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Abstract In this study, effect of different parameters, viz.

concentration of photosensitizer (PS), pH of the bacterial

cell suspension and initial cell count, on photo-inactivation

of Escherichia coli and Enterococcus hirae bacteria using

methylene blue (MB) and sodium anthraquinone-2-sul-

phonate (SAQS) was investigated employing the statisti-

cally valid full factorial design of experiments. The

inactivation efficiency of E. hirae using MB ranges

between 10.81 and 48.55 %, whereas in the case of E. coli

it ranges between 10.41 and 46.44 %. Using SAQS, the

inactivation efficiency of E. hirae was within

5.26–39.03 %, and in the case of E. coli it varied in the

range 4.65–37.66 %. Statistical analysis of the photo-in-

activation results in the form of analysis of variance

(ANOVA) and student ‘t’ test revealed significant indi-

vidual effect of these process parameters. In addition, an

increase in dark incubation period with MB or SAQS

resulted in enhanced photo-inactivation efficiency against

both the microorganisms. Reactive oxygen species mea-

surement and analysis of lipid peroxidation and protein

carbonyl index helped in a better understanding of the

photo-inactivation mechanism.

Keywords Photo-inactivation � Methylene blue �
Sodium anthraquinone-2-sulphonate � E. coli �
E. hirae � Flow cytometry

Introduction

Photosensitization is an emerging technique for efficient

disinfection of drinking water and tertiary treated

wastewater due to its easy implementation and cost effec-

tiveness. It involves the combination of an active sub-

stance, i.e., a photosensitizer, light and molecular oxygen

to achieve the purpose. This method is slowly taking over

the existing conventional disinfection methods like chlo-

rination, UV and ozone due to the drawbacks associated

with these latter techniques. For instance, chlorination, the

most widely used disinfection method suffers from the

formation of disinfection by-products which have car-

cinogenic and mutagenic effects on mammals (Marugan

et al. 2010; Pablos et al. 2011). On the other hand, ozone

the most powerful disinfectant among chemical disinfec-

tants is not feasible due to its escape from the water during

the application thereby posing threat to the health of

operators and the environment even at a concentration as

low as 0.03 gm-3 (Acher et al. 1997), whereas UV treat-

ment is considered costly and its exposure causes

mutations.

During the last one decade a large number of photo-

sensitizers have been tested in vitro and in vivo mainly

focussing on their antimicrobial efficiency in relation to the

structure of these compounds (Luksiene 2005). Photosen-

sitizers on absorbing visible light enter into its excited state

and can effect electron transfer reactions (Redox reactions)

(Type I), also direct transfer of energy to ground state

oxygen forms toxic singlet oxygen (Type II) which are

responsible for bacterial inactivation (Wainwright and

Crossley 2004). Few studies have reported that Gram

positive bacteria are susceptible to any kind of dye,

cationic, anionic or neutral, whereas Gram negative bac-

teria show resistance due to the presence of
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lipopolysaccharide coat that presents a physical and

chemical barrier to singlet oxygen species produced out-

side the cells, which must enter the cell to interact with

vital targets such as membrane or cytoplasmic components

in order to inactivate these bacteria (Dahl et al. 1989). To

render these bacteria susceptible to photo-inactivation,

permeability of their outer membrane can be increased by

some pre-treatment step using either chemical or biological

agents (Valduga et al. 2004). On the other hand, cationic

dyes are found efficient in inactivating both the kinds of

bacteria (Alves et al. 2009) but are in general more efficient

against Gram positive bacteria (Ergaieg and Seux 2009).

Some studies have also been conducted on the effect of

simple parameters like concentration of photosensitizer by

Ergaieg and Seux (2009) which showed an increase in

inactivation kinetics with increase in photosensitizer con-

centration whereas a study by Chen et al. (2011) showed

alkaline pH of microbial suspension to be more effective

for inactivation under visible light; however, to our

knowledge, no investigation has been carried out focussing

on the combined effect of these parameters which is

essential for a better understanding of the process as well as

for its successful scale up applications.

This work, therefore, aimed to study the combined effect

of concentration of photo sensitizer, pH of the cell sus-

pension and viable cell count employing the statistically

valid full factorial design of experiments. It is expected that

all the three parameters will show some significant com-

bined effects on bacterial inactivation. Also the generation

of reactive oxygen species (ROS) and its effect on bacteria

is studied. The bacterial strains used in this photo-inacti-

vation study were E. coli and E. hirae; the photosensitizers

tested were methylene blue (MB) and sodium anthraqui-

none-2-sulphonate (SAQS). E. coli and E. hirae are known

as non-pathogenic indicator microorganisms whose pres-

ence in water indicates the possible presence of pathogenic

microorganisms. E. coli is indicator of fecal contamination

whereas E. hirae is indicator of contamination due to

surface runoff.

Materials and methods

Chemicals and reagents

The photosensitizers (PS), methylene blue (MB) and

sodium anthraquinone-2-sulphonate (SAQS) used in this

study were purchased from Sigma Aldrich, India. These

photosensitizers were chosen due to their cationic nature.

Bacterial growth media, such as nutrient broth, brain heart

infusion broth and agar were procured from Merck (India).

Analytical reagents propidium iodide, dihydrochlorofluo-

rescin diacetate (DCFDA), tri carboxylic acid (TCA),

guanidine hydrochloride and 2,4-dinitrophenylhydrazine

(DNPH) were purchased from Sigma Aldrich, India and

other chemicals thiobarbituric acid (TBARS) and 1,1,3,3-

tetraethoxy propane were obtained from Merck (India).

Microorganisms and culture conditions

The bacterial strains Escherichia coli (MTCC 1610) and

Enterococcus hirae (MTCC 3612) were obtained from

IMTECH, Chandigarh, India. E. coli was grown in nutrient

broth, whereas E. hirae was cultured using brain heart

infusion broth both at 37 �C, 180 rpm for 24 h.

Inactivation experiments

Batch experiments in this study were carried out as per the

statistically valid 23 full factorial design by varying the

concentration of PS, pH of the bacterial suspension and

initial cell count as shown in Table 1. The initial concen-

tration level (0.73 lmol/l) of the PS used was based on a

study by Ergaieg and Seux (2009) whereas the pH level

was kept in the basic range to simulate real wastewater pH

which is mostly alkaline. Dilution range adopted was

decided based on a preliminary experiment carried out in

our laboratory without any PS. Each parameter level was

coded as -1, 0 and ?1 to represent low, center and high

level, respectively. Combination of the parameters and

their levels used in these experiments is presented in

Table 2.

All the inactivation experiments were carried out in

triplicate by transferring 1 mL of 24 h grown bacterial

culture (E. hirae or E. coli) into 1.5 mL Eppendorf tube

and centrifuging the biomass at 10,0009g for 10 min. The

pellets obtained were washed twice with phosphate buffer

saline (PBS) of respective initial pH and re-suspended in

PBS having different initial pH 7.5, 8.25, 9.0, as per the

design (Table 1) followed by serial dilution up to 1000

times. PBS composition used was 8 g/L NaCl, 0.2 g/L

KCl, 1.44 g/L Na2HPO4 and 0.25 g/L KH2PO4 and its pH

was adjusted using 0.1 N HCl and 0.1 N NaOH. From

these PBS suspended cultures a set of control experiments

were carried out without addition of MB and SAQS for

counting initial CFU and the other suspended cultures were

added with MB and SAQS from their respective 1 mM

Table 1 Range and levels of the variables used in the photo-inacti-

vation experiments

Variables Low level

(-1)

Center point

(0)

High level

(?1)

Concentration of PS (lmol/L) 0.73 0.99 1.25

pH 7.50 8.25 9.00

Dilution 10 100 1000
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stock solution to ensure initial concentration in the range of

0.73–1.25 lmol/L as per the experimental design

(Table 2). One set of mixtures was kept in dark for 30 min

and the other set of mixtures was kept under dark condition

on a gel rocker platform for three different incubation

periods of 5, 15 and 30 min with constant shaking. For MB

mediated inactivation, a commercially available 11 W

compact fluorescent lamp (CFL) with a light intensity of

2700 lx in a closed chamber was used as the light source.

The exposure period was 10 min and the emitted light

wavelength was well within the visible light range

(400–700 nm), which correlated well with the MB absor-

bance wavelength. In case of SAQS mediated inactivation

in this study, a commercially available 6 W PhilipsTM

blacklight blue tube with IEC value of 0.88 W and a light

intensity of 20 lx in a closed chamber was used as the UV-

A source which matched with the photosensitizer absor-

bance wavelength. Control experiments carried out using

these respective light sources and either only the photo-

sensitizers or the bacteria revealed negligible effect on

both. Bacterial suspensions (10 lL) from all sets of mix-

tures were then spread on brain heart infusion agar and

nutrient agar plates for E. hirae and E. coli, respectively,

and incubated at 37 �C for 24 h. Viable cells in these

culture plates were enumerated by colony counting method

(Vilela et al. 2012) and PS inactivated bacteria were further

confirmed by flow cytometry as detailed under ‘‘Flow

cytometry analysis’’.

The percentage inactivation of microorganisms from

each duplicate runs in the study was calculated as per the

following equation and the results shown are average of

two values:

% inactivation ¼ Ci � Cf

Ci

� 100 ð1Þ

where Ci and Cf are the initial and final viable cell counts.

Statistical analysis in the form of analysis of variance

(ANOVA) and student ‘t’ test was carried out to validate

the roles played by different parameters and their interac-

tions on the bacterial photo-inactivation. All these statis-

tical analyses were performed using the software

MINITAB (version 16, PA, USA).

Flow cytometry analysis

PS treated bacterial cells from the previous experiments

were obtained by centrifuging the cell suspension at

10,0009g for 10 min and the pellet was washed with PBS

of a suitable pH. Later, the pellet was suspended in 1 ml of

PBS to which 20 lL of propidium iodide (PI) solution

(prepared by dissolving in distilled water in the ratio 1:1)

was added and incubated in dark for 15 min. After which,

100,000 cells from the sample obtained were analyzed

using BD FACS CaliburTM, USA flow cytometer equipped

with an argon laser (L1) (wavelength 488 nm; Fluores-

cence channel: FL-2 yellow). PI fluorescence was mea-

sured to discriminate between live and dead cells. Flow

cytometry analysis is done to simulate and support the

results of colony counting method.

Confirming reactive oxygen species (ROS)

generation

The bacterial cell suspension in respective pH phosphate

buffered saline and dilutions as described in Table 2 were

added with DCFDA (dihydrochlorofluorescin diacetate)

20 lL of 20 lM concentration and incubated for 30 min at

37 �C, then the suspension was added with photosensitizer

and kept in dark on a gel rocker for 30 min. Later, it was

exposed to visible light or UV-A light for photosensitizers

MB and SAQS, respectively.

10 ll of the suspension after light period was spread on

agar plates for viable cell count and 1 mL of the suspension

was checked for DCF (2, 7 dichlorofluorescin) fluorescence

by exciting at 488 nm and emission spectra studied over

510–540 nm using Fluoromax 4.

Measurement of lipid peroxidation as an index

of oxidative stress

The bacterial cell suspension was prepared and the inacti-

vation experiments were carried out as described in ‘‘In-

activation experiments’’. Treated bacterial cells were

obtained in the form of pellet and lipid peroxidation

products of cell lysate were determined as thiobarbituric

acid reactive substances (Trivedi et al. 2005). Bacterial

pellet was resuspended in PBS of respective pH and son-

icated by keeping on ice using probe sonicator. An aliquot

(100 lL) of bacterial lysate was allowed to react with

Table 2 Combination of parameters and their levels used in the

photo-inactivation experiments

Experimental

run no.

Coded levels of the variables

PS initial concentration

(lmol/L)

pH Dilution

1 -1 -1 -1

2 -1 -1 ?1

3 -1 ?1 -1

4 -1 ?1 ?1

5 0 0 0

6 ?1 -1 -1

7 ?1 -1 ?1

8 ?1 ?1 -1

9 ?1 ?1 ?1
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10 %, 4 �C trichloroacetic acid (200 lL) for 15 min on ice.

Later, the suspension was centrifuged at 30009g for

15 min at 4 �C to get the supernatant which is made to

react with thiobarbituric acid in equal volumes by placing

in boiling water bath for 10 min. After cooling, its absor-

bance was taken at 532 nm to determine thiobarbituric acid

reactive substances using tetraethoxy propane as standard.

Measurement of protein carbonyl as an index

of oxidative stress

Inactivation experiments were performed as mentioned in

‘‘Inactivation experiments’’. The pellets of treated bacterial

cells were washed with PBS and lysed by probe sonicator

keeping on ice. Lysate was divided equally in two parts and

were added with equal volume of 10 % trichloroacetic acid

at 4 �C. The mixture was incubated for 15 min at 4 �C and

then centrifuged at 30009g for 15 min. The precipitate

obtained in one half was added with 500 lL of 0.2 % DNPH

in 2 N HCl and other half was added with 500 lL of 2 N

HCl. The mixtures were then incubated at 37 �C for 1 h with

continuous vortexing then added with 55 lL of 100 % TCA

for precipitating protein. Samples were centrifuged and

pellet was washed with a mixture of ethanol and ethylacetate

later dissolved in 600 lL of 6 M guanidine hydrochloride.

The final mixture was incubated for 30 min and the absor-

bance recorded at 370 nm (Castegna et al. 2003).

Results

Photo-inactivation of E. hirae and E. coli

Photo-inactivation efficiency for E. hirae and E. coli using

MB varied in the range 18.77–48.55 and 16.96–46.44 %,

respectively (Fig. 1). In case of photo-inactivation using

SAQS the inactivation efficiency varied in the range

10.03–39.03 % for E. hirae and 10.90–37.66 % for E. coli,

which are lower as compared with the efficiency obtained

due to MB (Fig. 1). No significant change in CFU was

observed in dark controls.

The photo-inactivation efficiency of the bacteria

increased with an increase in the PS concentration and a

higher dilution of the bacteria (i.e., 1000 times initial viable

cell count). Increase in pH of the cell suspension also

showed significant effect on the photo-inactivation but

depended on the combination levels of the other two fac-

tors (PS initial concentration and initial viable cell count)

(Fig. 4). In addition, incubation in dark prior to the light

exposure showed significant differences in the inactivation

efficiency (data not shown). An increase in the inactivation

efficiency for both the bacteria due to the dyes was

observed with an increase in the dark incubation period

with a maximum inactivation efficiency obtained at 30-min

dark incubation time.

The validity of the cell viability assay performed using

the colony counting method was verified both qualitatively

and quantitatively by flow cytometry (Figs. 2, 3). Shift in

fluorescence peaks of propidium iodide is observed with an

increase in the PS initial concentration for 30-min dark

incubation time. In these histograms, gates M1 and M2 are

defined in accord with the control sample (i.e., bacterial

suspension without treatment with MB or SAQS); hence,

the area under M1 depicts the live cells whereas the area

under M2 represents dead cells. Statistical analyses of M1

and M2 (Table 3) further revealed that photo-inactivation

of E. hirae by both MB and SAQS is better than that of

E. coli.

Statistical analysis

For a better understanding of the role of different variables

on the inactivation of E. coli and E. hirae, statistical

analysis of the results in the form of analysis of variance

(ANOVA) and student ‘t’ test was performed.

The ANOVA of photo-inactivation results obtained at

30-min dark incubation period shows a high Fischer’s ‘F’

value (66.83 and 235.75 for E. hirae whereas 169.77 and

153.50 for E. coli with MB and SAQS, respectively) and a

low probability ‘P’ value of the regression model (P = 0.00)

for E. hirae and E. coli with MB and SAQS, indicates its

validity in explaining the variations in the results. Further, the

results suggest that individual parameter effects and 2-way

interaction effects due to the viable cell count were statisti-

cally significant. Accuracy and precision of the models, in the

form of determination coefficient (R2) (R2 = 91.98 and 96.66

for E. hirae and E. coli with MB whereas R2 = 98.76 and

98.13 for E. hirae and E. coli with SAQS), adjusted R2 (88.42

and 95.17 for E. hirae and E. coli with MB, 97.66 and 96.46

for E. hirae and E. coli with SAQS), standard deviation (SD)

(18.02 and 12.47 for E. hirae and E. coli with MB, 12.68 and

9.23 for E. hirae and E. coli with SAQS) and predicted

residual error sum of squares (PRESS) (13,134.1 and 6739.20

for E. hirae and E. coli with MB, 6381.69 and 3315.16 for E.

hirae and E. coli with SAQS) suggest that the models were

highly efficient in predicting the experimental photo-inacti-

vation results.

The estimated coefficients of individual and interaction

effects between the variables as well confirmed these

results. A highly significant effect of initial PS concentra-

tion (P = 0.000), initial viable cell count (P = 0.000) and

combined effect of PS initial concentration and initial

viable cell count (P = 0.028) on E. hirae inactivation

using MB is observed. In the case of E. coli inactivation

using MB, significant effect is observed due to the PS

concentration (P = 0.000), pH of the suspension
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(P = 0.001), initial viable cell count (P = 0.000) and

combined effect of initial PS concentration and initial

viable cell count (P = 0.026); however, the other interac-

tion effects between the variables were found insignificant.

Similarly, the student ‘t’ test results revealed significant

effect of PS initial concentration (P = 0.000), pH of the

suspension (P = 0.009 for E. hirae and P = 0.002 for

E. coli), initial viable cell count (P = 0.000) and combined

effect of PS initial concentration and initial viable cell

count (P = 0.020 for E. hirae and P = 0.025 for E. coli)

on the inactivation of E. hirae and E. coli using SAQS.

All these results of effect of variables on the photo-in-

activation of E. hirae and E.coli are depicted in a better way

in the form of pareto charts and are illustrated in Fig. 4.

Horizontal bars in these charts represent effects (i.e., indi-

vidual and interaction terms) of the parameters and the

effects which extend past the reference line (vertical line on

the chart) denote the significant ones (a = 0.05).

Reactive oxygen species (ROS) confirmation

and action

ROS is measured as explained in ‘‘Confirming reactive

oxygen species (ROS) generation’’ and the results revealed

that experimental run number 8 (as per the design in

Table 2) gives the maximum fluorescence in bacterial

suspension and hence it can be concluded that maximum

ROS is generated in this experimental run. From Fig. 5, it

is clear that maximum ROS production occurs with

methylene blue exposed to visible light as compared to

experiments with SAQS exposed to UV-A light.

Lipid peroxidation and protein carbonylation index

(Table 4) shows occurrence of oxidative degradation of

lipids and proteins present in the membrane. The obtained

results showed high lipid peroxidation and protein car-

bonylation levels for E. hirae and E. coli when treated with

MB as compared to when treated with SAQS.

Discussion

Mechanism of photo-inactivation

The decrease in bacterial cell viability due to the cationic

photo-sensitizers (MB and SAQS) is attributed to the

positive charge of these molecules that favors its binding at

critical cellular sites which once damaged by exposure to

light causes the inactivation of both Gram positive and
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Fig. 1 Photo-inactivation of E. hirae and E. coli obtained in the different experimental runs using MB in presence of white light and SAQS in

presence of UV-A light at 30-min dark incubation period a E. hirae and MB, b E. hirae and SAQS, c E. coli and MB, d E. coli and SAQS
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Gram negative bacteria (Jori and Brown 2004). It has been

reported that positive charge on PS promotes electrostatic

interaction with negatively charged sites at the outer sur-

face of the bacterial cells which increases their photo-in-

activation efficiency (Caminos et al. 2008). However, the

results obtained (Fig. 1) showed that both the cationic

photo-sensitizers (MB and SAQS) are more efficient

against E. hirae than E. coli. This is mainly attributed to the

presence of outer lipopolysaccharide layer in Gram nega-

tive bacteria such as E. coli that helps the bacteria avoid or

limit the uptake of the photo-sensitizers and/or the reactive

oxygen species produced by these compounds thereby

escaping from the photo-inactivation process (Dahl et al.

1989; Ergaieg and Seux 2009).

The photo-inactivation results were further confirmed by

flow cytometry analysis of the PS treated bacteria. As

propidium iodide is not permeable through the intact cell

membrane, it only gets internalized and binds to DNA of

the cells whose membranes are compromised. Hence, the

shift in the fluorescence peaks of propidium iodide added

with PS treated bacteria from the standard peak represented

the fact that the cell membrane in these bacteria was

damaged thereby leading to their inactivation.

Effect of parameters

PS initial concentration strongly influenced the photo-in-

activation of microorganisms (Tables 3, 4), suggesting that

the effect is due to either an increase in the quantum yield

of reactive oxygen species (Ergaieg and Seux 2009) or

profound interaction of the PS with bacterial surface or

both (Jori and Brown 2004). pH, on the other hand, showed

its significant effect only at a higher level (alkaline pH) and

at a prolonged incubation period (30 min) in dark. Chen

et al. (2011) reported that MB is more effective under basic

pH than under acidic condition probably due to its transi-

tion between singlet and triplet states. The effect of pH was

not significant for a short dark incubation period of 5 min

probably due to insufficient contact time for interaction

between the PS and the bacteria. Compared with initial PS

concentration and pH, dilution is easily correlated with the

initial bacterial count in the suspension, and, therefore, as

dilution increases, the number of bacterial cells in the

suspension decreases yielding a better interaction with PS

Fig. 2 Flow cytometry histograms obtained for photo-inactivation of

E. hirae using a MB, b SAQS (sample dilution = 10 times, dark

incubation period for photo-inactivation = 30 min)

Fig. 3 Flow cytometry histograms obtained for photo-inactivation of

E. coli using a MB, b SAQS (sample dilution = 10 times, dark

incubation period for photo-inactivation = 30 min)
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at the same concentration as compared with less dilute

suspension of the bacteria. Also, the chance of encounter-

ing reactive oxygen species increases when the dilution is

high, which further enhances the photo-inactivation effi-

ciency of the bacteria. Similar results were reported in the

literature but for photocatalysis of E. coli using TiO2

(Benabbou et al. 2007).

The enhanced photo-inactivation efficiency with an

increase in the dark incubation period is attributed to an

increase in the contact time between the bacteria and the

PS at prolonged dark incubation as Ergaieg and Seux

(2009) reported that positive charge on the photosensitizer

molecule allows it to bind or in some cases penetrate into

the microbial cell and the photosensitizers used in this

study are cationic.

To gain further insight in the mechanism of photoinac-

tivation ROS measurement was done which showed direct

relationship between inactivation and ROS production.

Evidences have been presented in the form of lipid per-

oxidation and protein carbonyl index which suggests that

Table 3 Percent live and dead

cells obtained from the cell

cytometry analysis data for

photo-inactivation of bacteria

using (a) MB (b) SAQS

E. hirae E. coli

Run no. M1 (%) M2 (%) M1 (%) M2 (%)

(a)

Standard 49.91 39.95 48.80 31.48

1 36.78 48.27 37.16 42.61

3 32.61 49.88 37.97 46.35

6 35.48 50.39 30.64 48.47

8 32.96 51.78 30.27 48.99

(b)

Standard 66.52 31.61 64.99 17.04

1 61.73 34.46 30.69 30.69

3 55.90 37.33 29.25 49.71

6 56.06 39.27 27.62 54.00

8 49.95 44.27 25.63 54.68
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Fig. 4 Pareto chart showing the effect of different variables on photo-inactivation of bacteria using MB in presence of white light and SAQS in

presence of UV-A light a E. hirae and MB, b E. coli and MB, c E. hirae and SAQS, d E. coli and SAQS (dark incubation period = 30 min)
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the ROS generated during the reaction acts on the mem-

brane of the bacteria and alters the lipid and protein of the

membrane to form reactive aldehydes and/or ketones

resulting in cell damage.

Table 5 compares the photoinactivation results obtained

in this study with those reported in the literature, which

clearly reveals very good potential of the dye sensitized

photoinactivation method for water disinfection. However,

to achieve the best results the photoinactivation process

parameters need to be optimized. In addition, its efficiency

against a wide range of microorganisms needs to be tested

and the residual PS dye remaining in the treated water/

wastewater need to be efficiently removed prior to its use/

discharge.
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Fig. 5 Fluorescence curves for different experimental run in case of a E. hirae ? MB, b E. coli ? MB, c E. hirae ? SAQS, d E. coli ? SAQS

Table 4 Results of lipid

peroxidation and protein

carbonyl assay using (a) MB

(b) SAQS

Process parameters Lipid peroxidation Protein carbonylation

pH Conc. of PS (lmol/L) E. coli E. hirae E. coli E. hirae

(a)

7.3 0 3.51 3.63 64.21 69.11

7.5 0.73 5.93 7.26 67.95 91.46

7.5 1.25 7.25 7.41 74.36 95.91

9.0 0.73 7.37 8.09 68.16 94.70

9.0 1.25 7.96 9.36 84.99 98.40

(b)

7.3 0 2.08 2.16 31.24 27.43

7.5 0.73 3.15 3.51 36.23 33.09

7.5 1.25 3.52 3.76 40.26 35.55

9.0 0.73 3.73 3.84 36.51 34.98

9.0 1.25 3.85 4.09 43.18 45.71
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Conclusions

The results obtained in this study revealed that both

cationic photosensitizers are efficient against Gram posi-

tive and Gram negative bacterial strains, with a higher

efficiency against the Gram positive E. hirae. Between the

two PS, MB was more efficient against both the bacterial

strains than SAQS at the same concentration, pH and viable

cell count values. Cell cytometry analysis further revealed

that the mechanism of photo-inactivation involved bacte-

rial cell membrane damage by the PS. Statistical analysis

of the results revealed that besides the significant individ-

ual effect due to concentration of PS, pH of bacterial

suspension and dilution, interaction effect between con-

centration of PS and initial viable cell count was significant

for the bacterial inactivation.
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