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Abstract
In this report, Azithromycin (Azi) antibiotic was measured by carbon paste electrode (CPE) improved by graphene nanorib-
bon–CoFe2O4@NiO nanocomposite and 1-hexyl-3 methylimidazolium hexafluorophosphate (HMIM PF6) as an ionic liquid 
binder. The electrochemical behavior of Azi on the graphene nanoribbon–CoFe2O4@NiO/HMIM PF6/CPE is investigated 
by voltammetric methods, and the results showed that the modifiers improve the conductivity and electrochemical activity 
of the CPE. According to obtained data, the electrochemical behavior of Azi is related to pH. under optimum conditions, 
the sensor has linear ranges from 10 µM to 2 mM with a LOD of 0.66 µM. The effect of scan rate and chronoamperometry 
were studied, which showed that the Azi electro-oxidation is diffusion controlled with the diffusion coefficient of 9.22 × 10–6 
cm2/s. The reproducibility (3.15%), repeatability (2.5%), selectivity, and stability (for 30 days) tests were investigated, which 
results were acceptable. The actual sample analysis confirmed that the proposed sensor is an appropriate electrochemical 
tool for Azi determination in urine and Azi capsule.

Keywords  Macrolide antibiotic sensor · Azithromycin determination · 1-Hexyl-3 methylimidazolium hexafluorophosphate 
ionic liquid · Nanocomposite · Voltammetry

Introduction

Azithromycin (Azi) is a potent macrolide antibiotic that 
is one of the most effective antibiotics for treating severe 
infections (Nigović 2004). Azi has treated some acute 
bacterial infections, such as lung, ear, and skin infections 
(Parnham et al. 2014). Bacteria need a unique process of 
protein synthesis activated by ribosomal proteins to multi-
ply. Azi inhibits bacterial protein synthesis by inhibiting the 
transpeptidation/translocation phase and by inhibiting 5 s 
ribosomal subunit assembly, which leads to the control of 
various bacterial infections (Champney and Burdine 1995). 
The global outbreak of COVID-19 has prompted research-
ers to try to find drugs to treat the disease. Azi, in combi-
nation with hydroxychloroquine or chloroquine, has been 
suggested as one of these drugs (Sultana et al. 2020). The 
combination of this drug with hydroxychloroquine can treat 
acute respiratory syndromes (Gautret et al. 2021). Further-
more, the unusual interaction between Azi and simvastatin 
is the cause of rhabdomyolysis (Alreja et al. 2012). On the 

 *	 Ali Ghaffarinejad 
	 Ghaffarinejad@iust.ac.ir

1	 Research Laboratory of Real Samples Analysis, Faculty 
of Chemistry, Iran University of Science and Technology 
(IUST), Tehran 1684613114, Iran

2	 Department of Nanotechnology and Advanced Materials, 
Materials and Energy Research Center, PO Box 31787‑316, 
Karaj, Iran

3	 School of Resources and Environment, University 
of Electronic Science and Technology of China, Xiyuan Ave, 
P.O. Box 611731, Chengdu, People’s Republic of China

4	 Electroanalytical Chemistry Research Center, Iran University 
of Science and Technology (IUST), Tehran 1684613114, Iran

5	 Department of Chemistry, K. N. Toosi University 
of Technology, Tehran 16315‑1618, Iran

http://orcid.org/0000-0002-5537-8516
http://crossmark.crossref.org/dialog/?doi=10.1007/s13204-023-02773-x&domain=pdf


5830	 Applied Nanoscience (2023) 13:5829–5838

1 3

other hand, environmental pollution caused by antibiotic 
drugs, especially Azi has been known as one of the most 
critical environmental issues (Baladi et al. 2022; Torkian 
et al. 2022). So, Azi determination in biological, pharma-
ceutical, and water samples is an essential subject. A variety 
of techniques, such as microbiological (Breier et al. 2002), 
spectroscopy (Jayanna et al. 2012; Rachidi et al. 2006), 
liquid chromatography (Choemunng and Na-Bangchang 
2010; Filist et  al. 2014), and high-performance liquid 
chromatography(Shepard et al. 1991; Zeng et al. 2014) have 
been reported for Azi determination. Despite sensitivity and 
accuracy, these methods require expensive equipment, long 
analysis times, hazardous solvent, and sophisticated sam-
ple preparation methods (Buledi et al. 2022). On the other 
hand, the electrochemical sensors are simple, eco-friendly, 
and low-cost, with short analysis time and acceptable sen-
sitivity, selectivity, and accuracy (Heidari and Ghaffarine-
jad 2019; Bijad et al. 2021; Karimi-Maleh et al. 2022a, b; 
Rao et al. 2022). Hence, the electrochemical methods have 
been employed in several applications for instance analysis 
of ingredients in food products to evaluate food quality as a 
critical issue, as well as, electrochemical sensors have had 
a significant role in water pollution investigation as a high-
lighted issue, and for the determination of the drugs (Bijad 
et al. 2021; Karimi-Maleh et al. 2010, 2022c; d; Ensafi et al. 
2011a, b; Karimi-Maleh 2013; Ensafi and Karimi-Maleh 
2010; Zheng et al. 2022; Hojjati-Najafabadi et al. 2022a, 
b; Abedini et al. 2022; Ghaffarinejad et al. 2014; Karimi 
et al. 2022). In electrochemical determinations usually, the 
bare electrode has some limitations, such as poor electroac-
tive sites, high resistance of electron transfer, and low sen-
sitivity. Bare electrodes modification with nanomaterials is 
one of the common ways for overcoming these limitations 
(Karimi-Maleh et al. 2022b; Ashrafzadeh Afshar et al. 2022; 
Karaman et al. 2022; Jafarzadeh et al. 2022). Due to specific 
and significant properties that have been provided by nano-
materials, these materials have been noted and widely used 
in various fields of science and technology, such as energy 
storage, environmental application, sensor, food safety, 
hydrogen production, catalyst, biotechnology, optics, and 
electronics (Buledi et al. 2022; Karimi-Maleh et al. 2022c; 
Hojjati-Najafabadi et al. 2021, 2022a; c; Ashrafzadeh Afshar 
et al. 2022; Karaman et al. 2022; Jafarzadeh et al. 2022; 
Khatoon et al. 2022; Coguplugil 2022; Hashemi et al. 2022; 
Mansoorianfar et al. 2022).

Several studies have reported the application of elec-
trochemical techniques to determine Azi, using various 
electrode surface modification protocols that increase sen-
sor sensitivity (Zhou et al. 2016; Hu et al. 2018; Vajdle 
et al. 2020; Farghaly and Mohamed 2004; Ensafi et al. 
2013). In this work, we introduce an electrochemical sen-
sor based on a carbon paste electrode amplified by nanor-
ibbon–CoFe2O4@NiO nanocomposite and HMIM PF6 

ionic liquid for sensitive, selective, and wide linear range 
determination of Azi in various real samples.

Experimental

Materials and reagents

The graphite powder (spectroscopic grade, particle 
size < 50 µm) was used as the main structure of the elec-
trode, and ortho-phosphoric acid (85%), H2SO4 (98%), 
paraffin oil (d = 0.86  kg/l), NaOH, KMNO4 (> 99%) 
and 1-hexyl-3 methylimidazolium hexafluorophosphate 
(> 97%) supplied by Merck. Moreover, –COOH function-
alized multiwalled carbon nanotubes (MWCNT, > 97%) 
were acquired from the US. Research Nanomaterials, Inc. 
Azithromycin (> 98%) (C38H72N2O12), CoCl2·6H2O (98%), 
FeCl3 (97%), Ni (NO3)2·6H2O (> 97%) and hydrogen per-
oxide purchased from Sigma-Aldrich company. Also, the 
co-precipitation method is used to prepare CoFe2O4 nano-
particles (Maaz et al. 2007). Chemicals are used without 
purification, and the aqueous solutions are prepared with 
deionized water.

Instrumentation

In this study, the electrochemical investigation was done by 
the potentiostat/galvanostat model of µ-Autolab Type II.so 
that, Ag/AgCl/3 M KCl used as a reference electrode, Pt 
wire, and Graphene nanoribbon–CoFe2O4@NiO/HMIM 
PF6/CPE used as counter and working electrodes in the elec-
trochemical cell. The electrochemical data were processed 
with Nova 1.11 software. The morphology studies were per-
formed by the field emission scanning electron microscope 
(FESEM-MIRA3TESCAN-XMU). Moreover, XRD patterns 
were obtained in 2θ between 0° and 80° (0.02θ/s) with a 
Philips-PW 1800 diffractometer, which was equipped with 
Cu-Kα irradiation (λ = 0.1524 nm) source.

Synthesis of CoFe2O4@NiO

To synthesize CoFe2O4@NiO, 2.99 g Ni (NO3)2·6H2O and 
0.8 g sodium hydroxide were put in separate containers. 
Then added, 20 mL DI water to each container. Then 0.2 g 
CoFe2O4 was added into the nickel nitrate solution and dis-
persed, and NaOH dropwise addition was done via a burette. 
The mixture was filtered using filter paper after 90 min stir-
ring. The precipitate was dried at 80 °C for 20 h in the oven 
after washing it with DI water. Finally, the calcination was 
done at 300 °C for 2 h (Mahmoudi and Behnajady 2018).
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Synthesis of graphene nanoribbon–CoFe2O4@NiO 
nanocomposite

The graphene nanoribbon synthesized in our previous 
research method was mixed with CoFe2O4@NiO in a 4:1 
weight ratio in the presence of 30 mL ethanol as solvent, 
then stirred for 2 h. In the next step, the dispersed solution 
was poured into an autoclave at 80 °C for 18 h. then, the 
autoclave content was centrifuged and washed with ethanol/
DI water. Finally, the precipitate dried in the oven at 60 °C 
(Mostafazadeh et al. 2022).

Fabrication graphene nanoribbon–CoFe2O4@NiO/
HMIM PF6/CPE

Graphene nanoribbon–CoFe2O4@NiO/HMIM PF6/CPE was 
prepared by mixing 0.94 g graphite powder and 0.06 g gra-
phene nanoribbon–CoFe2O4@NiO in diethyl ether solvent. 
HMIM PF6 and paraffin oil were added as binders with opti-
mal value after diethyl ether evaporated. The fabricated paste 
was placed in a glass tube, and the electrical contact was 
performed with a copper wire and used as an electrochemi-
cal sensor (Abdi et al. 2020).

Real sample preparation

The fabricated sensor was evaluated by urine and azi cap-
sules as real samples. The urine sample was centrifuged 
(3000 rpm) for 5 min and then filtered to obtain a solution 
without any solid particles. Then 7.5 mL of real sample was 
added with 7.5 mL of phosphate buffer solution (PBS) (pH 
7.0, constant amount of 20% ethanol) in an electrochemical 
cell (Mater Mahnashi et al. 2021).

The contents of one Azi capsule containing 250 mg Azi 
was grounded and homogenized, which was transferred to 
a 200 mL beaker, and 10 mL of ethanol with 30 mL of DI 
water was added to the beaker. Then, the resulting mix-
ture was sonicated for 5 min to the dissolution of Azi, then 
the undissolved portion was filtered. In the next step, the 
obtained solution was transferred to a 50 mL volumetric 
flask and used as a real sample by diluting it to the mark 
with DI water. Finally, 30 µL of the solution with 15 mL of 
the PBS was input into the electrochemical cell. The real 
sample analysis was done by using the standard addition 
method (Ensafi et al. 2013).

Results and discussion

Characterization of nanocomposite

The X-ray diffraction pattern of graphene nanorib-
bon–CoFe2O4@NiO nanocomposite was obtained to 

characterize phase structure and crystalline nature. Figure 1 
shows that the obtained graphene nanoribbon–CoFe2O4@
NiO nanocomposite is mostly in the amorphous phase. Also, 
the pattern shows six diffraction peaks, one at 2θ = 25° (cor-
responding to the diffraction peaks of graphene nanorib-
bons), and others at 36.5, 57, 42.9 and 62° can be assigned 
to CoFe2O4 (Reference code 96-101-0096) and 37.2, 43, 
and 62° for NiO (Reference code 00-002-1216). Further-
more, the grains size was calculated by the Scherrer equation 
expressed below:

where D is the crystallite particle size (nm), the value of 
Scherrer constant (k) is equal to 0.89, λ is the X-ray wave-
length, β is the width of the peak at half maximum intensity 
(FWHM), and θ is the diffraction angle (Scherrer 1912). 
According to the formula, the CoFe2O4@NiO size crystal-
lite was 14.55 nm.

The morphological characteristics of graphene nanorib-
bon–CoFe2O4@NiO nanocomposite as a powder material 
for modifying the carbon paste electrode were investigated 
by scanning electron microscope (SEM). Figure 2a belonged 
to graphene nanoribbon before decorating by CoFe2O4@
NiO, which was prepared as the suitable base for nanocom-
posite. then, the particles of CoFe2O4@NiO dwelled on the 
graphene nanoribbon, and the randomly distributed small 
to large aggregated particles of CoFe2O4@NiO on the gra-
phene nanoribbon surface can be seen in Fig. 2b.

The energy-dispersive X-ray spectroscopy (EDS) 
spectra of graphene nanoribbon, CoFe2O4@NiO, and 
graphene nanoribbon–CoFe2O4@NiO discernibly authen-
ticate the successful ornament of nanoparticles. No addi-
tional element as an impurity was detected in the EDX 
spectra that implicate the ultra-purity of the prepared 
material. Furthermore, Fig. 3b approves of the elemental 
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existence of carbon, oxygen, iron, Cobalt, and nickel 
in the nanocomposite. Moreover, the EDS spectra con-
firmed that CoFe2O4@NiO particles illustrate good affin-
ity to graphene nanoribbon matrix without any impurity 
(Fig. 3a, b).

Electrochemical characterization of Azithromycin 
at different modified CPE electrodes

In this report, the carbon paste electrode was amplified 
by graphene nanoribbon–CoFe2O4@NiO and HMIM 
PF6. The effect of this modification was investigated by 
recording square wave voltammetry (SWV) in the poten-
tial range of 0.65–1.2 V with a potential amplitude of 
20 mV and frequency of 10 Hz at bare CPE, graphene 
nanoribbon–CoFe2O4@NiO/CPE, (HMIM PF6)/CPE and 
graphene nanoribbon–CoFe2O4@NiO/HMIM PF6/CPE in 
500 μM of Azi. According to Fig. 4, square wave vol-
tammograms, oxidation currents increase from 3.5 µA on 
bare CPE to 4.03, 8.2, and 10.41 µA on different modified 
CPE. So, by moving curve A toward curve D, the lowest 
oxidation current related to the bare carbon paste elec-
trode, which is due to weak redox activity in detecting 
Azi, and the highest oxidation peak belongs to graphene 
nanoribbon–CoFe2O4@NiO/HMIM PF6/CPE due to the 
high availability of electroactive sites that were created 
by increasing the surface area. Higher surface area and 
presence of ionic liquid led to a decrease in electrode 
resistance and an increase in the charge transfer process.

Investigation of concentration, scan rate, and pH 
effects

The performance of the Azi sensor was evaluated by SWV in 
different concentrations of Azi solution, which achieved the 
linear relationship from 60 µM to 1 mM as shown in Fig. 5.

The scan rate effects were investigated, and the results 
are shown in Fig. 6. In this study, several cyclic voltam-
mograms with different scan rates from 10 to 250 mV/s 
were applied in 500 µM Azi solution. As Fig. 6 shows, the 
linear relationship (R2 = 0.9954) between anodic peak cur-
rent and Ʋ1/2, which reveals a diffusion-controlled process 
for electro-oxidation of Azi at the surface of graphene nano 
ribbon-CoFe2O4@NiO/HMIM PF6/CPE (Abdi et al. 2020; 
Motaghi et al. 2016; Jahani et al. 2020; Bijad et al. 2018; 
Shamsadin-Azad et al. 2019; Tajik et al. 2014).

To calculate diffusion coefficient value (D), the chron-
oamperometry study was done at graphene nanorib-
bon–CoFe2O4@NiO/HMIM PF6/CPE in 100, 200, 300, and 
400 µM of Azi at potential 1100 mV. Moreover, Cottrell’s 
plot (I–t−1/2) for Azi at the suggested electrode is obtained 
and depicted in Fig. 7 (inset). According to this study, the 
value of D was equal to 9.22 × 10–6 cm2/s.

For investigation of the pH effect, voltammograms of Azi 
solution were recorded at graphene nanoribbon–CoFe2O4@
NiO/HMIM PF6/CPE in different pH values (5–9) (Fig. 8a 
inset). According to data from Fig. 8, oxidation potential 
is decreased by increasing pH, which shows the participa-
tion of proton in the oxidation mechanism process of Azi as 
reported previously (Shawabkeh and Tutunji 2002). Also, 

Fig. 2   Scanning electron microscopy (SEM) micrographs of a graphene nanoribbon, b graphene nanoribbon–CoFe2O4@NiO nanocomposite
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the highest peak current was observed at pH 7.0, which 
was the optimum pH for electrochemical analysis (Fig. 8b). 
On the other hand, the result showed a negative slope 
between Azi oxidation potential signal vs. pH with equa-
tion Epa = − 0.0565 pH + 1.2919 (R2 = 0.9908). The Nern-
stian slope shows that the number of protons and electrons 
in the oxidation reaction is equal.

Azithromycin oxidation behavior

The reaction mechanism of Azi is verified by studying pH, 
and scan rate. The methyl groups determine Azi hydro-
phobicity by ionizable agents covering. Azi is protonated 
at pH 7.0 at both N3 and N9 and is a highly hydrophobic 
molecule (Sharma and Hwa 2022). Azi tends to diffuse at 

the surface. herein, the oxidation half-reaction is facili-
tated by highly electroactive sites, which are formed by 
CoFe2O4@NiO and ion liquid. The amine groups in the 
structure of azithromycin are most easily oxidized. So, 
the alkylamine change to radical cation form by losing 
an electron (Grimshaw 2000). The obtained anodic peak 
current is related to electrons of N3 because N9 does not 
lose lone pair of electrons easily due to its location in 
the macrocyclic lactone ring. The similar electrochemi-
cal responses of erythromycin as a structural analogous 
drug with no nitrogen in the macrocyclic lactone ring 
are approved of N3 participation in the electrochemical 
mechanism of Azi (Gielen et al. 2010; Chorin et al. 2020; 
Wang et al. 2000; Montenez et al. 1996; Peng et al. 2011; 
Mandić et al. 2003). The electrochemical mechanism is 
shown in Scheme 1.

Fig. 3   EDS spectra of a 
CoFe2O4@NiO and b graphene 
nanoribbon–CoFe2O4@NiO
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The linear dynamic range and limit of detection

Square wave voltammetry was used as a sensitive tech-
nique for investigating the linear dynamic range of Azi 
concentration (Fig. 9 inset). The investigation was done 
in the concentration range of 10 µM–5 mM. According 
to the results shown in Fig. 9, the oxidation peak cur-
rent (Ipa) is improved by increasing the concentration from 
10 µM to 2 mM. Also, a linear relationship with equation 

Ipa = 0.011x + 0.3443 (R2 = 0.9922) was obtained in this 
range. Furthermore, a linear relation between 60 µM and 
1 mM with the equation of Ipa = 0.0156x − 0.6587 and the 
correlation coefficient of R2 = 0.9940 was observed. The 
calculated limit of detection (LOD) was equal to 0.66 µM 
(S/N = 3). The results show that a fabricated sensor is a 
suitable tool for determining Azi compared to previous 
reports (Table 1). In general, compared to most of the 
related reports in Table 1, the proposed sensor has a com-
parable or better figure of merits.

Fig. 4   a Square wave voltammograms of 500  µM Azi at CPE, graphene nanoribbon–CoFe2O4@NiO/CPE, (HMIM PF6)/CPE, and graphene 
nanoribbon–CoFe2O4@NiO/HMIM PF6/CPE. b Current response to different modified electrode

Fig. 5   Calibration curve obtained at different concentrations of the 
Azi on graphene nanoribbon–CoFe2O4@NiO/HMIM PF6/CPE in 
PBS (pH 7.0, n = 3). Inset is the SWVs obtained from different con-
centrations of Azi

Fig. 6   The plot of I/ν1/2 for oxidation of 500 µM Azi at the suggested 
sensor (n = 3). Inset: cyclic voltammograms 500 µM Azi at different 
scan rates from 10 to 250 mV/s
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Stability, reproducibility, repeatability, 
and selectivity analysis

Stability as an essential factor for the fabricated sensor was 
obtained by square wave voltammetry method at graphene 

nanoribbon–CoFe2O4@NiO/HMIM PF6/CPE in the pres-
ence of 500 µM Azi solution. This evaluation was done for 
30 days. The data obtained from the oxidation signals of 
Azi showed that the changes were less than 3.41% initial 
current which is an acceptable value for an electrochemi-
cal sensor. Moreover, we used five different electrodes 
with the same process preparation, and the response of 
the electrodes with the RSD value of 3.15% was obtained, 
which confirmed the acceptable reproducibility of the fab-
ricated electrochemical sensor.

Moreover, the RSD to the repeatability of the sensor 
was recorded by five consecutive square wave voltammo-
grams and calculated as 2.5%, which represents the admis-
sible repeatability for the designed sensor. Alongside this, 
the selectivity of the engineered sensor has been verified 
in the presence of possible real sample interferences of an 
analyte such as metal cations, anions, and organic com-
pounds. For this purpose, the fabricated electrochemical 
sensor was evaluated in 500 µM of Azi with mentioned 
interferences. According to data, 500-fold of Na+, K+, Br−, 
Cl−, 400-fold glucose, 300-fold of sucrose and urea, and 
100-fold of thiamine have no interference for Azi determi-
nation at the surface of the fabricated sensor.

Fig. 7   Chronoamperograms of 100 to 400 µM of Azi at the suggested 
sensor. Inset: Cottrell’s plot obtained from chronoamperograms
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CoFe2O4@NiO/HMIM PF6/CPE. b Current responses of the suggested electrode in pHS ranging from 5 to 9

Scheme 1   Electrochemical mechanism of Azi towards the fabricated sensor
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Determination of Azi in real samples

Graphene nanoribbon–CoFe2O4@NiO/HMIM PF6/CPE as 
an electrochemical sensor was checked by square wave vol-
tammetry technique to determine Azi in the urine and Azi 
capsule as two real samples. The results with the acceptable 
recoveries are shown in Table 2.

Conclusion

In the present work, the Azi antibiotic was determined with 
a carbon paste electrode modified by nanomaterial and ion 
liquid. The electrocatalytic activity of the proposed Azi 
sensor was improved by nanoribbon–CoFe2O4@NiO nano-
composite and 1-hexyl-3 methylimidazolium hexafluoro-
phosphate as an ionic liquid. The pH study was carried out 
in different ranges of PBS in presence of Azi and the results 
revealed that the fabricated sensor has the best performance 
in pH 7.0. Also, the results demonstrated the number of 

electrons and protons in the reaction is the same. Moreover, 
the scan rate investigation showed that Azi electro-oxidation 
is diffusion controlled and the diffusion coefficient value 
(D = 9.22 × 10–6 cm2/s) was calculated by chronoamperom-
etry study. Furthermore, the wide linear ranges from 10 µM 
to 2 mM with a LOD of 0.66 µM were obtained. In addi-
tion, the low signal fluctuations are approved for good sta-
bility of the resultant sensor. As well as, the reproducibility 
(RSD ~ 3.15%), repeatability (RSD ~ 2.5%), and selectivity 
tests were performed, which all were acceptable. Eventually, 
the applicability of the fabricated Azi sensor was assessed 
by testing in the urine sample and the Azi capsule as real 
samples. Consequently, the acceptable recovery percentages 
for the urine sample (95.26–97.16%) and the Azi capsule 
(96.35–99.23%) confirmed the applicability of the proposed 
sensor.

Fig. 9   The plot of Ipa vs. Concentration of Azi (n = 3). Inset: SWV 
response for graphene nanoribbon–CoFe2O4@NiO/ HMIM PF6/CPE 
at different concentrations of Azi (10 µM to 2 mM) in PBS (pH 7.0)

Table 1   Comparison with 
some recently reported 
electrochemical sensors of Azi

Electrode Mediator Linear range (µM) Limit of 
detection 
(µM)

References

CPE Au nanoparticles 0.2–3.12 0.06 Vajdle et al. (2020)
GCE Gr/IL 0.65–38.25 0.25 Peng et al. (2011)
GCE MgCr2O4/MWCNT 0.25–10.0 0.07 Ensafi et al. (2013)
Coated graphite Azi-imprinted polymers 2–10,000 0.7 Abu-Dalo et al. (2015)
CPE Graphene nanoribbon–

CoFe2O4@NiO/HMIM 
PF6

10–2000 0.66 This work

Table 2   Analytical applicability of suggested electrode in Azi capsule 
and urine samples

Sample Azi added (µM) Azi founded (µM) Recovery (%)

Capsule – 5.50 ± 1.72 –
Capsule 80.00 81.45 ± 0.35 95.26
Capsule 100.00 102.51 ± 2.22 97.16
Urine – 2.47 ± 0.17 –
Urine 60.00 60.19 ± 0.84 96.35
Urine 80.00 81.84 ± 1.24 99.23
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