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Abstract Response surface methodology-based central

composite design on five variables incubation time, pH,

temperature, sucrose concentration, and soya peptone

concentration was employed for optimization of the pro-

duction of bioactive compounds by Nocardiopsis litoralis

strain VSM 8. The main quadratic effects and interactions

of the five variables on the production of bioactive

metabolites were investigated. A second-order polynomial

model produced a satisfied fit for experimental data with

regard to the production of the bioactive metabolites.

Regression analysis showed that high R2 values of all the

five responses are significant and adjusted R2 values

showed good agreement with the experimental and pre-

dicted values. The present model was used to evaluate the

direct interaction and quadratic effects to optimize the

physico-chemical parameters for the production of bioac-

tive metabolites that inhibit the pathogenic microorganisms

measured in terms of zones of inhibition (responses).

Mathematical kinetic model development and estimation of

kinetic parameters also showed good approximation in

terms of model fitting and regression analysis.

Keywords Optimization � Bioactive metabolites � RSM �
CCD � Kinetic modeling

Introduction

Microorganisms dwelling in extreme environments are

prolific producers of several bioactive compounds that have

evolved due to adaptation of the extreme environmental

conditions in terms of metabolic biochemistry. Actino-

mycetes are well documented for their capacity to produce

bioactive metabolites with complex diversity and diverse

biological activities. The genes involved in the synthesis of

secondary metabolites remain undiscovered due to absence

of transcription under conventional laboratory conditions,

but mathematical models predict thousands of unexplored

secondary metabolites from actinomycete genomes. Acti-

nomycetes are stable, persistent, and active component of the

marine microbial communities. Discovery of novel acti-

nobacteria, which operate unusual metabolic pathways, has

the ability to produce complex chemical compounds with

potential biological activities.

Optimization of physiological parameters and the supple-

mentary nutrition for the biosynthesis of bioactive metabolites

can be achieved by the systemic study. The important

parameters such as cultural conditions and media constituents

are the significant factors influencing the high yield of

antimicrobial compounds. Often the production conditions are

very similar among the closely related actinomycetes, and

hence, optimization of growth and production conditions is

very crucial for the maximum production of potential bioac-

tive compounds (Pfefferle et al. 2000; Kiranmayi et al. 2011).

Media optimization explores a sequence of phases with

specific set of optimal conditions fixed by different method-

ologies (Shekar et al. 2014).
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Traditional one-factor-at-time (OFAT) optimization is

laborious and time-consuming, and also misleading con-

clusions may be drawn, because individual factor interac-

tions are ignored. Hence, establishing the optimized

conditions is cumbersome, and therefore, cultural condi-

tions need to be optimized to maximize the production of

bioactive compounds with preserved biological activities

(Ilaiyaraja et al. 2015). Statistical optimization approach is

advantageous than to the traditional practice of changing

one variable at a time (Collaa et al. 2016). Response sur-

face methodology (RSM) quantifies the relationship

between the controllable input parameters and obtained

response. RSM is a powerful statistical experimental

approach used in mathematical modeling, and an ideal

process for variable standardizing strategy for optimization

of the target metabolite production and simultaneously

evaluates the relative significance and interactive effects

among different variables (Souagui et al. 2015). Central

composite design (CCD) is a program of RSM that is

embedded with factorial or fractional factorial design with

center points that are augmented with a group of ‘‘star

points’’ that allows estimation of curvature.

Furthermore, the successful design and operation of fer-

mentation process, in which biochemical transformation

occurs in controlled conditions, need careful understanding

of complex metabolic reactions. This could be supported by

mathematical modeling that describes the process simpler

with good representation. Fermentation kineticmodels allow

the bioengineer to get insight and deep knowledge on the

mechanism of synthesis of bioactive metabolites for its yield

and productivity from fermentation studies. Furthermore,

the evaluation of assumed unstructured models with the

experimental data for comparison to find the best model that

describes the system. In general, unstructured models con-

sider the cellmass as awhole to explain the biological system

and are more effective in elucidating the fermentation pro-

files of microbial process as for bio products (Rajendran and

Thangavelu 2008; Rama Krishna et al. 2016).

Hence, the objectives of this study include the statistical

optimization of process parameters for bioactive metabolite

production using RSM and to estimate the kinetic param-

eters of actinomycetes fermentation using N. litoralis strain

VSM 8 (KT901293).

Materials and methods

Isolation and identification of actinomycetes

As a part of our ongoing research on bioactive metabolites,

one promising strain with good antimicrobial potential was

identified as N. litoralis strain VSM 8, isolated from deep

sea sediment samples of Bay of Bengal, Visakhapatnam

using soil dilution plate technique on actinomycetes iso-

lation agar medium containing 2-g sodium caseinate, 0.1-g

L-asparagine, 4-g sodium propionate, 0.5-g dipotassium

phosphate, 0.1-g magnesium sulfate, 0.001-g ferrous sul-

fate, and 5 ml glycerol per 1000 ml distilled water (pH 8).

The strain has been deposited in NCBI Genbank with an

accession number KT901293. The strain was maintained

on Yeast extract Malt Extract Dextrose (YMD) agar

medium at 4 �C. An attempt was made in the study to

optimize the culture conditions for enhancing the produc-

tion of bioactive metabolites by the strain using RSM.

Optimization of screened process parameters

for bioactive metabolite production by N. litoralis

strain VSM 8

RSM applies the statistical and mathematical approach for

modeling, designing, and analyzing the engineering prob-

lems. It is used to optimize the response surface that

influences the various parameters and relationship between

the input parameters and the obtained response quantita-

tively (Parmjit 2008). Relationship between response and

independent variables is unknown. Therefore, it is impor-

tant to execute RSM to find the legitimate practical relation

between the responses and the set of independent variables.

In this study, the use of RSM to determine the optimum

conditions of N. litoralis strain VSM 8 for the bioactive

metabolite production under a wide range of physical

conditions was performed.

To design minimum number of experimental runs, a full

factorial central composite face-centered design (CCFD)

with five independent variables and their combinations was

used to optimize the response with the region of three-

dimensional observation spaces. Design Expert software

(Version 7.0 State-Ease, Inc., USA) was used to design the

experiments for bioactive metabolites production. Using

CCD of RSM, the most significant variables (A, B, C, D,

and E) at their optimum levels were identified for maximal

response in terms of antimicrobial activity of bioactive

metabolites measured as zone of inhibition. Five indepen-

dent variables selected in this study include A-Incubation

time, B-pH, C-Temperature, D-Sucrose, and E-Soya pep-

tone. A total of 50 experiments were obtained using fol-

lowing equation that have 25 full factorial CCD for five

variables comprising 32 factorial points, 10 axial points,

and 8 replicates:

N ¼ 2n þ 2nþ nc ¼ 25 þ 2� 5þ 8 ¼ 50; ð1Þ

where N is total number of experimental runs to be per-

formed, n is number of variables (factors), and nc is number

of replicates at center points.

The central coded value of all the variables was con-

sidered as zero. Low and high ranges of all the variables
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used in RSM and the complete experimental plan with

values in actual and coded form are presented in Table 1.

Statistical analysis

The model was statistically analyzed to evaluate the anal-

ysis of variance (ANOVA). To analyze the fit and predic-

tion accuracy of the model constructed, correlation

coefficients (R2), adjusted determination coefficient (Ad-

justed-R2), root mean square error (RMSE), and absolute

average deviation (AAD) were carried out between

experimental and predicted data. The data obtained were

subjected to graphical and regression analysis using Design

Expert software. The experimental errors and repro-

ducibility of the data were determined by the central points.

To minimize the effect of the uncontrolled factors, the

experimental sequence was randomized. The quadratic

regression equation was used with each variable to develop

an empirical model which correlated the response (bioac-

tive metabolite production) to five variables, as per the

following equation (Cui et al. 2016):

Y ¼ b0 þ
Xn

i¼1

biXi þ
Xn

i¼1

biiXi

 !2

þ
Xn�1

i¼1

Xn

j¼iþ1

bijXiXj; ð2Þ

where Y is predicted response, b0 is intercept coefficient, bi
is linear coefficient, bij is interaction coefficients, bii is
quadratic coefficients, and Xi and Xj are coded values of the

five additive variables.

Unstructured kinetic modeling of N. litoralis strain

VSM 8

The growth of halophilic marine actinomycete with limit-

ing carbon substrates influences the bioactive metabolite

production. Basic mathematical and unstructured kinetic

models quantitatively describe the substrate utilization and

growth-associated production formation kinetics in a batch

system, and the similar equations were also developed by

many researchers (Mohammad et al. 1995; Cheng et al.

2010; Li et al. 2015). Models of logistic and Luedeking–

Piret were used to simulate the cell growth and bioactive

metabolite production of N. litoralis strain VSM 8

(KT901293). The data acquired from the models were used

to calculate the specific cell growth rate (lmax), day
-1,

specific production rate of bioactive metabolite, day-1.

Under optimal growth conditions and no effects of

substrate and product inhibition, growth kinetic model of

N. litoralis strain VSM 8 (KT901293) (X) (as per Malthus’s

law), in a batch fermentation, is best described as logistic

function (Leroy and de Vuyst 1999):

dX

dt
¼ lmaxX 1� X

Xm

� �
: ð3Þ

On integration, the above equation gives the logistic (L)-

type model equation that relates hyperbolic growth of cell:

XðtÞ ¼ X0e
lmaxt

1� X0

Xm
ð1� elmaxtÞ

; ð4Þ

where X is biomass concentration, g/l, lmax is the maxi-

mum specific cell growth rate, day-1, and Xm is the max-

imum biomass concentration, g/l.

Bioactive metabolite production can be obtained from

growth limiting substrate (optimized media constituents)

and the substrate utilization kinetics can be taken from

Modified Leudeking–Piret (MLP) equation:

� dS

dt
¼ rS ¼ c

dX

dt

� �
þ gX: ð5Þ

On integration, the above equation results logistic

incorporated modified Leudeking–Piret (LIMLP) equation:

SðtÞ ¼ S0 � c
X0e

lmaxt

1� X0

Xm

� �
1� elmaxtð Þ

� X0

2
4

3
5

þ gXm

lmax

ln 1� X0

Xm

� �
1� elmaxtð Þ

� �
: ð6Þ

Constant of non-growth-associated substrate

consumption, g, in above equation can be calculated from

stationary phase data(where �dS

dt
¼ 0):

g ¼
� dS

dt

� 	
stationaryphase

Xmax

: ð7Þ

Significant bioactive metabolite (product) formation

occurs in late-logarithmic phase of cell growth and

bioactive metabolite formation kinetics follows

Leudeking–Piret equation (Luedeking and Piret 2000), as:

Table 1 Experimental range of

factors studied using CCD in

terms of coded and actual

factors

Factors Symbols Actual levels of coded factors

-1 (low) 0 (middle) ?1 (high)

Time of incubation (days) A 10 11 12

pH B 7 8 9

Temperature (�C) C 25 30 35

Sucrose concentration (%w/v) D 1 2 3

Soya peptone concentration (%w/v) E 0.5 1.0 1.5
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dP

dt
¼ a

dX

dt
þ bX: ð8Þ

Logistic incorporated Leudeking–Piret (LILP) equation

derived from integration of the above equation results:

PðtÞ ¼ P0 þ a
X0e

lmaxt

1� X0

Xm

� �
1� elmaxtð Þ

� X0

2
4

3
5

þ bXm

l
ln 1� X0

Xm

� �
1� elmaxtð Þ

� �
: ð9Þ

Non-growth-associated product formation constant, b,
can be determined from stationary phase data (where
dX

dt
¼ 0):

b ¼
dP
dt

� 	
stationaryphase

Xmax

: ð10Þ

Experimental data obtained from batch shake-flask

fermentations was used to simulate using Eqs. (4), (6),

and (9).

Results

RSM modeling

Influence of different physico-chemical parameters on

bioactive metabolite production and their effect on the

response (measured as inhibition zones) were investigated

and optimized as per the model designed by CCD of RSM.

The effect of independent variable optimization on the

responses was identified by complete five factors and three-

level factorial experiment designs with eight replications of

central point and ten axial points and thirty-two factorial

points for bioactive metabolite production by the strain.

The maximum production of the bioactive compound and

its effect on the responses (inhibition of growth of the

pathogenic microorganisms by the bioactive compound

produced by N. litoralis strain VSM 8 is represented in

mm) was experimentally found to be 21 mm (Staphylo-

coccus aureus), 20 mm (Bacillus subtilis), 22.9 mm (X.

campestris), 19.9 mm (Pseudomonas aeruginosa), and

17.9 mm (Candida albicans) that was obtained from cul-

tural conditions of the strain grown in a medium containing

2 % sucrose, 1 % soya peptone with pH 8 incubated at

25 �C for 11 days.

To determine whether the model would give misleading

or approximate results, the experimental data are subjected

to model adequacy. Linear, interactive, quadratic, and

cubic models were fitted to the experimental data to

determine the actual relationship between the response and

the variables selected for the study. The suggested

sequential model sum of squares and lack of fit tests

(showing degrees of freedom; mean square, F value,

p value), model summary statistics (showing standard

deviation, R2, adjusted R2 and predicted R2) for the best

outcome quadratic model (Bipasha et al. 2015), for all the

five responses, are given in Table 2.

As per the sequential model sum of squares of all the

five responses, the quadratic model was significant with

Table 2 Sequential model fitting for all the responses (in terms of inhibition zone produced by bioactive metabolite)

Model parameter S. aureus B. subtilis X. campestris P. aeruginosa C. albicans

Sequential model sum of squares—quadratic vs 2FI (suggested)

Sum of squares 85.83 59.22 237.14 94.56 26.82

df 5 5 5 5 5

Mean square 11.17 11.84 47.43 18.91 5.36

F value 2157.78 240.13 982.19 317.08 590.81

p value (Prob[F) \0.0001 \0.0001 \0.0001 \0.0001 \0.0001

Lack of fit tests—quadratic (suggested)

Sum of squares 0.15 0.71 1.40 1.73 0.26

df 20 20 20 20 25

Mean square 7.535E-003 0.036 0.0070 0.086 1.08

F value 0.85 0.44 – – –

p value (Prob[F) 0.6410 0.9373 – – –

Model summary statistics—quadratic (suggested)

Std. Dev. 0.089 0.22 0.22 0.24 0.095

R2 0.9975 0.9797 0.9944 0.9824 0.9925

Adjusted R2 0.9957 0.9657 0.9906 0.9702 0.9873

Predicted R2 0.9931 0.9503 0.9811 0.9551 0.9781

df degrees of freedom
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Table 4 ANOVA for Staphylococcus aureus response surface quadratic model

Source Sum of squares dfa Mean square F value P value Prob[F

Model 90.57 20 4.53 569.25 \0.0001 Significant

A-time of incubation 0.28 1 0.28 35.02 \0.0001

B-pH 1.26 1 1.26 157.88 \0.0001

C-temperature 0.26 1 0.26 33.18 \0.0001

D-Sucrose 1.16 1 1.16 145.35 \0.0001

E-Soya Peptone 0.26 1 0.26 32.54 \0.0001

AB 5.844E-004 1 5.844E-004 0.073 0.7883

AC 5.844E-004 1 5.844E-004 0.073 0.7883

AD 1.027E-003 1 1.027E-003 0.13 0.7219

AE 1.027E-003 1 1.027E-003 0.13 0.7219

BC 3.749E-003 1 3.749E-003 0.47 0.4979

BD 3.533E-003 1 3.533E-003 0.44 0.5104

BE 3.533E-003 1 3.533E-003 0.44 0.5104

CD 3.533E-003 1 3.533E-003 0.44 0.5104

CE 3.533E-003 1 3.533E-003 0.44 0.5104

DE 3.749E-003 1 3.749E-003 0.47 0.4979

A2 0.74 1 0.74 93.34 \0.0001

B2 0.054 1 0.054 6.80 0.0142

C2 0.30 1 0.30 37.64 \0.0001

D2 2.72 1 2.72 341.39 \0.0001

E2 2.22 1 2.22 279.34 \0.0001

a Degrees of freedom

Table 5 ANOVA for Bacillus subtilis response surface quadratic model

Source Sum of squares dfa Mean square F value P value Prob[F

Model 68.97 20 3.45 69.91 \0.0001 Significant

A-time of incubation 0.49 1 0.49 10.01 0.0036

B-pH 0.70 1 0.70 14.10 0.0008

C-temperature 3.23 1 3.23 65.41 \0.0001

D-Sucrose 0.90 1 0.90 18.33 0.0002

E-Soya peptone 2.62 1 2.62 53.04 \0.0001

AB 0.0321 1 0.032 0.64 0.4301

AC 0.024 1 0.024 0.49 0.4895

AD 1.341E-003 1 1.341E-003 0.027 0.8702

AE 1.341E-003 1 1.341E-003 0.027 0.8702

BC 0.072 1 0.072 1.46 0.2366

BD 0.023 1 0.023 0.48 0.4960

BE 0.023 1 0.023 0.48 0.4960

CD 7.147E-003 1 7.417E-003 0.14 0.7062

CE 7.147E-003 1 7.147E-003 0.14 0.7062

DE 6.214E-003 1 6.214E-003 0.13 0.7252

A2 0.74 1 0.74 14.92 0.0006

B 0.74 1 0.74 14.92 0.0006

C2 2.21 1 2.21 44.82 \0.0001

D2 0.052 1 0.052 1.06 0.3114

E2 0.30 1 0.30 5.98 0.0207

a Degrees of freedom
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Table 6 ANOVA for Xanthomonas campestris response surface quadratic model

Source Sum of squares dfa Mean square F value P value Prob[F

Model 249.64 20 12.48 258.49 \0.0001 Significant

A-time of incubation 2.74 1 22.74 56.65 \0.0001

B-pH 0.34 1 0.34 7.06 0.0127

C-temperature 0.096 1 0.096 1.99 0.1692

D-Sucrose 2.89 1 2.89 59.82 \0.0001

E-Soya peptone 2.89 1 2.89 59.82 \0.0001

AB 0.000 1 0.000 0.000 1.0000

AC 0.000 1 0.000 0.000 1.0000

AD 1.776E-003 1 1.776E-003 0.037 0.8493

AE 1.776E-003 1 1.776E-003 0.37 0.8493

BC 1.167E-003 1 1.167E-003 2.416E-003 0.9611

BD 0.000 1 0.000 0.000 1.0000

BE 0.000 1 0.000 0.000 1.0000

CD 0.000 1 0.000 0.000 1.0000

CE 0.000 1 0.000 0.000 1.0000

DE 1.167E-003 1 1.167E-003 2.416E-003 0.9611

A2 2.11 1 2.11 43.78 \0.0001

B2 3.13 1 3.13 64.77 \0.0001

C2 0.35 1 0.35 7.19 0.0120

D2 3.13 1 3.13 64.77 \0.0001

E2 5.75 1 5.75 119.03 \0.0001

a Degrees of freedom

Table 7 ANOVA for Pseudomonas aeruginosa response surface quadratic model

Source Sum of squares dfa Mean square F value P value Prob[F

Model 96.43 20 4.82 80.83 \0.0001 Significant

A-time of incubation 0.000 1 0.000 1.0000

B-pH 1.475E-005 1 1.475E-005 2.473E-004 0.9876

C-temperature 0.32 1 0.32 5.44 0.0269

D-Sucrose 0.000 1 0.000 0.000 1.0000

E-Soya peptone 0.32 1 0.32 5.38 0.0276

AB 0.000 1 0.000 0.000 1.0000

AC 0.000 1 0.000 0.000 1.0000

AD 2.381E-004 1 2.381E-004 3.992E-003 0.9501

AE 2.381E-004 1 2.381E-004 3.992E-003 0.9501

BC 1.564E-005 1 1.564E-005 2.622E-004 0.9872

BD 0.000 1 0.000 0.000 1.0000

BE 0.000 1 0.000 0.000 1.0000

CD 0.000 1 0.000 0.000 1.0000

CE 0.000 1 0.000 0.000 1.0000

DE 1.564E-005 1 1.564E-005 2.622E-004 0.9872

A2 1.15 1 1.15 19.30 0.0001

B2 1.15 1 1.15 19.30 0.0001

C2 0.84 1 0.84 14.05 0.0008

D2 0.58 1 0.58 9.64 0.0042

E2 1.15 1 1.15 25.37 \0.0001

a Degrees of freedom
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(p value \0.0001) for responses Staphylococcus aureus,

Bacillus subtilis, Xanthomonas campestris, Pseudomonas

aeruginosa, and Candida albicans (inhibition of the growth

was represented in mm). The lack of fit test values of

quadratic models identified earlier as the accepted model

for all the responses was found to be insignificant lack of fit

which indicate that the model is highly significant. The

second-order quadratic model equations and regression

coefficients (%) of all responses (Urailuck et al. 2015) were

given in Table 3.

The model was found to be statistically significant with

confidence level of 99.9 % since the Prob[F value of the

model for all the five responses was found to be\0.00001

and F values of the model for all the five responses was

found to be\0.00001 and F values of the model for five

responses 569.25, 69.91, 258.49, 80.83, and 190.97 (in

terms of inhibition of growth of the pathogenic

microorganisms, viz., Staphylococcus aureus, Bacillus

subtilis, Xanthomonas campestris, Pseudomonas aerugi-

nosa, Candida albicans, respectively, by the bioactive

compound produced by VSM 8 is represented in mm)

implies that the model is significant. Model terms are said

to be significant if the values of p (Prob\F) is less than

0.0500. ANOVA reveals that most of the significant factors

affecting the growth inhibition of pathogenic microorgan-

isms (five responses) by the bioactive compounds produced

by VSM 8 for the variables: incubation time (days), pH,

temperature, concentration of sucrose, and concentration of

soya peptone. Tables 4, 5, 6, 7 and 8 show the ANOVA

results obtained from statistical optimization.

Regression analysis indicated that the coefficient of

determination (R2) values of the five responses and high

value of R2 indicate that the full quadratic model equation

was capable of representing that the system under a given

Table 8 ANOVA for Candida albicans response surface quadratic model

Source Sum of squares dfa Mean square F value P value Prob[F

Model 34.68 20 1.73 190.97 \0.0001 Significant

A-time of incubation 6.152E-005 1 6.152E-005 6.776E-003 0.9350

B-pH 1.43 1 1.43 157.96 \0.0001

C-temperature 0.33 1 0.33 36.26 \0.0001

D-Sucrose 8.781E-006 1 8.781E-006 9.671E-004 0.9754

E-Soya peptone 5.38 1 5.38 592.38 \0.0001

AB 6.493E-005 1 6.493E-005 7.152E-003 0.9332

AC 6.493E-005 1 6.493E-005 7.152E-003 0.9332

AD 4.372E-005 1 4.372E-005 4815E-004 0.9826

AE 4.372E-005 1 4.372E-005 4815E-004 0.9826

BC 2.872E-007 1 2.872E-007 3.163E-005 0.9956

BD 9.297E-006 1 9.297E-006 1.024E-003 0.9747

BE 9.297E-006 1 9.297E-006 1.024E-003 0.9747

CD 9.297E-006 1 9.297E-006 1.024E-003 0.9747

CE 9.297E-006 1 9.297E-006 1.024E-003 0.9747

DE 2.872E-007 1 2.872E-007 3.163E-005 0.9956

A2 0.62 1 0.62 68.47 \0.0001

B2 0.057 1 0.057 6.24 0.0184

C2 0.40 1 0.40 43.88 \0.0001

D2 0.22 1 0.22 24.74 \0.0001

E2 0.31 1 0.31 33.63 \0.0001

a Degrees of freedom
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Table 9 Central composite factor experimental design along with experimental and predicted values

Run A-time (days) B-pH C-temperature (�C) D-[Sucrose]

(%w/v)

E-[Soya peptone]

(%w/v)

S. aureus B. subtilis X. campestris P. aeruginosa C. albicans

Actual RSM Actual RSM Actual RSM Actual RSM Actual RSM

1 11.00 7.00 25.00 2.00 1.00 17.60 17.60 16.80 16.92 17.20 17.20 16.40 16.40 15.80 15.80

2 10.00 9.00 30.00 1.00 0.50 17.80 17.82 17.00 17.07 17.80 17.80 16.40 16.40 15.80 15.80

3 11.00 8.00 25.00 2.00 1.50 17.20 17.15 17.00 16.93 17.40 17.40 16.40 16.40 15.40 15.40

4 11.00 8.00 25.00 2.00 1.00 17.40 17.38 17.20 17.22 18.00 18.00 16.40 16.40 15.40 15.40

5 10.00 9.00 20.00 1.00 1.50 17.80 17.81 17.40 17.45 17.40 17.40 16.60 16.60 16.00 16.00

6 10.00 9.00 20.00 1.00 0.50 17.80 17.81 17.40 17.45 17.40 17.40 16.60 16.60 16.00 16.00

7 12.00 9.00 20.00 1.00 1.50 17.40 17.40 17.60 17.33 17.60 17.60 16.60 16.60 15.60 15.60

8 11.00 8.00 25.00 1.00 1.00 17.60 17.62 18.20 18.07 18.20 18.20 16.60 16.60 15.60 15.60

9 12.00 7.00 20.00 1.00 1.50 18.00 18.02 17.20 17.21 17.80 17.80 16.40 16.40 15.80 15.80

10 11.00 9.00 25.00 2.00 1.00 18.00 18.21 17.40 17.34 18.40 18.40 16.40 16.40 15.80 15.80

11 12.00 9.00 30.00 1.00 0.50 17.60 17.61 17.40 17.34 18.00 18.00 16.40 16.40 15.40 15.40

12 11.00 8.00 25.00 2.00 1.00 17.80 17.81 17.60 17.60 18.60 18.60 16.40 16.40 15.40 15.40

13 10.00 7.00 20.00 3.00 0.50 18.20 18.18 17.80 17.68 18.00 18.00 16.60 16.60 16.00 16.00

14 10.00 7.00 20.00 1.00 0.50 18.40 18.35 18.00 17.93 18.60 18.60 16.60 16.60 16.00 16.00

15 12.00 9.00 30.00 3.00 0.50 17.80 17.82 18.00 18.01 18.20 18.20 16.60 16.60 15.60 15.60

16 12.00 7.00 30.00 1.00 1.50 18.00 18.01 18.20 18.39 18.80 18.80 16.60 16.60 15.60 15.60

17 12.00 8.00 25.00 2.00 1.00 17.80 17.82 17.40 17.45 16.60 16.60 16.20 16.20 16.60 16.60

18 10.00 7.00 20.00 3.00 1.50 18.00 18.01 17.60 17.58 17.20 17.20 16.20 16.20 16.60 16.60

19 11.00 8.00 25.00 2.00 1.00 17.40 17.41 17.60 17.58 16.80 16.80 16.20 16.20 16.20 16.20

20 11.00 8.00 20.00 2.00 1.00 17.60 17.61 17.80 17.84 17.40 17.40 16.20 16.20 16.20 16.20

21 10.00 9.00 30.00 1.00 1.50 18.00 17.98 18.00 17.92 16.80 16.80 16.40 16.40 16.80 16.80

22 10.00 8.00 25.00 2.00 1.00 18.20 18.15 18.20 18.17 17.40 17.40 16.40 16.40 16.80 16.80

23 10.00 9.00 20.00 3.00 1.50 17.60 17.62 18.20 18.24 17.00 17.00 16.40 16.40 16.40 16.40

24 12.00 7.00 20.00 3.00 1.50 17.80 17.81 18.40 18.62 17.60 17.60 16.40 16.40 16.40 16.40

25 12.00 9.00 20.00 3.00 0.50 18.20 18.18 17.80 17.80 17.20 17.20 16.20 16.20 16.60 16.60

26 10.00 9.00 30.00 3.00 0.50 18.40 18.15 18.00 17.90 17.80 17.80 16.20 16.20 16.60 16.60

27 12.00 9.00 20.00 3.00 1.50 17.80 17.82 18.00 18.04 17.40 17.40 16.20 16.20 16.20 16.20

28 10.00 7.00 30.00 1.00 1.50 18.00 18.00 18.20 18.28 18.00 18.00 16.20 16.20 16.20 16.20

29 12.00 7.00 30.00 3.00 0.50 18.60 18.46 18.00 18.43 18.00 18.00 16.40 16.40 16.80 1.80

30 12.00 7.00 30.00 3.00 1.50 18.20 18.46 18.60 18.43 18.00 18.00 16.40 16.40 16.80 16.80

31 11.00 8.00 25.00 2.00 1.00 18.00 17.98 18.60 18.64 17.60 17.60 16.40 16.40 16.40 16.40

32 12.00 7.00 30.00 3.00 1.50 18.20 18.15 19.40 19.00 18.20 18.20 16.40 16.40 16.40 16.40

33 10.00 7.00 30.00 1.00 0.50 20.20 20.20 19.80 19.67 21.40 21.40 18.60 18.60 17.20 17.20

34 10.00 9.00 30.00 3.00 1.50 20.40 20.39 20.00 19.93 22.00 22.00 18.60 18.60 17.20 17.20

35 11.00 8.00 25.00 2.00 1.00 20.80 20.79 19.80 19.66 21.40 21.40 18.60 18.60 17.60 17.60

36 12.00 9.00 30.00 3.00 1.50 20.40 20.41 20.00 19.95 21.60 21.60 18.60 18.60 17.20 17.20

37 11.00 8.00 25.00 2.00 0.50 20.40 20.41 19.20 19.09 21.40 21.40 18.60 18.60 17.20 17.20

38 12.00 9.00 20.00 1.00 0.50 20.60 20.59 19.80 19.72 21.60 21.60 18.80 18.80 17.40 17.40

39 11.00 8.00 30.00 2.00 1.00 19.60 19.61 20.40 20.03 21.20 21.20 18.80 18.80 17.40 17.40

40 12.00 9.00 30.00 1.00 1.50 20.00 19.99 20.20 20.37 21.80 21.80 18.80 18.80 17.40 17.40

41 11.00 8.00 25.00 3.00 1.00 19.80 19.81 19.80 19.72 21.40 21.40 18.60 18.60 16.80 16.80

42 11.00. 8.00 25.00 2.00 1.00 20.00 19.99 20.40 20.29 20.80 20.80 18.40 18.40 17.60 17.60

43 10.00 9.00 20.00 3.00 0.50 20.80 20.80 20.40 20.35 22.40 22.40 19.20 19.20 17.60 17.60

44 10.00 7.00 30.00 1.00 0.50 20.80 20.80 19.80 20.35 22.40 22.40 19.20 19.20 17.60 17.60

45 12.00 7.00 20.00 1.00 0.50 20.80 20.80 20.40 20.35 22.40 22.40 19.20 19.20 17.60 17.60

46 10.00 7.00 30.00 3.00 0.50 20.80 20.80 20.40 20.35 22.40 22.40 19.20 19.20 17.60 17.60

47 12.00 7.00 20.00 3.00 0.50 20.80 20.80 19.80 20.35 22.40 22.40 19.20 19.20 17.60 17.60

48 11.00 8.00 25.00 2.00 1.00 20.80 20.80 20.40 20.35 22.40 22.40 19.20 19.20 17.60 17.60

49 11.00 8.00 25.00 2.00 1.00 20.80 20.80 20.40 20.35 22.40 22.40 19.20 19.20 17.60 17.60

50 10.00 7.00 20.00 1.00 1.50 20.80 20.80 20.40 20.35 22.40 22.40 19.20 19.20 17.60 17.60
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experimental domain is significant and adjusted coefficient

of determination (R2
adj:) values also indicated good agree-

ment between experimental and the predicted values.

Degree of precision is indicated by the coefficient variation

(CV) with which the experiment is compared. Experi-

mental reliability is poor if the CV value is high. The CV

(%) values of the five responses in this study were found to

be 0.47, 1.19, 1.14, 1.4, and 0.57 which denote that the

performed experiment is reliable. The present model was

used to evaluate the direct interaction and quadratic effects

to optimize the physico-chemical parameters for the pro-

duction and bioactive metabolites that inhibit the patho-

genic microorganisms (responses). Central composite

factor experimental design along with experimental and

predicted values is shown in Table 9.

Quadratic and interactive effects of bioactive

metabolite production and its effect on the responses

The effect of individual parameters, such as time of incu-

bation (in days), pH, temperature, concentration of sucrose,

and concentration of soya peptone on the responses, are

insignificant, but exhibited significant interactions with

other parameters. The significant interactive effects of the

variables (incubation time–pH, incubation time-tempera-

ture, incubation time-concentration of sucrose, incubation

time-concentration of soya peptone, pH–temperature, pH–

concentration of sucrose, pH–concentration of soya pep-

tone, temperature–concentration of sucrose, temperature–

concentration of soya peptone, and concentration of

sucrose–concentration of soya peptone) are represented in

3D plots. The RSM generated 3D plots are used to analyze

the effect of the interactions of the variables, and the plots

are generated with response on the z-axis against two

independent variables with third variable kept constant

(Figs. 1, 2, 3, 4, 5).

Effect of the independent variables interactions

on the production of bioactive metabolite and its

antagonistic effect on the responses

Effect of the different variables with linear square and

quadratic coefficients was obtained at significant terms. As

single, the factors like concentration of sucrose and soya

peptone had high coefficient value which showed their high

linear significant effect on growth inhibition of pathogenic

microorganisms by the bioactive compound produced by

the strain. Direct effect of the five variables, time of

incubation, pH, temperature, concentration of sucrose, and

concentration of soya peptone on the growth inhibition of

the five response pathogens by the bioactive metabolites

produced by the strain, is represented by zone of inhibition

(mm). The stationary phase of the strain N. litoralis strain

VSM 8 extended from 5th to 11th day. The maximum yield

of the bioactive metabolite was recorded on the 11 day.

Venkata et al. (2011) reported that Amycolatopsis alba

var. nov. DVR D4 strain produced maximum bioactive

compound after 4 days of incubation. However, Abd-

Elnaby et al. (2016) reported the maximum production of

the bioactive metabolites by Streptomyces parvus was

obtained after 7 days of incubation. The effect of the

environmental factors, such as temperature and pH on the

bioactive metabolite production, was studied. When the

temperature varied from 20 to 30 �C, the yield of the

bioactive metabolite increased gradually and the maximum

production was recorded at 25 �C. There was a decrease in
the production of the bioactive metabolite with further

increase in temperature. Joseph et al. (2009) reported

maximum inhibitory activity of the bioactive metabolite

produced by marine Nocardiopsis dassonvillei MAD08

cultured at 30 �C. Krishna Kumar et al. (2011) also

reported the optimum temperature for the bioactive

metabolites production by Streptomyces sp.—MSU29 as

30 �C. Venkata et al. (2011) reported that the ideal tem-

perature for the production of the maximum bioactive

metabolite by Amycolatopsis alba var. nov. DVR D4 was

28 �C. Kerstin et al. (2010) reported the marine strain

Nocardiopsis produced high levels of Thiopeptide Antibi-

otic, TP-1161 after 14 days of incubation.

The effect of the environmental factors, such as tem-

perature and pH on growth and bioactive metabolite pro-

duction, was studied. Varied temperatures between 20 and

30 �C were tested for the production of the bioactive

compound by N. litoralis strain VSM 8. The maximum

production of the bioactive metabolite was recorded at

25 �C. These results are in accordance with the results

reported by Attiya et al. (2015) who reported the optimum

temperature for the production of the bioactive compound

by marine Streptomyces spp. M19 was 25 �C. Vimal et al.

(2009) have reported that the maximum activity of the

bioactive metabolite produced by Nocardiopsis sp.

VITSVK 5 was recorded at 28 �C.
Maximum growth and the elevated level of bioactive

metabolite production by N. litoralis strain VSM 8 was

found to be at pH 8. Increase in pH resulted in the

decreased production of the bioactive metabolite. Similar

results were reported by Abd-Elnaby et al. (2016) for

Streptomyces parvus. Kerstin et al. (2010) reported the

optimum pH for the production of thiopeptide Antibiotic,

TP-1161 by marine strain Nocardiopsis was 7.8. Designing

and developing the effective media for the bioactive

metabolite production are critical, and the impact of carbon

needs to be evaluated. Of all the carbon sources tested,

significant production of the bioactive metabolites by N.

litoralis strain VSM 8 was found when the medium was
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Fig. 1 Response surface plots

consisting of three-dimensional

views and contours showing

interactive effects of selective

variables on zone of inhibition

(mm) of the bioactive compound

production by VSM 8 against

Staphylococcus aureus: (AB) time

of incubation and pH, (AC) time of

incubation and temperature, (AD)

time of incubation and

concentration of sucrose, (AE)

time of incubation and

concentration of soya peptone,

(BC) pH and temperature, (BD) pH

and concentration of sucrose, (BE)

pH and concentration of soya

peptone, (CD) temperature and

concentration of sucrose, (CE)

temperature and concentration of

soya peptone, (DE) concentration

of sucrose and concentration of

soya peptone
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Fig. 2 Response surface plots

consisting three-dimensional

views and contours showing

interactive effects of selective

variables on zone of inhibition

(mm) of the bioactive compound

production by VSM 8 against

Bacillus subtilis: (AB) time of

incubation and pH, (AC) time of

incubation and temperature, (AD)

time of incubation and

concentration of sucrose, (AE)

time of incubation and

concentration of soya peptone,

(BC) pH and temperature, (BD) pH

and concentration of sucrose, (BE)

pH and concentration of soya

peptone, (CD) temperature and

concentration of sucrose, (CE)

temperature and concentration of

soya peptone, (DE) concentration

of sucrose and concentration of

soya peptone
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Fig. 3 Response surface plots

consisting three-dimensional

views and contours showing

interactive effects of selective

variables on zone of inhibition

(mm) of the bioactive compound

production by VSM 8 against

Xanthomonas campestris: (AB)

time of incubation and pH (AC)

time of incubation and temperature

(AD) time of incubation and

concentration of sucrose, (AE)

time of incubation and

concentration of soya peptone,

(BC) pH and temperature, (BD) pH

and concentration of sucrose, (BE)

pH and concentration of soya

peptone, (CD) temperature and

concentration of sucrose, (CE)

temperature and concentration of

soya peptone, (DE) concentration

of sucrose and concentration of

soya peptone

3 Biotech (2016) 6:219 Page 13 of 19 219

123



Fig. 4 Response surface plots

consisting three-dimensional

views and contours showing

interactive effects of selective

variables on zone of inhibition

(mm) of the bioactive compound

production by VSM 8 against

Pseudomonas aeruginosa: (AB)

time of incubation and pH, (AC)

time of incubation and

temperature, (AD) time of

incubation and concentration of

sucrose, (AE) time of incubation

and concentration of soya peptone,

(BC) pH and temperature, (BD) pH

and concentration of sucrose, (BE)

pH and concentration of soya

peptone, (CD) temperature and

concentration of sucrose, (CE)

temperature and concentration of

soya peptone, (DE) concentration

of sucrose and concentration of

soya peptone
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Fig. 5 Response surface plots

consisting three-dimensional

views and contours showing

interactive effects of selective

variables on zone of inhibition

(mm) of the bioactive compound

production by VSM 8 against

Candida albicans: (AB) time of

incubation and pH, (AC) time of

incubation and temperature, (AD)

time of incubation and

concentration of sucrose, (AE)

Time of incubation and

concentration of soya peptone,

(BC) pH and temperature, (BD) pH

and concentration of sucrose, (BE)

pH and concentration of soya

peptone, (CD) temperature and

concentration of sucrose, (CE)

temperature and concentration of

soya peptone, (DE) concentration

of sucrose and concentration of

soya peptone
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amended with sucrose. The effect of varying concentra-

tions (1–3 %) of the best carbon source selected for the

growth and antimicrobial metabolite production was also

investigated. The result is in conformity with the results

reported by Uddin et al. (2013) for Streptomyces albo-

longus, Streptomyces spp. KGG32 (Oskay 2011) and

Streptomyces rochei G-164 (Chattopadhyay and Sen 1997).

Among the nitrogen sources tested, soya peptone at

concentration 1 % was found to influence that maximum

production of the bioactive metabolite by N. litoralis strain

VSM 8. The utilization of the nitrogen source for the

production of bioactive metabolites is reported to vary for

actinomycetes strains. Singh et al. (2009) recorded that

soya bean meal increased antibiotic production by Strep-

tomyces tanashiensis strain A2D and similar results were

recorded by Narayana and Vijayalakshmi (2008), for

Streptomyces albidoflavus.

Discussion

RSM, a collection of statistical and mathematical method,

is used in conjunction with central composite design to

optimize the different variables at different levels for the

production of bioactive metabolite by N. litoralis strain

VSM 8. Five variables include incubation time, pH, tem-

perature, concentration of sucrose, and soya peptone was

optimized by central composite design involving RSM. A

high similarity was observed between the predicted and the

observed results that reflect the accuracy and accountability

of the RSM to optimize the bioactive metabolites produc-

tion. Of the five variables tested for the correlation between

their concentration and production of the bioactive

metabolite and its effect against the five responses, all the

five variables exhibited significant effect on the production

of the bioactive metabolite and their effect against the five

pathogens (responses) which is represented as zone of

inhibition. Significant interactions between the five vari-

ables were observed and analyzed from the 3D surface

plots. Application of RSM with CCD statistical experi-

mental design to optimize the selected factors for maxi-

mum production is an efficient method that tests the effect

Fig. 6 Experimental and model predicted kinetics of biomass

growth, substrate utilization. Open circle—experimental biomass

concentration (g/L), open square—experimental substrate concentra-

tion (g/L), dashed lines—model predicted values (in each case)

Fig. 7 Comparison of experimental and model predicted kinetics of zone of inhibition (mm). Filled diamond—experimental, dashed lines—

model
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of interactions among the variables with minimum number

of experiments. Regression equations were derived for both

selectivity and total flux using the experimental data

together with the statistical software package Design

Expert 7.1.3, yielding predicted values in good agreement

with observed values.

The growth profiles of N. litoralis strain VSM 8

(KT901293), limiting substrate utilization results obtained

from shake-flask experiments and model kinetics, were

compared in Fig. 6. The comparison of experimental ver-

sus model predicted zones of inhibition of produced

bioactive metabolite on media, inoculated with S. aureus,

B. subtilis, X. campestris, P. aeruginosa, and C. albicans

strains over the time, is shown in Fig. 7. From all the

profiles, it was observed that model predicted and experi-

mental obtained values show a very good fit. In this study,

for fitting of experimental data with unstructured logistic

models, non-linear regression using least-square method

was done with the help of Microsoft Excel Solver 2010.

Biokinetic parameters used in the mathematical model

Eqs. (2), (4), and (7) were also estimated and are tabulated

in Table 10. The determination coefficient (R2) values

obtained by fitting logistic (L), logistic incorporated

Leudeking–Piret (LILP), and logistic incorporated modi-

fied Leudeking–Piret (LIMLP) models to the experimental

data were found to be high, thus revealing good precision

of the models.

From the data of shake flask used in this study, lmax, X0

and Xmax were calculated from N. litoralis strain VSM 8

(KT901293) growth kinetic profile using logistic

(L) model. Values of growth and non-growth-associated

product parameters, a and b, were estimated using LILP

model. Higher a value than b confirmed that bioactive

metabolite production by N. litoralis strain VSM 8 is

more growth-associated than non-growth associated in

shake flask. The simulated parameters, c and g, of LIMLP

model are also in good agreement with the experimental

values, which implies that this model is more appropriate

to represent limiting substrate utilization kinetics in

bioactive metabolite production by N. litoralis strain

VSM 8. Furthermore, zones of inhibition from agar dif-

fusion tests are much similar to model predicted values

(Table 11).

Conclusions

The effect of different variables, including incubation time,

pH, temperature, sucrose, and soya peptone concentration

on production of bioactive metabolites by N. litoralis strain

VSM 8 and the inhibiting activity of bioactive metabolites

against five pathogens were studied in terms of their

responses as inhibition zones (mm). The experimental

results showed that the maximum zone of inhibition against

Table 10 Estimated kinetic parameters using L, LILP, LIMLP model equations

Kinetic Parameters S. aureus B. subtilis X. campestris P. aeruginosa C. albicans

Logistic (L) model parameters

lmax (day
-1) 0.7431

R2 0.9683

X0 (g/L) 0.005

Xmax (g/L) 0.226

Logistics incorporated modified Luedeking–Piret (LIMLP) model parameters

c (g.S/g.X) 4.8774

R2 0.96

g [g.S/(g.X.d)] 2.566371681

Logistics incorporated Luedeking–Piret (LILP) model parameters

a (mm/g.X) 87.224 81.246 124.62 79.93 100.24

R2 0.9 0.54 0.9665 0.8877 0.9946

b [mm/(g.X.d)] 8.8496 8.8496 4.4248 8.8496 4.4248

Table 11 Comparison of zones of inhibition (mm) from shake-flask experiments and from model

Maximum zone of inhibition (mm) S. aureus B. subtilis X. campestris P. aeruginosa C. albicans

Experimental 30 27 32 29 30

Model fitted 30.81 29.5 33.08 29.21 27.76
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all the five responses was found to be 21 mm (Staphylo-

coccus aureus), 19.8 mm (Bacillus subtilis), 22.9 mm

(Xanthomonas campestris), 19.9 mm (Pseudomonas

aeruginosa), and 17.9 mm (Candida albicans). The highest

production of the bioactive metabolite produced by VSM 8

represented in terms of antimicrobial activity was obtained

when the strain was grown in a medium containing 2 %

sucrose, 1 % soya peptone with pH 8 incubated at 25 �C
for 11 days. However, the range of time of incubation, pH,

temperature, concentration of sucrose, and soya peptone

above or below the central point reported less zone of

inhibition.

A response surface experimental methodology, based

on three levels central composite design of experiment,

was successfully employed in this optimization study,

accounting for the effects of the main variables. The

quadratic models developed and subsequent ANOVA

test, the concentration of sucrose and soya peptone

dosage was found to be the most influential variables for

the bioactive metabolite production along with the other

significant variables. The model fitted very well to the

experimental data, as confirmed by high R2 values. RSM

with CCD described the production of the bioactive

compounds by N. litoralis strain VSM 8. Furthermore,

the optimum conditions and the effect of bioactive

compound against five responses are well induced by 3D

plots.

The estimated kinetic parameters for the N. litoralis

strain VSM 8 growth, and limiting substrate utilization

and bioactive metabolite production (in terms of inhibi-

tion zones measured against microbial pathogens) showed

good regression squares. Thus, the unstructured models

provided a better approximation of kinetic profiles of

bioactive metabolite production by N. litoralis strain

VSM 8 in submerged shake-flask fermentations. To the

best of our knowledge, this is the first ever report on the

kinetic modeling for bioactive metabolite production

measured in terms of zones of inhibition by N. litoralis

strain VSM 8.
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