotic processes influence the total breakdown 
of organic matter. Microorganisms break down the material 
through biotic decomposition, while abiotic processes such 

as photodegradation and chemical hydrolysis break down 
the material chemically and physically at high temperatures 
and/or under acidic or basic pH conditions. (Polman et al. 
2021). There is a lack of reviews that study and compare 
the detailed biodegradation of bioplastics from all the com-
mon sources. This review aims to provide a comprehensive 
insight into the commonly used sources of bioplastics and 
several factors affecting their biodegradation. Sources of 
Bioplastics” elaborates on the broad classification of bio-
plastics based on the source of raw materials. Some of the 
most widely used sources for the synthesis of bioplastics 
like polysaccharides (starch, cellulose, chitin and pectin), 
proteins (collagen, whey), polyhydroxyalkanoates and other 
sources such as polylactic acid, polyesteramides have been 
reviewed. Table 1 summarizes the sources, advantages, and 
disadvantages of various native biodegradable bioplastics. 
“Biodegradation of bioplastics” includes the process of bio-
degradation of the most commonly used bioplastics. The 
microorganisms and enzymes involved in their degradation 
are enlisted in Table 2. A summary of the percentage of 
degradation of bioplastics from different sources is provided 
in Table 3.

Sources of bioplastics

Broadly, bioplastics are produced from biopolymers 
obtained from biomass, and monomers. Bioplastics are clas-
sified based on their source of raw material as depicted in 
Fig. 1 and are discussed below.

Biomass

Bioplastics made from renewable biomass have sparked 
curiosity in recent years. Polysaccharides including starch, 
cellulose, chitin, pectin as well as proteins are extracted from 
conventional animal and plant sources.

Polysaccharides

Polysaccharides, including starch and cellulose, are the 
primary and most prevalent biobased polymers utilized to 
manufacture bioplastics (Lubis and Harahap 2018; Abe and 
Branciforti 2021). Other lesser-known polysaccharides such 
as chitin and pectin are also used. (Tables 1 and 3). Starch 
is a highly degradable, most abundant homopolysaccharide 
present in plants, consisting of both linear (amylose) and 
branched (amylopectin) structures. Corn, potatoes, banana, 
tapioca, wheat, rice, yam, sago, and buckwheat are the tradi-
tional sources of starch used in the production of bioplastics 
(Marichelvam et al. 2019; Abral et al. 2019; Jiménez-Rosado 
et al. 2019; Asrofi et al. 2020). The synthesis of starch-based 
bioplastics involves heating native or modified starch in the 
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Table 1  Summary of sources, advantages, and disadvantages of various native biodegradable bioplastics

Raw material Origin Advantages Disadvantages References

Polysaccharides
 Starch Corn, potato, rice, tapioca, 

tapioca/cassava, banana, 
wheat, yam, sago and buck-
wheat

• Good film forming proper-
ties, oxygen and aroma 
permeability

• Brittleness
• Poor mechanical strength
• Hydrophilicity

(Thakur et al. 2019)

 Cellulose Cotton, wood, sisal, flax, 
hemp, jute, sugarcane 
bagasse

• Ease of availability
• Low cost of production
• Transparency

• Susceptible to moisture (Silva et al. 2016)

 Lignocellulose Wood pulp, jute, hemp, cotton • Antimicrobial properties
• Good viscoelastic, film-

forming capacity

• Hydrophilicity
• Incompatibility with many 

polymers
• Brittleness

(Wang et al. 2011)

 Pectin Apples, guavas, citrus fruits, 
plums

• Ease of availability • Poor mechanical properties
• Hydrophilicity

(Liu et al. 2005)

 Chitosan Chitin (exoskeleton of crus-
taceans like crabs, lobsters, 
prawns, shrimps)

• Inherent antimicrobial and 
antifungal activity

• Good mechanical strength
• Low oxygen and carbon 

dioxide permeability

• High water sensitivity (Martínez-Camacho et al. 
2013)

Proteins
 Casein Milk, cheese, yogurt, and 

other dairy products
• High thermal stability • Difficulty in moldability (Dodd 2010)

 Whey protein
isolate

Waste stream of the cheese 
industry

• Good oxygen and aroma 
permeability

• Moderate moisture
• barrier capacity
• Require plasticizers to cre-

ate easy to handle films

(Galus and Kadzińska 2016)

 Collagen Fish, chicken, egg whites, 
seafood

• Good oxygen and aroma 
barrier capacities

• Relatively low water barrier 
capacity

• Poor mechanical strength

(Ma et al. 2018)

 Zein Corn • Good film-forming proper-
ties after dissolving in 
ethanol and acetone

• Good tensile strength and 
moisture barrier properties

• Brittleness (Ghanbarzadeh et al. 2006)

 Soy protein
isolate

Soybean • Transparent and flexible 
films

• Gas barrier properties

• Poor mechanical properties
• High sensitivity to water

(Zheng et al. 2017)

 Gluten Waste stream of the wheat 
starch industry

• Low cost
• Good oxygen barrier capac-

ity
• Good film-forming proper-

ties

• High moisture sensitivity
• Brittleness

(Zhang et al. 1996)

Microorganisms
 PHAs Ralstonia eutropha • Excellent barrier capacity 

to carbon dioxide, oxygen, 
and water

• Good water resistance

• Difficulty in sustaining opti-
mal growth conditions

• High cost of recovery

(Zakaria Gomaa 2014)

Biobased monomers
 PLA Lactic acid • Excellent film-forming 

properties
• Hydrophobic

• Brittleness and rigidity
• Incompatibility with certain 

polymers

(Elsawy et al. 2017)

Synthetic monomer
 PCL ε-caprolactone • Hydrophobic

• Oil, solvent, and chlorine 
resistance

• Low melting point (Dong and Walker 2012)

 PBAT Adipic acid, 1,4-butanediol, 
and terephthalic acid

• Flexible
• Good tensile strength

• Low thermal stability
• Stiffness

(Al-Itry et al. 2012)
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presence of water to initiate gelatinization. As much as fifty 
percent of commercially available bioplastics are produced 
from starch (Erabela et al. 2021). Due to their simple and 
cost-effective production process, starch-based bioplastics 
have a broad range of applications in the packaging industry 
(Liang and Wang 2018; Meereboer et al. 2020). Cellulose, 
another highly abundant homopolysaccharide consisting of 
repeating units of D-glucose bound together by β (1 → 4) 
glycosidic bonds is typically added to starch to enhance its 
mechanical properties, gas permeability, and water resist-
ance. The most popular raw material used to produce cellu-
lose-based bioplastics is softwood (Liu et al. 2019b). Cel-
lulose is also used in different forms as a reinforcement filler 
in other biodegradable polymer matrices to improve their 
mechanical and physical properties. Lignin is a complex 
plant-based polymer found in vascular tissues as a support-
ing structure. It is called lignocellulose since it is found in 
cell walls alongside cellulose and hemicellulose. The com-
position of lignin in the lignocellulose varies according to 
the botanical source (Le Digabel and Avérous 2006). Lately, 
lignocellulosic fibers are being utilized as bioplastic rein-
forcements in place of synthetic fibers due to their ability to 
be biodegraded and renewable. A significant number of stud-
ies have focused on combining lignin with other bio-based 
polymers like starch, cellulose, and polylactic acid (PLA) to 
synthesize biodegradable bioplastics (Kai et al. 2016; Shi 
and Li 2016; Brodin et al. 2017). Pectin is a heteropolysac-
charide distributed in the primary lamella, middle lamella, 
and cell walls of plants. It is made up of esterified d-galactu-
ronic acid units bound together by α-(1–4) glycosidic bonds 
(Ropartz and Ralet 2020). Citrus fruits like oranges, lemons, 
gooseberries, and strawberries are rich in pectin, which was 
used to develop biodegradable bioplastics for the food and 
packaging industries. However, its applications are limited 
due to its inadequate mechanical properties and hydrophilic 
nature. (Shrestha et al. 2021). Like other polymers, several 
studies reported the addition of plasticizers like polyols to 
help in tackling the brittleness of the films. Also, pectin 
is blended with different additives like sodium alginate, 
starch, cellulose, and chitosan to improve the properties of 
the resulting bioplastic (Nešić et al. 2017; Younis and Zhao 
2019). Chitin makes up the exoskeleton of crustaceans and is 
one of the most abundant polysaccharides. Chitin undergoes 
N-deacetylation in an alkaline medium to form chitosan, a 

linear molecule composed of β- (1 → 4) -linked d-glucosa-
mine and N-acetyl-d-glucosamine. Owing to its non-toxicity 
and biodegradability, chitosan was extensively studied for 
its ability to form environment-friendly plastics (Table 1). It 
is one of the few polysaccharides known for its native anti-
microbial properties against gram-negative, gram-positive 
bacteria, algae, and fungi. Temperature is also a crucial fac-
tor in evaluating the antimicrobial activity of chitosan-based 
films/bioplastics, according to a report (Leceta et al. 2013). 
The film-forming solution showed antibacterial activity but 
was only found to be bacteriostatic after being dried into 
films. The use of various polyols, like glycerol, sorbitol, and 
polyethylene glycol as plasticizers for chitosan is studied 
extensively. The physicochemical properties of the film are 
influenced by the type and volume of plasticizer used (Ma 
et al. 2019; Jha 2020).

Proteins

Many proteins, of both plant and animal origin, are used as 
viable options for the creation of packaging materials.

Proteins of animal origin Casein is a milk protein belonging 
to the family of phosphoproteins and is majorly found in 
mammalian milk (Shivani et al. 2021). To form a bioplastic, 
casein is dispersed in an aqueous alkali solution, followed 
by coagulation with an acid or salt of an acid (Yong et al. 
2021). The resulting coagulum is pressed into plates and 
soaked in formaldehyde until it hardens to obtain the casein-
based bioplastic. Rennet casein was extruded with water in 
the presence of high moisture and pressure to obtain pliable 
films. Despite its low cost, the film was not easily moldable, 
and as a result, it was phased out of commercial use (Dodd 
2010). Furthermore, the formaldehyde used was a prob-
able carcinogen that can cause genetic abnormalities, mak-
ing its use hazardous (Jefferson et al. 2020). Whey protein 
is the by-product of cheese manufacturing, i.e., the liquid 
portion of milk after it is curdled and strained. The ability 
of whey to produce biodegradable, odorless, and transpar-
ent films are being extensively researched (Oliveira et  al. 
2017; Schmid and Müller 2018). The films are formed by 
casting and drying the whey protein isolate. But these films 
are highly brittle due to their disulfide crosslinking and are 
hence hydrophobic. To reduce the intermolecular interac-

Table 1  (continued)

Raw material Origin Advantages Disadvantages References

 PEA Hydrophobic α-amino acids, 
α, ω-diols, aliphatic dicar-
boxylic acids and dianhy-
drohexitoles

• High thermal stability and 
tensile strength

• Expensive (Zou et al. 2004)

PLA Polylactic acid; PHA Polyhydroxyalkanoates; PCL Polycaprolactone; PBAT Polybutylene adipate terephthalate; PEA Polyesteramides
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tions and overcome brittleness, it is treated with various 
plasticizers like glycerol and sorbitol. With the addition of 
plasticizers, the percentage of water solubility improved 

gradually, while mechanical resistance, Young’s modulus, 
and glass transition temperature decreased (Galietta et  al. 
1998). Collagen is another protein widely studied for its 

Table 3  Table comparing the percentage of biodegradation of some bioplastics from various source

PHA Polyhydroxyalkanoate, PHB Polyhydroxybutyrate, TiO2 Titanium dioxide, PHBV Poly(3-hydroxybutyrate-co-3-hydroxy valerate, PLA Pol-
ylactic acid, PCL Polycaprolactone, PBAT Polybutylene adipate terephthalate

Sources Mass loss (%) Conditions of biodegradation Approx. 
Duration 
(days)

Reference

Biomass
 Polysaccharides
  Starch ̴ 90 Organic compost Moisture content: 50% 

pH: 7.0–8.0
31 (Torres et al. 2011)

  Cellulose ̴ 30 31
  Chitin 83.8 Burial in red clay 31 (NAKASHIMA et al. 2005)
  Lignin 19–60 Laboratory incubation 91- 730 (Zabel and Morrell 2020)
  Pectin-cellulose composite 90 Anaerobic digestion in batch reactors 

maintained at 55 °C
15 (Bátori et al. 2017)

 Protein
  Soy protein 30 Aqueous solution containing pronase 

(proteolytic enzyme)
6 (Yamada et al. 2020)

  Casein 20 Loam soil 7 (Bagares et al. 2020)
  Zein 58 Saturated field soil with Fafard® 52 

medium
84 (Helgeson et al. 2009)

  Soy protein and whey protein isolate 
composite

36 Composting 7 (Li and Chen 2000)

Microorganisms
 PHA 88–99 Under optimum static laboratory condi-

tions
49 (Siracusa et al. 2008)

 PHB 62 Fertile garden soil with pH 7.30 and 
humidity of 80% at 30 °C

62 (Altaee et al. 2016)
 PHB–TiO2 composite nanofiber films 100 21
 PHBV 100 Lab-scale composting 60–80 (Salomez et al. 2019)

Monomers
 Bio-derived monomers
  PLA 88 Composting 90 (Kawashima et al. 2021)

 Synthetic monomers
  PCL 92 pH 13 63 (Sailema-Palate et al. 2016)

80 pH 1 69
100 Composting 1460 (Manoukian et al. 2019)

  PBAT 2.38 Real soil burial 91 (Wang et al. 2015)

Fig. 1  Classification of bioplas-
tics based on sources (biomass, 
microorganisms, and mono-
mers). The figure is adapted 
from (Avérous 2004) with kind 
permission from Taylor & 
Francis
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film-forming properties (Table  1). It is a structural  pro-
tein present in the extracellular matrix of connective tissues 
like skin, cartilage, bones, and tendons. Collagen undergoes 
partial hydrolysis to form gelatin. It is commonly used in 
the fabrication of scaffolds, wound dressings, drug delivery 
systems, and packaging materials (Ge et  al. 2018; Irawan 
et al. 2018; Lin et al. 2019; Bhuimbar et al. 2019). Collagen-
based films are known for their excellent biocompatibility, 
biodegradability, and oxygen and aroma barrier capacities. 
However, the applications of these collagen-based films are 
limited in packaging due to their relatively low water barrier 
capacity and mechanical strength. To improve these proper-
ties, collagen is often combined with chitosan, soy protein, 
and reinforcement fillers such as zinc oxide nanocrystals, 
cellulose, and magnesium oxide nanoparticles (Ahmad 
et al. 2016; De Silva et al. 2017; Andonegi et al. 2020; Jiang 
et al. 2020).

Proteins of plant origin Zein belongs to a group of plant 
storage proteins called prolamins, found majorly in the 
endosperm of maize (corn), accounting for 47% of the 
total endosperm content (dry basis) in corn (Shukla and 
Cheryan 2001). It is used in textile industries to impart 
hydrophobicity to the fabric. The hydrophobicity of the 
molecule is attributed to the recurrence of many non-
polar amino acids like alanine, leucine, and proline in the 
structure. The fabric can also be rendered antimicrobial by 
encapsulating ellagic acid in zein molecules (Gonçalves 
et al. 2020). Zein also finds its applications in the produc-
tion of ceramics for bone tissue repair (Hum et al. 2018), 
drug-delivery systems (Labib 2018), cosmetics (Tinoco 
et al. 2021), adhesives (Wei et al. 2020), etc. The plasticiz-
ing property of zein is widely studied and used in prepar-
ing thermostable, biodegradable zein-based bioplastics. 
The resulting zein-based bioplastic exhibits excellent gas 
barrier properties and hydrophobicity and is, therefore, 
used in modified atmosphere packaging (MAP) and coat-
ing on fruits and vegetables to preserve their freshness. 
MAP is a technique that involves the utilization of pack-
aging films to control and modify the atmosphere around 
the packed product. The food is either sprayed, brushed, 
or dipped in the plasticized zein solution and allowed to 
solidify to form a thin coat (Neo et al. 2013). These bio-
plastic coatings improve the shelf life of the food products 
like apples, pear, mango, tomato, broccoli, rice, cheese, 
and roasted peanuts by altering certain processes like 
delaying respiratory rate, sprouting, germination, ripen-
ing, rancidity, reducing loss of moisture, and inhibiting 
microbial growth (Koh et al. 2018; Santos et al. 2018b, a; 
Zhang et al. 2019). Soy protein is a protein that is extracted 
from dehulled and defatted soybeans. The purified form of 
soy protein called the soy protein isolate (SPI) is obtained 

by alkaline suspension, followed by isoelectric precipi-
tation at pH 4.5 (Chove et  al. 2001). Attributed to the 
prevalence of polar functional groups such as hydroxyl, 
thiol, carboxyl, and amine in the molecule, the films are 
hydrophilic and have poor mechanical strength (Ye et al. 
2019). This limitation can be overcome by performing 
certain surface modifications such as crosslinking with 
chemical agents like formaldehyde, glutaraldehyde, and 
phenolic compounds (Insaward et al. 2015). The resulting 
films from soy protein are brittle, hence various plasticiz-
ers are used to reduce this and improve the processability 
and flowability of the films (Božič et al. 2015). Improve-
ment of SPI-based bioplastic properties is reported to be 
dependent on characteristics such as the size and polar-
ity of the plasticizer used. Microbial contamination is 
another downside of the material. Several studies have 
used different nanoparticles and metal ions to impart anti-
microbial activity to SPI-based films (Jin et al. 2020). A 
self-healing, antimicrobial, SPI bioplastic was developed 
with good mechanical strength using polyethyleneimine 
(PEI) and metal ions such as  Cu2+ or  Zn2+. It is believed 
that the polycationic property of PEI is responsible for 
disrupting bacterial membranes through ion exchange (Li 
et al. 2019). Several other studies have used different addi-
tives like cellulose nanocrystals, zinc oxide nanoparticles 
(Xiao et al. 2020), cortex philodendron extract (Liang and 
Wang 2018), grape seed extract, nisin, EDTA (Sivarooban 
et  al. 2008), and organic acids like citric, lactic, maleic 
acids (Eswaranandam et al. 2004), etc. Gluten belongs to 
a family of seed proteins found in cereal grains like barley, 
rye, and majorly in wheat. The total wet and dry gluten 
content of wheat ranges from 17.8 to 47.23% and 5.9 to 
10.1% respectively. The viscoelastic property of gluten is 
exploited in the synthesis of biodegradable plastics. Fac-
tors like the production technique, working duration, tem-
perature, pH, plasticizer, and additive content can influ-
ence the properties of the film (Yu et  al. 2016). It was 
reported that gluten-based films obtained through extru-
sion were found to have better plasticizer–gluten inter-
action and water uptake capacity when compared to that 
produced through compression molding. The study also 
reported that an increase in pH toward the alkaline side 
improved the water uptake capacity of the wheat gluten 
films whereas those with additives like xanthan gum and 
glyoxal showed lower water uptake (Jiménez-Rosado et al. 
2019). Proteins are heteropolymers, unlike many other 
biodegradable polymers discussed above. The presence of 
various amino acids provides a wide range of chemical 
functions, which can result in a broad spectrum of poly-
mer network architectures. Proteins such as gluten provide 
unique and favorable properties like viscoelasticity and 
flow properties to the developed bioplastic (Table 1).
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Polyesters of bacterial origin

Polyesters are polymers made up of a carboxylic acid and 
diol group (Sudesh et al. 2000). A variety of bacteria that 
have been grown under various nutrient and environmen-
tal conditions, produce polyesters. These molecules, which 
are mainly lipid-based, are collected as storage resources, 
facilitating microbial survival in stressful situations. Based 
on the source organism, the granular size and number, mac-
romolecular structure, monomer composition, and phys-
icochemical characteristics change (Luengo et al. 2003). 
Most of these substances have the ability to break down 
naturally and are compatible with living organisms, making 
them highly interesting to the biotechnology industry. When 
provided with vital nutrients such as oxygen, phosphorus, 
nitrogen, sulfur, and magnesium, bacteria can proliferate 
rapidly. However, during the prevalence of imbalance in the 
growth environment, i.e., in the excess of carbon source and 
deficiency of essential nutrients, mainly phosphorus, and 
nitrogen, a variety of bacterial and archaeal genera accumu-
late storage polymers named polyhydroxyalkanoates (PHAs) 
(Wong et al. 2012). One of the most thoroughly researched 
microorganisms for the manufacture of PHA is Ralstonia 
eutropha or Alcaligenes eutrophus. They are synthesized and 
accumulated as highly refractive granules in the cytoplasm 
of the microorganisms. PHA acts as a carbon and energy 
reserve helping in the survival of bacteria under nutrient-
deficient conditions (Sirohi et al. 2021). The bacteria also 
show enhanced stress tolerance toward ultraviolet (UV) irra-
diation, heat, and osmotic shock (Kadouri et al. 2005). Per-
taining to the microbe and growth conditions, different types 
of PHAs are synthesized. More than 150 types of PHAs 
have been identified so far. Polyhydroxybutyrate (PHB) is 
a well-known polymer belonging to the PHA family. Other 
members include polyhydroxy valerate (PHV) and poly 
(3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV). PHA 
is recovered from the bacterial cell through lysis of the cell 
wall, followed by solubilization, purification, and precipita-
tion of PHA polymer (Kunasundari and Sudesh 2011). PHAs 
are biodegradable, non-toxic, biocompatible, water-resistant, 
and highly crystalline. Owing to their novel features, PHA 
bioplastics are used in the manufacture of biodegradable 
packaging materials (Meereboer et al. 2020). The need to 
maintain optimal growth conditions and the high cost of 
recovery are the limitations of PHA bioplastics. However, 
the utilization of recombinant microorganisms can overcome 
these disadvantages (Carpine et al. 2020).

Monomers

Several monomers (both naturally occurring (bio-derived) 
and synthetic) are combined by the process of polymeriza-
tion to produce efficient bioplastics. Overall, the choice of 

monomer depends on factors such as the properties required 
for the final product, the cost of production, and the avail-
ability of renewable resources.

Bio‑derived monomers

Polylactic acid (PLA) is an aliphatic polyester formed by 
condensation of lactic acid. It can also be obtained by the 
ring-opening polymerization of lactide (Mehta et al. 2005). 
PLA has been hailed as a promising, environment-friendly 
polymer due to its low toxicity and sustainability (Mulvihill 
et al. 2011). Like any other polymers, PLA films have a 
high modulus and are brittle (Xu et al. 2020). The use of 
plasticizers reduces the intermolecular forces of the poly-
meric chains, resulting in better processability, flexibility, 
and ductility. Citrate, adipate, and oligomeric lactic acid 
are by far the most widely used plasticizers for PLA (Shirai 
et al. 2015; Singh et al. 2019). Plasticizers from packaging 
materials tend to migrate into food over time, posing a risk 
to one's health. To delay the migration of plasticizers, fillers 
like wheat bran and nano-additives such as chitin nanofi-
brils (CN) are added to the blend. A study was carried out 
to investigate the ability of chitin nanofibrils and calcium 
carbonate (both micrometric and nanometric) in preventing 
or controlling the leaching of the plasticizer acetyl n-tributyl 
citrate (ATBC) in PLA/PBS blends. It was found that the 
addition of both chitin nanofibrils and micrometric calcium 
carbonate helped to slow down the leaching of the plasticizer 
(Aliotta et al. 2020, 2022). Melt mixing PLA with other 
polymers such as polycaprolactone (PCL), polybutylene suc-
cinate (PBS), starch, polyhydroxy butyrate (PHB), polyvi-
nyl alcohol (PVOH), and polybutylene adipate terephthalate 
(PBAT) is another way to boost its mechanical properties 
(Anna and Arrigo 2019; Olaiya et al. 2019; Kahvand and 
Fasihi 2019; Xiang et al. 2020). In conclusion, one of the 
most appealing features of PLA plastic is that its properties 
can be modified by additives, expanding its potential appli-
cations (Table 1). Additionally, PLA is biodegradable under 
environmental conditions. However, PLA polymers do have 
some limitations, such as softening at 60 °C. Copolymeriza-
tion with a more heat-resistant polymer or the incorporation 
of fillers can aid in enhancing its thermal stability. 

2.2.2. Synthetic monomers

Polycaprolactone (PCL) is a biodegradable polyester derived 
from fossil or crude oil. It was one of the first synthetic 
polymers to be developed. It is obtained from the monomer 
ε-caprolactone employing ring-opening polymerization. 
PCL is known for its hydrophobicity, flexibility, mechanical 
strength, excellent blend compatibility, and biodegradability 
(Woodruff and Hutmacher 2010). It is used in the synthesis 
of polyurethanes and as biodegradable, hot melt adhesives 
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(HMAs) in food packaging. It is also gaining popularity in 
the biomedical field in the fabrication of biodegradable scaf-
folds, drug delivery systems, wound dressings, and contra-
ceptive devices (Kim and Kim 2014; Siddiqui et al. 2018). 
Among the aromatic co-polyesters, polybutylene adipate 
terephthalate (PBAT) is one of the most promising materi-
als with great potential in various applications (Table 1). 
It is a biodegradable, synthetic, block copolymer of adipic 
acid, 1,4-butanediol, and terephthalic acid (Jian et al. 2020). 
It is manufactured under different commercial names such 
as Ecoflex, Origo-Bi, Ecoword, and Wango (Siegenthaler 
et al. 2012; Jacquel et al. 2015). PBAT has a random struc-
ture, hence the name random copolymer. The lack of struc-
tural order makes the material very stiff and of low elastic 
modulus; however, it is tough and flexible. The mechanical 
strength of the film depends on the composition of mono-
meric units and their molecular weight. Young's modulus 
increases with increasing terephthalate units while decreas-
ing the elongation at break. Similarly, the tensile strength 
is positively correlated to the molecular weight while the 
elongation at break shows a negative correlation (Jian et al. 
2020). The blend of PBAT and other strong, biodegrad-
able polymers can yield robust and rigid films. Over the 
years, PBAT has found its use in cling films for packaging, 
mulch films, water-resistant coatings (Souza et al. 2020), 
etc. Polyester amides (PEA) are a new class of biodegrad-
able polymers that are used in diverse industrial applications 
(Table 1). PEA can be produced from different monomers 
using a variety of synthesis techniques like ring-opening 
and polycondensation methods (melt, solution, and interfa-
cial polycondensation (Rodriguez-Galan et al. 2011). These 
monomers have ester and amide linkages in their chemical 
structure that can be easily degraded by bacteria. Hydropho-
bic α-amino acids, α, �-diols, aliphatic dicarboxylic acids, 
and dianhydrohexitoles are some of the monomers used in 
the synthesis of PEA films (Gomurashvili et al. 2000). PEA 
combines the benefits of polyesters and polyamides in a pol-
ymer. The synthesized polymeric films possess good ther-
mal, chemical resistance, and mechanical properties. Over 
the years, various fillers have been added to enhance the 
performance and durability of PEA films. A study reported 
that melt-blending of octadecyl amine-treated montmoril-
lonite clay with PEA showed a slight improvement in the 
oxygen and water vapor barrier properties (Krook et al. 
2002). Another study reported that the addition of nano-
silicon dioxide and nano-calcium carbonate as fillers for 
PEA showed a significant increase in tensile strength and 
reduction in the rate of hydrolysis (Liu et al. 2007).

Biodegradable bioplastics from various sources men-
tioned above may have a wide variety of uses based on their 
respective properties such as texture, mechanical strength, 
hydrophilicity, gas barrier properties, biodegradability, 
and many more. Based on these properties, the developed 

bioplastics can be used for various applications from food 
packaging to textiles and biomedical applications. Thermo-
plastic starch is used to synthesize food packaging materi-
als, disposable utensils, and compostable trash bags. PHAs 
exhibit immense applications in medical applications includ-
ing the development of long-term drug release capsules, and 
tissue scaffolds for neural regeneration (Meereboer et al. 
2020). However, certain detailed advantages and disadvan-
tages of bioplastics from various sources are mentioned in 
Table 1.

Biodegradation of bioplastics

The biodegradation of bioplastics from various sources 
depends on their physicochemical properties as well as envi-
ronmental factors, such as the soil and its essential micro-
bial diversity. Studies have shown that regardless of the 
source and type of bioplastic, soil enrichment significantly 
enhances the rate of biodegradation. Additionally, factors 
such as humidity and temperature play an important role in 
the biodegradation of bioplastics. (Zoungranan et al. 2020). 
Further, several components, especially plasticizers, are a 
necessity while synthesizing bioplastics. Water is the major 
solvent and plasticizer in biopolymer technology. Apart 
from water, polyols, mono, di-, and oligosaccharides are the 
most used plasticizers. Polyols such as glycerol, erythritol, 
and sorbitol have 3, 4, and 6 carbons and hydroxyl groups, 
respectively (Lang et al. 2020). It is reasonable to use these 
organic compounds as plasticizers for biopolymers given 
their completely biodegradable nature. In addition, the use of 
plasticizers also assists the quick degradation of bioplastics. 
In a study, it was revealed that the weight loss of unplasti-
cized PVOH/RWF films was lower than glycerol- and sorb-
itol-plasticized polyvinyl alcohol/rambutan skin waste flour 
films (Ooi et al. 2012).

The degradation of the bioplastics with the aid of using 
soil microorganisms is evident, and numerous microorgan-
isms including Bacillus sp. and Aspergillus sp., are isolated 
and recognized as degraders of bioplastics in soil (Adhikari 
et al. 2016). Table 2 summarizes the common microbes and 
enzymes responsible for degrading biodegradable bioplas-
tics. Complete biodegradation (≥ 90%) prevents accumula-
tion in soil, which is the initial level of testing biodegra-
dability (Ardisson et al. 2014). The steps involved in the 
microbial degradation of polymers have been depicted in 
Fig. 2. However, the rate of biodegradation of bioplastic 
depends on the soil conditions. The most widespread pro-
cedures used to examine the biodegradation of bioplastics 
in soil are visual analysis, detecting mass loss, spectroscopy, 
and  CO2 emission (Zilliges and Damrow 2017; Ruggero 
et al. 2019; Folino et al. 2020). The volume of  CO2 produced 
during biodegradation is used as the index of microbial 
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decomposition.  CO2 emission can be analyzed using two 
methods namely the cumulative measurement respirometry 
(CMR) and gravimetric measurement respirometry (GMR) 
(Ruggero et al. 2019). Visual analysis techniques include 
scanning electron microscopy (SEM), macroscopic pho-
tographs, and atomic force microscopy (AFM) to examine 
surface changes in the material. The visual evaluation com-
monly includes checking for the distribution of particle size 
in residual bioplastic and the presence of microbial coloni-
zation (Marga et al. 2005). Other factors include noticeable 
degradation phenomena such as loss of consistency, thick-
ness, discoloration, and the presence of physical disintegra-
tion like holes or cracks. Further, SEM and AFM are used 
to thoroughly observe the morphological changes occurring 
during biodegradation like crack formation, surface rough-
ness, and corrosive degradation (Folino et al. 2020). Another 
index of studying biodegradation is the percentage of mass 
loss. It includes measurement of mass loss for pieces of 
bioplastics extracted after soil burial post the experimental 
period. The standardized procedure includes sample screen-
ing, washing with distilled water, followed by drying and 
weighing (Salomez et al. 2019).

Biomass

Polysaccharides

Starch is primarily degraded by glycoside hydrolases, 
enzymes that hydrolyze the glycosidic bonds. The enzyme 
α-amylase cleaves the long starch polymers, producing 

smaller fragments that are further hydrolyzed by an 
array of enzymes including glucoamylase, β-amylase, 
and α-glucosidase. These enzymes further hydrolyze 
the α-glycosidic linkages (Encalada 2018). Enzymes 
that can accomplish starch hydrolysis are present in the 
soil. Several fungi including Aspergillus oryzae and bac-
teria such as Klebsiella pneumonia, Bacillus circulans, 
and Bacillus stearothermophilus synthesize an array of 
starch hydrolyzing enzymes. Further lytic polysaccharide 
monooxygenases (LPMOs) produced by a variety of bac-
teria like Escherichia coli and fungi such as Thermoascus 
aurantiacus, and glycoside hydrolases are also efficient in 
breaking glucose bonds by oxidative cleavage. The bio-
degradation of thermoplastic starch (TPS) was compared 
under laboratory conditions (soil and compost) and in the 
field (soil). Based on microbial activity, it was concluded 
that fungi have a greater ability to biodegrade TPS than 
bacteria. It was also observed that both the crystalline 
and molecular structures of TPS films are factors that 
influence the enzymatic degradation of TPS by fungal 
α-amylase. Absolute degradation of TPS films containing 
higher moisture levels and buried 20 cm deep in soil was 
observed in 4–6 months (Polman et al. 2021). In another 
study conducted, two batches of cassava starch films were 
synthesized, one set crosslinked with citric acid (TPS75-C, 
heated at 75 ℃ and TPS85-C, heated at 85 ℃) and another 
without any citric acid crosslinking (TPS7, heated at 75 ℃ 
and TPS85, heated at 8 ℃) were subjected to biodegrada-
tion for 30 days. The degradation process of TPS75 and 
TPS85 was considerably high in 12 days, while the citric 

Fig. 2  Sequential steps of poly-
mer degradation by microbes in 
the soil. The figure is adapted 
from (Kumar Tiwari et al. 2018) 
with kind permission from 
Granthaalayah publications
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acid cross-linked films (TPS75-C and TPS85-C) required 
18 days (Seligra et al. 2016).

Fungi form the major share of cellulolytic (cellulose-
degrading) microorganisms (Tian et al. 2017). Bacteria such 
as Pedobacter and Mucilaginibacter revealed intricate enzy-
matic systems for the degradation of polysaccharides includ-
ing cellulose and hemicellulose. Cellulases are responsible 
for extracellular cellulose degradation. These enzymes 
belong to the glycoside hydrolases and are adept at break-
ing the β-glycosidic bonds. LPMOs are involved in the initial 
phase of cellulose biodegradation (Polman et al. 2021). The 
degradation of cellulose produces cellobiose, a disaccharide 
of glucose. Depending on the soil condition, cellulose deg-
radation may require 81–495 days. Cellulose acetate (CA) 
is generated by the acetylation of cellulose. These acetyl 
groups hinder the microbial and enzymatic attack on the CA-
based bioplastics and prolong their time of biodegradation 
(Hayakawa et al. 2014). However, biodegradation may take 
place through oxidative cleavage by LPMOs and hydroly-
sis by cellulases. The collaboration of cellulases, LPMOs, 
and acetyl esterases is known to degrade CA with a degree 
of substitution of less than 1.8. The faster degradation of 
flax fibers was attributed to slight chemical differences 
between the flax and cotton-based cellulose acetate (CA). 
Complete breakdown of CA from rice straw was observed 
after 105 days in the soil. During biodegradation, the degree 
of substitution of the residual CA remained unaffected, as 
enzymatic hydrolysis occurs at a higher rate than deacetyla-
tion (López-Mondéjar et al. 2016). In a study, regenerated 
cellulose films were prepared from cellulose solution from 
pulps of cotton stalk, cotton linter, and wheat straw. They 
were buried in the soil to assess biodegradability (Fig. 3a). 
Results indicated 10% weight loss for film in 16 days (Zhang 
et al. 1996). In another study, cellulose film was observed to 
be decomposed in soils within only 4 weeks (Fig. 3b), sug-
gesting an exceptional biodegradability as compared to the 

polyethylene plastic film which demonstrated no indications 
of degradation (Ai et al. 2021).

In a study, it was  found that a thermoplastic starch 
strengthened with 50% wt. lignocellulosic fibers and flax 
fibers degraded considerably slower than those of native 
palm, banana, and bagasse (sugar cane residue) (Jumai-
din et al. 2021). Pectin is degraded by a group of enzymes 
called pectinases (Table 2). These enzymes work by depo-
lymerization and de-esterification of the pectin. Pectinolytic 
bacteria such as Erwinia spp. degrade pectin by producing 
such enzymes (Abbott and Boraston 2008). The anaerobic 
degradation study of pectin-cellulose biofilms from orange 
peel wastes exhibited 90% degradation in about 15 days. A 
highly biodegradable high-methoxy pectin (HMP) film with 
dialdehyde starch (DS) (0%, 25%, 50%, 75%, 100%) was 
developed. Increasing the content of DS caused a decrease 
in the biodegradation percentage (Fig. 4) (Bátori et al. 2017).

Chitin and chitin-based bioplastics are degraded by the 
action of bacteria and fungi in soil by a process called, 
chitinolysis via chitinases. Chitin undergoes deacetylation 

Fig. 3  Biodegradability test 
showing changes in the mor-
phology of cellulose films: a 
Macroscopic images showing 
degradation of cellulose film 
over 4 weeks. The image has 
been reproduced from (Ai et al. 
2021) published on Frontiers. b 
SEM images showing biodegra-
dation of regenerated cellulose 
films from pulps of cotton linter, 
cotton stalk, and wheat straw 
over 40 days. The image has 
been reproduced from (Zhang 
et al. 1996) with permission 
from the American Chemical 
Society

Fig. 4  Digital macroscopic images for high-methoxy pectin (HMP) 
film with varying concentrations of DS films after burial in soil for 
15  days: a 100HMP/0DS, b 75HMP/25DS, c 50HMP/50DS, d 
25HMP/75DS, and e 0HMP/100DS. The image has been adapted 
from (Bátori et al. 2017) with permission from Hindawi
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to produce chitosan, which is hydrolyzed by chitosanases 
(Gooday 1994). Bacterial species ofAeromonas, Vibrio, 
Cytophaga, Photobacterium, Streptomyces, Bacillus, Chro-
mobacterium, and Clostridium are well-known chitinolytic 
bacteria. Chitinolytic fungal species include Mucorales 
like Deuteromycetes and Mortierella spp, and Ascomycetes 
like Aspergillus, Thielavia, Trichoderma, Humicola Penicil-
lium, and Verticillium (Moussian 2019). The biodegradation 
of chitin and chitosan films revealed that after 1, 1.5, and 
2 months, chitin films buried in red clay achieved 83.8%, 
99%, and 100% weight loss, respectively. In the case of chi-
tosan films, the weight loss was 79.2%, 98.9%, and 100% for 
the same periods and conditions. (Nakashima et al. 2005). 
Figure 5 exhibits the SEM images of chitin and chitosan 
films before and after biodegradation. In another study, the 
biodegradation of two composite films polyethylene-chitin 
(PE-chitin) and polyethylene-chitosan (PE-chitosan) films, 
containing 10% chitin or chitosan, by pure microbial cultures 
in a soil environment was studied and compared to commer-
cial starch films. In soil, 73.4% of the PE-chitosan and 84.7% 
of PE-chitin degraded, while only 46.5% of the commercial 
starch film degraded after six months (Lee 1995).

It was observed that starch-based bioplastic biodegrades 
much faster compared to bioplastics developed from other 
polysaccharides such as cellulose (Table 3) based on the 
prevailing conditions including the microbial flora. This may 
be attributed to the fact that cellulose as a polysaccharide is 
much more stable compared to starch due to its molecular 
orientation where opposite molecules are placed at a rotation 

of 180° from each other forming a rigid elongated struc-
ture (Conley et al. 2016). However, the rate of bioplastic 
biodegradation is faster in a composting plant compared to 
natural conditions due to the continuous supply of air as well 
as humidity and temperature control. The biodegradation 
of starch-based bioplastics in the soil is depicted in Fig. 6. 
However, several factors such as the presence of additives 
affect the time taken for the degradation of bioplastics.

Proteins of plant and animal origin

According to a study conducted by Bagares et al., the deg-
radation of rapeseed protein-based bioplastic was 57% and 
74% in the soil and liquid medium, respectively. The bio-
plastic produced from casein-based bioplastic from spoiled 
processed cow’s (Bos taurus) milk took seven days to be 
degraded with the help of catalysts such as scavenger insects 
in the presence of sunlight and rain (Bagares et al. 2020). 
Further, the transparent whey protein isolate films began to 
degrade within only 2 days and completely degraded over 
7 days with more than 80% of weight loss. Figure 7a shows 
a scanned image of whey protein isolate films after 10 days 
of soil burial. Similarly, there are reports of soy protein and 
whey protein isolate composite films being degraded in 
about 7 days with 36% of weight loss (Li and Chen 2000). 
In another study, hydrophobic zein-based bioplastic films 
containing licorice essential oil were developed (Luís et al. 
2019). The biodegradability of the films was analyzed by 
soil burial degradation test for 10 days (Fig. 7b). The films 

Fig. 5  SEM images of a, b, c 
chitin films and d, e, f chitosan 
films buried for 1 month in 
red clay. a and d SEM images 
of chitin and chitosan films, 
respectively, before soil burial. 
b and c SEM images of chitin 
films; e and f SEM images of 
chitosan films after a month of 
burial in red clay. The images 
have been reproduced from 
(Nakashima et al. 2005) with 
kind permission from J-Stage
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lost about 50–60% of their weight, which is a strong indi-
cation of the biodegradation process carried out by the 
microorganisms in the soil. The visual analysis confirmed 
that, after 10 days in the soil, the films appeared thinner 
and more fragmented compared to the initial samples (Luís 
et al. 2019). Wheat gluten-based bioplastics were subjected 
to biodegradation in farmland soil. All gluten-based materi-
als were entirely degraded within 50 days in farmland soil 
(Domenek et al. 2004).

The study of biodegradation of bioplastics from bio-
mass such as proteins, polysaccharides (starch, cellulose, 
lignin chitin, and pectin), microorganisms, and bioderived 
as well as synthetic monomers receive less attention when 
compared to physicochemical properties of these materi-
als. Further, the comparison of biodegradation of modified 
composite polymers with one or more than one component 
from biomass has been studied in this review (Table 3). It 

is generally observed that animal-based protein bioplastics 
are easier to break down compared to plant-based protein 
bioplastics since plant proteins lack branched chain amino 
acids (BCAA).

Polyesters of bacterial origin

Microbes that produce extracellular  PHA-degrading 
enzymes are widespread in the soil and marine environment. 
PHAs are biodegraded by the action of bacteria present in the 
soil. These bacteria belong to the following genera: Arthro-
bacter, Corynebacterium, Actinomyces, Acinetobacter, Alca-
ligenes, Aspergillus, Bacillus, Burkholderia, Clostridium, 
Comamonas, Cupriavidus, Mycobacterium, Pimelobacter, 
Enterobacter, Gracilibacillus, Planococcus, Nocardia, Pseu-
doalteromonas, Staphylococcus, Micrococcus, Klebsiella, 
Streptomyces, Pseudomonas, Stenotrophomonas, and Vari-
ovorax (Trivedi et  al. 2016). PHA-degrading fungi are 
reported to be more efficient and belong to the divisions 
Ascomycota, Basidiomycetes, Deuteromycetes, and Zygo-
mycotina. Biodegradation of PHA in soil is facilitated by 

Fig. 6  a Macroscopic appearance of thermoplastic starch (TPS) films 
biodegradation in soil for 30  days. The figure has been reproduced 
from (Seligra et  al. 2016) with kind permission from Elsevier. b 
Macroscopic images of soil burial test of starch-based bioplastic over 
10  days indicating respective mass loss%: (i) Day 0, (ii) Increasing 
size of bioplastic on day 2, (iii) More soil water and the soil itself 
have entered the bioplastic pores on day 4, (iv) Wider cracking area 
on bioplastic sample on day 6, (v) Some parts of bioplastic were 
destroyed on day 8, (vi) Wider parts of the bioplastic were destroyed 
on day 10. The figure has been reproduced from (Nissa et al. 2019) 
with kind permission from IOP science

Fig. 7  a Digital images of whey protein isolate films before and 
after soil composting burial test over 10 days. The images have been 
reproduced from (Li and Chen 2000) with permission from Springer 
Nature. b Macroscopic digital images showing biodegradation of 
hydrophobic zein-based functional films over 10  days. The images 
have been reproduced from (Luís et  al. 2019) with kind permission 
from MDPI
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lipases and hydrolases (Table  2). The process involves 
breaking down the polymer into oligomers by hydrolytic 
depolymerase in the presence of water, converting PHAs 
into trimer and dimer units, which are then treated by lipases 
and hydrolases. (Meereboer et al. 2020). PHB depolymer-
ases can be secreted by several microorganisms. Some PHB 
depolymerases were isolated and purified from microorgan-
ism species Alcaligenes, Comamonas, and Pseudomonas 
(Suzuki et al. 2021). The biodegradation of starch/PHB-V 
blends has been studied on several occasions. Accinelli et al. 
developed a composite bioplastic synthesized from a combi-
nation of corn starch and poly(3-hydroxybutyrate)-co-poly 
(3-hydroxy valerate) (PHB-V) in various proportions. The 
biodegradability of the developed composite bioplastics in 
soil compost was assessed for 10 months. PHB-V blends 
with 50% of starch enhanced the biodegradability causing 
it to degrade within 50% of the time required for PHB-V 
bioplastic without any starch (Accinelli et al. 2012). Further, 
three types of TPS synthesized from potato, corn, and water-
soluble potato starch, blended with PHB were evaluated in a 
soil burial test. The mass loss increased with increasing time 
and increasing glycerol content added during the synthesis 
of bioplastic but decreased with increasing content of PHB 
(dos Santos et al. 2018b, a). The biodegradation of PHB 
films in soil was studied including and excluding nitrate and 
at varying concentrations of oxygen. It was observed that the 
PHB film completely degraded in two months under aero-
bic conditions in the presence of nitrate in the soil. (Fig. 8) 
(Bonartseva et al. 2002).

Monomers

Bio‑derived monomers

PLA has garnered significant interest in biomedical and 
packaging applications due to its biodegradable and hydro-
phobic characteristics. The cleavage of ester bonds is the 
primary reason behind PLA degradation. Polymer degrada-
tion can be further caused by an array of factors, includ-
ing oxidation, photodegradation, thermolysis, hydrolysis, 
and biodegradation. The biodegradability of PLA in soil is 
dependent on microorganisms (bacteria, fungus) and bio-
chemical processes of degradation (Weng et al. 2013). Dur-
ing biodegradation, PLA is first hydrolyzed and then decom-
posed by microorganisms into carbon dioxide and water. 
Primary PLA degrading enzymes include lipase, esterase, 
and alcalase (protease). PLA can be degraded in soil, due 
to the presence of many bacterial species such as Saccha-
rothrix, Kibdelosporangium, Pseudonocardia, Lentzea, 
and Amycolatopsi. In addition, studies reported that under 
composting conditions in forest soil consisting of a mix-
ture of Actinomadura keratinilytica and Thermopolyspora 
sp, PLA film samples in soil were degraded completely in 
three weeks (Zaaba and Jaafar 2020). Researchers found that 
the addition of starch augmented the biodegradation of the 
PLA-based bioplastics. SEM study revealed crack formation 
after biodegradation caused due to the action of microbes 
on the surface of the polymers (Qi et al. 2017; Kalita et al. 
2020). In another study, the field emission scanning elec-
tron microscope (FESEM) images of PLA-chitosan com-
posite film after composting showed massive morphological 
changes on the 40th and 80th days of composting process in 
soil. Microbial assimilation during the biodegradation devel-
oped holes and cracks on the polymer surface, cross-sec-
tion, and core (Kalita et al. 2021) (Fig. 9). PLA bioplastics 

Fig. 8  a Undegraded PHB film and PHB films with different degrees 
of degradation after 2 months of incubation in experimental flasks b 
0%  O2 and 0 g/L NO−

3
 c 10%  O2 and 0 g/LNO−

3
 , and d 10%  O2 and 

5 g/L NO−

3
 . The image has been reproduced from (Bonartseva et al. 

2002) with permission from Springer Nature

Fig. 9  FESEM images representing a PLA and b PLA-Chitosan com-
posite films before and after biodegradation under composting condi-
tions over 100 and 80 days, respectively The images have been repro-
duced from (Kalita et al. 2020, 2021) with permission from Elsevier
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degrade extremely slowly, due to increased hydrophobicity 
of the methyl group on the lactide monomer and prevent the 
degrading enzymes from penetrating the polymer and break-
ing the existing ester bond (Farah et al. 2016).

Synthetic monomers

Aliphatic-co-aromatic polyesters are hard to be degraded by 
enzymatic hydrolysis, but many enzymes that degrade PBAT 
have been found among carboxylic ester hydrolases, includ-
ing carboxylesterase, arylesterase, triacylglycerol lipase, and 
cutinases (Table 2) (Kawai et al. 2019). The rate of biodeg-
radation of PBAT can fluctuate from 5 to 95% subject to 
conditions of biodegradation used (composting, soil, enzy-
matic tests, etc.) (Feuilloley et al. 2005). PBAT films were 
reported to biodegrade at unique rates in food, manure, and 
yard compost with different microbial activities. The maxi-
mum biodegradation rate was found in manure compost, 
resulting in the highest  CO2 emission. SEM studies reveal 
that undegraded PBAT film shows a smooth surface (Weng 
et al. 2013). With increasing time of soil burial and the 
effects of microorganism activities, microbe-created cavities 
were observed on the surfaces (Wang et al. 2015). PCL sur-
face morphology was rough with certain fibrillar structures 
(Kalita et al. 2020). PCL is one of the few synthetic biode-
gradable polymers available and is used by microorganisms 
as an energy and carbon source (Chu and Wang 2013). The 
enzymes, lipase, and cutinase belong to the esterases under 
the hydrolytic enzymes. Recently, a combination of these 
two enzymes proved to be appropriate for the biodegradation 
of PCL (Liu et al. 2019a). PCL is biodegraded by cutinolytic 
enzymes secreting bacteria like Pseudozyma japonica-Y7-09 
(Abdel-Motaal et al. 2014). Further, a thermophilic Strep-
tomyces thermoviolaceus subsp. thermoviolaceus isolate 
76 T-2 isolated from soil in Taiwan is reported to cause 
biodegradation of PCL (Chua et al. 2013). An early study 
reported that soil burial and compost cause chain scission 
of the PCL backbone. This results in loss of mechanical 
properties and significant weight loss of PCL bioplastics in 
a short time (Ardisson et al. 2014). Lipases from R. delemar, 
R. arrizus, Candida cylindracea, and Achromobacter sp. and 
esterase from hog liver showed degrading activities on PEA 
and PCL. Studies showed that PCL completely degraded in 
12 days using Penicillium sp. strain 26–1 (ATCC 36507) 
isolated from soil. Figure 10 depicts FESEM images of bio-
degradation of PCL film.

The most common approach in the literature is to examine 
the total mass loss. Table 3 compares the percentage mass 
loss of bioplastics after soil burial under different conditions. 
For a bioplastic to be considered truly biodegradable, it must 
degrade into carbon dioxide, water, biomass, and/or min-
eral salts when exposed to air, moisture, soil, and microbes. 
Bio-based materials can also be used as plasticizers and 

reinforcements for bioplastic polymers, affecting their rate 
of biodegradation while also improving their functional 
properties.

Conclusion

Plastics are used in our daily lives as packaging materials, 
scientific gadgets, and in a variety of other applications. 
However, traditional plastics are non-biodegradable, and 
their rapid buildup in the soil ecosystem poses a hazard 
to the environment. Although plastics have significantly 
improved our quality of life, it is crucial to shift toward sus-
tainable alternatives, such as bio-based biodegradable plas-
tics. Biodegradable plastics are gaining popularity, and for 
the sake of the environment, plastics could be replaced by 
biodegradable bioplastics derived from various sources. The 
biodegradation of bioplastics in the soil can be affected by 
numerous elements which include microbial diversity, tem-
perature, humidity, and pH of the soil. The most common 
techniques in the literature to study the biodegradation of 
plastics are mass loss and visible evaluation via macroscopic 
digital and SEM images. Biomass, particularly polysaccha-
rides like starch and cellulose, is widely preferred for the 
synthesis of bioplastics. However, the increasing demand 
for such bioplastics may create heavy competition for food 
sources. Starch and cellulose are commonly used polysac-
charides. Also, starch is more hygroscopic than cellulose, 
making starch-based bioplastics more susceptible to degra-
dation. Additionally, discarded bioplastics in landfills release 
methane, a potent greenhouse gas, which could negatively 
impact the ecosystem. Bioplastics of microbial origin have 
a significant constraint in the form of bulk manufacturing 

Fig. 10  a SEM images of PBAT film surface before and after the soil 
burial test: (i) 0  months (ii) after 1  month (iii) after 2  months (iv) 
after 3  months. This image has been reproduced from (Wang et  al. 
2015) with kind permission from Elsevier. b FESEM images repre-
senting the PCL film samples before and after biodegradation over 
100  days under composting conditions. The image has been repro-
duced from (Kalita et al. 2020) with permission from Elsevier
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and high recovery costs. Bioplastics may be implemented 
in the manufacturing of scientific devices and various other 
important applications including flexible packaging. Biodeg-
radability is a characteristic regularly sought in terms of food 
packaging. Due to the extensive variety of bioplastics from 
diverse sources, the life cycle or the time required for com-
plete biodegradation of every bioplastic differs, relying on 
situations of biodegradation and available waste control sys-
tems in different places. In the recent times of the COVID-19 
pandemic, the usage of plastics has been aggravated by the 
immoderate use and intake of single-use plastics (consisting 
of personal protective equipment like masks and gloves). 
With these current traits of expanded utilization of conven-
tional non-biodegradable plastic in packaging, food, medi-
cal, and health industry, it is critical to update the single-use 
plastics with eco-friendlier options.
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