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Abstract
The COVID-19 pandemic significantly impacts the increase in plastic waste from food packaging, masks, gloves, and per-
sonal protective equipment (PPE), resulting in an environmental disaster, if collected, processed, transported, or disposed 
inappropriately. Plastic waste has a very long deterioration time in the environment (soil and water), cheap, and plentiful. 
Additionally, construction waste disposal is a process that transfers debris to a state that does lead to any sustainable or 
environmental problems. The core objective of this current research work is to provide safety and efficacy by partial substitu-
tion of both ultrafine demolition waste (UDW), incorporated with nanoplastic waste (NPW), for eco-white cement (E-WC) 
composition. E-WC is designed by partially substituted WC with UDW (1.0, 5.0, 10.0, 15.0, and 20.0 wt.%); incorporated 
with NPW (1.0 and 3.0 wt.%); to adequately protect people and the environment over long periods. The context examines 
the high performance, physicomechanical properties and high durability of blends as presences of silica in UDW proposed 
a hydraulic filler material, plus; high surface area of NPW. The microstructure and workability are characterized by X-Ray 
Fluorescence (XRF), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM) measurements. 
The record results show greatly enhanced in the mechanical strength due to the combination of NPW and UDW (active silica). 
With the presence of NPW and UDW in WC matrix, the highest level of crystallization formed consequently a decrease in 
whiteness reflection (Ry) and total porosity. In summary, WC blend with NPW and UDW reflects better workability and 
energy saving qualities, which are economical and environmentally beneficial and may result in decreased construction 
budget and improve a long-term raw material sustainability.

Keywords  COVID-19 pandemic · Nano-plastic-waste (NPW) · Ultra-fine demolition waste (UDW) · Eco-white cement 
(E-WC) · Energy saving · Whiteness reflection (Ry) · Sustainability

Introduction

Plastic waste (PW) is present in the surrounding environ-
ment with less use for recycling or as a substitute for indus-
trial raw materials. There are seven types of plastic, all of 
which are harmful except for the fifth type (BPA free). Mod-
ern waste management techniques reduce the rapid depletion 
of both resources, including raw and combustible materials. 

Solid waste has significant negative drawbacks to the eco-
system and living conditions (Mukherjee et al. 2021; Adarsh 
et al. 2022; Saleh et al. 2021; Singh and Sharma 2016). 
Additionally, a large portion of plastic waste appears with 
increasing the production scale, where plastic solid waste 
negatively affects the environment. Many local and inter-
national rules have emphasized the need to examine waste 
recycling and landfilling to minimize its negative impacts. 
A review of the literature indicates that many investigations 
have focused on plastic waste to reach more environmental 
efficiency and applicable materials (Evode et al. 2021; Gupta 
et al. 2019). The huge increase in the popularity of using 
environmentally friendly, low-cost, and dangerous materi-
als in the productivity of building materials has led to the 
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need for a deep investigation of how to achieve this on a 
large scale using the environment as well as preserving the 
materials and confirming the requirements within accept-
able limits according to cement and concrete specs (Goli 
et al. 2020). Particularly, in the last 5 years, the usage of 
plastic in food packing and PPE has hugely increased. Thus, 
with an increase in the production of plastic factories, the 
volume increases and the PW cannot be stored or recycled 
in the conventional ways (e.g., landfilling and/or burning) 
(Owaid et al. 2022; Osial et al. 2022; Salih et al. 2022). 
In 2025, the production of plastic waste may reach 21 BT 
(Ncube et al. 2021; Hahladakis et al. 2020). Figure 1 shows 
the production of plastic waste (tons) in the governorates of 
Egypt, which was assumed to be ~ 3603.81 tons according to 
the Egyptian mobilization and statistics center in the period 
from 2018 to 2021(Abdelzaher et al. 2018). The implemen-
tation of this industrial waste that cannot be stored in other 
sectors and economic gains can be made from them while 
reducing environmental pollution (Barnes 2019). Inorganic 
and economic materials, e.g., supplementary cementitious 
materials (SCMs), have remarkable increasing potential in 
advanced industries, such as paper, agriculture, organic ferti-
lizer, glass, chemicals, and construction material industries. 
In addition to; PW may be helpful raw material due to their 
low cost and availability (Shahani et al. 2021; Abbas et al. 
2021; Zalasiewicz et al. 2019).

The disposal of demolition debris waste is one of the 
most important sectors for which innovative solutions are 
necessary, in unconventional ways, especially since the 

accumulation of demolition and construction waste con-
stitutes a real and growing environmental problem (Mar-
zouk and Azab 2014; El-Kattan et al. 2020; Benjeddou 
et al. 2020). The recycling of construction waste is an area 
of ​​ potential for engineers, as the volume of accumulated 
waste in Egypt is around 50 million tons, in addition to 
5 million tons annually (Barnes 2019; Benjeddou et al. 
2020). Construction and demolition waste represents about 
44% of it, and no companies recycle construction waste in 
Egypt, except for one company that uses shredding equip-
ment for paving roads and streets, although there are about 
66 garbage-sorting plants. It is obligatory to enhance inte-
grated and sustainable solutions for managing construction 
waste to preserve material resources such as minerals and 
ores. Increasing the resource productivity, and improving 
the reuse and recycling of materials in a way that reduces 
the depletion of raw resources, preserves the environment 
and contributes to achieving development and environ-
mental sustainability goals in Egypt (Kineber et al. 2020; 
Abdelzaher et al. 2018; Nik and Bahari 2012; Balboul 
et al. 2019; Abdelzaher and Shehata 2022). The operation 
includes the collection, transportation, sorting and recy-
cling of waste emitted from construction and demolition 
works, benefiting from building materials, recycling and 
reusing them at the project site to reduce transportation 
costs, dispose of waste, preserve natural resources, and 
benefit in a manner that achieves the requirements of the 
leadership system in energy and environmental designs. 
Nanotechnology has a wonderful approach and various 

Fig. 1   Production of plastic waste (Tons) in the governorates of Egypt
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applications in the cement and concrete fields. Enhancing 
the physical–mechanical and chemical properties of the 
WC microstructure when incorporated with nanoparticles 
is attributed to the multi-different uses of nanoparticles 
because of their unique properties. Many research works 
on adding different nanomaterials to cement and concrete 
have been reported elsewhere (Du et al. 2019; Tantawy 
et al. 2013; Kong et al. 2018). Physic-mechanical and 
chemical processes of cement hydration process are com-
plicated (Kong et al. 2018; Bellmann et al. 2010; Scrivener 
et al. 2019). The topo-chemical conventional theory and 
through reactions of the solution are complex mechanisms, 
which deeply explain the C–S–H gel formation once it 
starts the hydration process in an advanced way (Scrivener 
and Nonat 2011; Scrivener et al. 2015; Ludwig and Zhang 
2015). Nano-material applications are limited due to finan-
cial issues. These materials have self-cleaning properties 
that trigger the photocatalytic degradation of most pollut-
ants in the air (Schneider 2015). Additionally, high Blaine 
(surface area) acts as active nuclei during cement hydra-
tion, and promotes the formation of C–S–H and C–A–H 
phases (Du et al. 2019; Abdelzaher 2022; Sobolev 2016; 
Silvestre et al. 2016).

However, the implementation of NPW incorporated 
with ultrafine-UDW as a supplementary material for white 
cement fabrication not investigated. The main objective 
of this practical study was to investigate the effectiveness 
of PW incorporated with ultrafine-UDW used at various 
replacement levels on the properties of WC in terms of 
compressive mechanical strengths, whiteness reflection 
(Ry), porosity, and microstructure.

Laboratory program

Materials

In the current lab program, white cement (WC), ultrafine 
demolition debris waste (UDW), and nano-plastic-waste 
(NPW) represent the core materials. White cement [Class I, 
52.5 MPa] was purchased from Sinai White Cement Com-
pany (SWCo.), (Sinai, Egypt). Demolition debris waste 
was brought from Tourah area, (Giza, Egypt). Crushing 
then milling until reach ultrafine size passes through 63-µm 
mesh, specific surface area is, e.g., Blaine 4199 cm2 g−1. 
Figure 2, shows the UDW visually and SEM microstructure. 
Nano-plastic waste processed by cutting the PW (bags + pot-
tiles + PPE) into small sizes as possible, as shown visually in 
Fig. 3. Small pieces of PW were grained in the ball mill for 
3 days (continuously). Powder is checked every 12 h by siev-
ing it on 63 µm mesh till reach nanosize. Figure 4a, b shows 
the SEM and TEM morphologies of NPW, respectively, 
and prove that PW has skeleton arrangement particles and 
reaches the nanosize scale, e.g., NPW size between 56.93 
and 81.14 nm. Detailed XRF analysis for white cement and 
ultrafine demolition debris waste, e.g., the chemical analysis 
for WC, is shown in Table 1.    

Preparation and testing methods

Generally, two sets of works are proposed. WC was substi-
tuted with various portions, e.g., (1.0%, 5.0%, 10.0%, 15.0%, 
and 20.0) by wt. % UDW, in the presence of 1.0% and 3.0% 
NW by wt.% (fixed ratio), and all proposed sets are tabulated 

Fig. 2   UDW visually inspection  and SEM microstructure
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in Table 2. Additionally, water/cement powder ratio (W/CP) 
was reported for all MxGx composites.

After manual homo-process, the patches were cast in 
stainless steel molds with (25 × 25 × 25 mm) dimensions, 
and then, cubes set for hydration in 95 ± 5% actual humid-
ity (RH) at ambient laboratory temperature. One day later, 

the cast prisms were de-molded and hydrated directly in 
tap fresh water for up to 28 days of hydration. The ASTM 
stander was the guide for our practical work as detailed 
elsewhere (Ariffin et al. 2015; ASTM 2016), which reflects 
the importance of (high RH) on the hydration process of 
the blends. In addition to investigating the workability of 

Fig. 3   Visual inspection of PW and NPW

Fig. 4   a, b SEM and TEM photos of NPW

Table 1   XRF analysis of white 
cement and ultrafine demolition 
debris waste

Elements SiO2 Al2O3 CaO Fe2O3 MgO SO3 Na2O K2O LOI Cl−

WC 22.31 2.92 67.46 0.11 0.26 2.90 0.05 0.05 2.61 0.06
UDW 68.11 16.84 7.03 0.12 1.44 0.02 0.87 1.05 1.98 0.03
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MxGxspecimens, whiteness reflection, compressive strength, 
setting time, and porosity variations were estimated. Elerpho 
French apparatus was used to detect the whiteness reflec-
tion (Ry) comply with DIN 5033 specs (NORM 1992). Set-
ting times and expansion (soundness) of MxGx-composites’ 
cement pastes were measured using Vicate and Le-Chatelier 
apparatus, respectively, based on ASTM C191 and ASTM 
C88, respectively (ASTM C191 2013; ASTM 2013). The 
compressive mechanical strength (CS) was triply performed 
according to ASTM C109M (Standard 2000), using a 5.00 
ton load (e.g., Shemizitu German machine test) with a high 
loading rate of 20.00 kg min−1. Solidification of the prisms, 
e.g., porosity percentage, was conducted from porosimeter 
(Pore IV 9500), using mercury intrusion data (Standard 
2000). According to records, the baselines for the pore sizes 
(macro-pores large than 3500 nm, micro-pores in 0–15 nm, 
while meso-pores in range between 15 and 3500 nm) were 
measured in this work. The residual specimen was carefully 
stored for XRD, TEM, and SEM analysis. The scientific 
schematic framework for the experimental program is plot-
ted in Fig. 5. 

Instrumental analysis

Detailed chemical composition analysis for WC and UDW 
was performed using XRF (ARL 9900, Panalytical). The 
morphology of the specimens was determined with (FEI 
Company, The Netherlands), “an energy dissipation X-ray 
analyzer”. The transmission electron microscopy (TEM) 
instrument reported that the effective particle size for NPW 
is 56.93 and 81.14 nm. This indicated the NPW in nanosized 
powder, as seen in Fig. 4, which a suitable particle size for 
meso-pores of MxGx matrix.

Results and discussion for Group I

Whiteness reflection (Ry)

Whiteness reflection (Ry) is one of the major indicators of 
white cement quality, so replacement will affect badly on 
WC reflection profile on the 3-axis (Rx = 86.24, Ry = 86.2, 
Rz = 80.59) (NORM 1992). Hinter l (Hl ≥ 80.0%) is the 
key perimeter for the whiteness intensity, while Hinter a 
(Ha ≤ -5.0) is the reflection of green and Hinter b (Hb) is 
the reflection of tallow color on Elerpho apparatus. Both 
NPW and UDW have a low degree of whiteness under Eler-
pho apparatus. Pale yellow color for NPW (Rx = 66.73, 
Ry = 66.70, Rz = 62.36) combined with too low white-
ness color (Rx = 46.22, Ry = 46.20, Rz = 43.19) for UDW 
decreases MxGx composites, as shown in Table 3. MxGx 
composites pastes have the following order: M0 ˃ M1G1 
˃ M2G1 ˃ M3G1 ˃ M4G1 ˃ M5G1, as shown in Fig. 6. In 
addition, low Ha and Hb for NPW (Ha = − 1.78, Hb = 3.72) 
and UDW (Ha = − 1.48, Hb = 3.10) decrease the Hl for the 
blends as decreasing the green color and increasing in yellow 
color content. M1G1 shows better Hl intensity (Ha = 90.69), 
and this may be attributed to the equal portion 1.0% of both 
replacement and neutralized the Ry color (Ry = 82.20). High 
replacement of UDW decreased shapely the Ha for M5G1 
paste (Hl = 75.88) with high content of yellowish color and 
poor green content.  

Setting time and water consistency

Increasing the consistency of the water extends the initial 
and final setting time of the white cement composites. NPW 
acts as an inert filler, while UDW is a positive hydraulic 
filler. The setting time for the MxGx blends—group I—has 

Table 2   Mix composition 
of proposed blends (as 
replacement)

Blend composition White cement 
batch by 
weight

Nano-plastic-
waste batch by 
weight

Ultra-fine demo-
lition debris 
waste

Total mix 
batch by 
weight

Water/cement 
ratio by weight

M0 (Ref.) 100.00 0.00 0.00 100.00 0.28
Group I: NPW ratio 1.0 wt. %
 M1G1 98.00 1.00 1.00 100.00 0.36
 M2G1 94.00 1.00 5.00 100.00 0.37
 M3G1 89.00 1.00 10.00 100.00 0.44
 M4G1 84.00 1.00 15.00 100.00 0.47
 M5G1 79.50 1.00 20.00 100.00 0.56

Group II: NPW ratio 3.0 wt. %
 M1G2 96.00 3.00 1.00 100.00 0.45
 M2G2 92.00 3.00 5.00 100.00 0.51
 M3G2 87.00 3.00 10.00 100.00 0.58
 M4G2 82.00 3.00 15.00 100.00 0.60
 M5G2 77.00 3.00 20.00 100.00 0.63
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the following order: M0 ˂ M1G1 ˂ M2G1 ˂ M3G1 ˂ M4G1 ˂ 
M5T1, as shown in Fig. 7. Replacement of clinker/cement 
content by any filler enlarges the cement setting period, so 
hydraulic fillers are preferable additives as they form cal-
cium-aluminate and calcium-sulfoaluminate during the pre-
hydration process and reduce acoustic emission behavior 
(Kurda et al. 2019; Abdelzaher and Awad 2022). M1G1 and 
M2G2 show good workability and almost the same water/
cement ratio, and it may be attributed to the equal ratio of 
inert/hydraulic filler ratio for M1G1 mix, which regulates 
the blend setting, similarity comes from performance dur-
ing setting process. In addition; hydration process increases 
the solidification of blends and reduces early cracking. In 
contrast, M5G1 blend reflected the lowest workability due 
to high replacement of inert/hydraulic filler ratio, although it 
was in the nanoscale. Increasing inert/hydraulic filler content 
has a lower behavior on cement hydration phases. A high 
surface area fills open pores in the WC matrix and increases 
water demand. The average for white cement water/cement 
ratio by weight is ~ 0.40 ± 0.03 shows suitable water consist-
ency and hydration products (Standard 2005). 

SEM morphology

The WC microstructure is characterized by a less pore struc-
ture due to its ground to reach high surface area compared 
to the conventional OPC. Figure 8 shows the morphology 
of MxGx-Group I paste composites. Clearly, notice that the 
morphology of WC reflects good surface microstructure 
under the SEM apparatus with an arranged Skelton structure. 
MxGx-Group I paste composite morphologies are very inter-
esting during SEM operation, as the appearance of linkage 
fibrous proves the presence of C–S–H gel and C–A–H phase 
(Abdelzaher and Shehata 2022; Abdelzaher 2021; Elkhouly 
et al. 2022). M1G1 (1.0% UDW) composite reports high 
fiber structure density leads to more solidification as UDW 
content, while reducing porosity content due to the NPW 
effect. The high silica content of UDW acts as active nuclei 
during the hydration process and promotes Tobermorite gel 
phase formation (Myers et al. 2013). As a substation of filler, 
increase the morphology changes badly at 1.0% wt. NPW 

Fig. 5   Scientific framework for instrumental and experimental pro-
gram

Table 3   Whiteness reflection 
(Ry) of proposed blends for 
Group I

Pastes Rx Ry Rz Hl Ha Hb

M0 86.24 86.20 80.59 92.84 − 2.02 4.23
NPW 66.73 66.70 62.36 81.67 − 1.78 3.72
UDW 46.22 46.20 43.19 67.97 − 1.48 3.10
M1G1 82.24 82.20 76.85 90.66 − 1.97 4.13
M2G1 78.24 78.20 73.11 88.43 − 1.93 4.03
M3G1 74.85 74.82 69.95 86.50 − 1.88 3.94
M4G1 66.23 66.20 61.89 81.36 − 1.77 3.70
M5G1 57.61 57.58 53.83 75.88 − 1.65 3.46
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filed the open pores without any hydraulic properties and 
UDW as substation increase, precipitated on the WC surface 
without extra hydraulic promotion. SEM reports that M4G1 

(15.0% UDW) and M5G1 (20.0% UDW) composites have 
less fiber content and weak surface microstructure. We sum-
marized the density of the fiber content quantitatively for 

Fig. 6   Whiteness Reflection (Ry) profile of proposed blends for Group I

Fig. 7   Setting time and water constancy of profile of proposed blends for Group I
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MxGx-Group I paste composite in the following order: WC 
˃ M1G1 ˃ M2G1 ˃ M3G1 ˃ M4G1 ˃ M5G1.

Compressive mechanical strength (CMS)

Eventually, compressive mechanical strength (CMS) is the 
key performance indicator for WC quality and workability. A 
low pore structure of WC reflects on CMS profile, as shown 

in Fig. 9, which illustrates visually the compressive strength 
test on Shemizitu German machine. Figure 10 shows the 
CMS of MxGx-Group I paste composites hydrated for 3, 7, 
and 28 days, respectively. Clearly, notice that the CMS var-
ies with substitution level due to the replacement of hydrau-
lic cementitious material by inert filler (NPW) and medium 
hydraulic filler (UDW). M1G1 paste shows beater CMS at 
early and late age of hydration, which may be attributed to 

Fig. 8   The morphology of MxGx-Group I paste composites
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the equal ratio from inert filler/medium hydraulic filler of 
1:1% wt.%. Equal ratios make neutralization effect as high 
surface area of NPW and UDW fills the open pores of the 
WC microstructure, leading to solidification and hardness of 
M1G1 paste compared to the WC. Paste composites have the 
following order at an early age (3 days of hydration) in the 
CMS scale, e.g.: M1G1 (29 MPa) ˃ M0 (28 MPa) ˃ M2G1 
(26 MPa) ˃ M3G1 (22 MPa) ˃ M4G1 (19 MPa) ˃ M5G1 
(11 MPa) (Kim et al. 2018). At late age of hydration (curing 
for 28 days), M5G1 paste failed in CMS test and recorded 

47 MPa, which was attributed to the high ratio of substitu-
tion from hydraulic cementitious material. The addition of 
UDW produces extra Alite clinker, but at limited ratios, as 
mentioned earlier that UDW can reach 8.0% wt.% substitu-
tion while saving the hydraulic properties (Costa and Ribeiro 
2020); NPW promotes this limit to 10.0% wt.% substitution, 
e.g., M2G1 (67 MPa). Filling plastic waste into cement rep-
resents good room for improving the solid-waste recycling 
approach.  

Fig. 9   The compressive strength test on Shemizitu Machine

Fig. 10   The compressive mechanical strength of MxGx-Group I paste composites
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Porosity

The pore volumes of MxGx-Group I paste composites after 
3, 7, and 28 days of hydration are shown in Fig. 11. It is a 
water conjunction under certain conditions, and has a direct 
relation with compressive mechanical strength (Burwell 
et al. 1963). NPW combined with UDW affect positively 
on WC composite microstructure and rearrange the interior 
molecule structures, which lead to compact the surface area 
and increased solidification. Porosity decreases with curing 
age, and MxGx-Group I paste composites have the following 
order: M1G1 ˃ M0 ˃ M2G1 ˃ M3G1 ˃ M4G1 ˃ M5G1, which 
was also observed during SEM instrumentation analysis. It 
was clear that the porosity decreased by 13.7% for M1G1 
as compared to M0 paste. At late hydration age (28 days 
of curing), porosity decreases sharply and recorded to less 
than 15.0%, e.g., M1G1 (4.02%) ˃ M0 (4.52%) ˃ M2G1 
(7.72%) ˃ M3G1 (9.21%) ˃ M4G1 (11.1%) ˃ M5G1 (13.26%). 

Decreasing composites’ permeability delays the alkali (Cl−, 
Na, and K) ion penetration and reduces the alkali attack phe-
nomena, e.g., corrosion, and this will lead to increase com-
posites half-life time and cracking occurrence (Abdelzaher 
2021).

Results and discussion for Group II

Whiteness reflection (Ry)

It was clear that both NPW and UDW have a low degree of 
whiteness degree under Elerpho apparatus. Table 4 reports 
the Ry results for MxGx composites pastes, which have the 
following order: M0 ˃ M1G2 ˃ M2G2 ˃ M3G2 ˃ M4G2 ˃ 
M5G2 as seen in Fig. 12. Further, low Ha and Hb for NPW 
(Ha = − 1.78, Hb = 3.72) and UDW (Ha = − 1.48, Hb = 3.10) 
respectively, decrease the Hl for the blends as decreasing 

Fig. 11   The porosity of MxGx-Group I paste composites

Table 4   Whiteness reflection 
(Ry) of proposed blends for 
Group II

Pastes Rx Ry Rz Hl Ha Hb

M0 86.24 86.20 80.59 92.84 − 2.02 4.23
NPW 66.73 66.70 62.36 81.67 − 1.78 3.72
UDW 46.22 46.20 43.19 67.97 − 1.48 3.10
M1G2 80.51 80.48 75.24 89.71 − 1.95 4.08
M2G2 77.37 77.34 72.31 87.94 − 1.91 4.00
M3G2 71.40 71.37 66.73 84.48 − 1.84 3.85
M4G2 61.92 61.89 57.86 78.67 − 1.71 3.58
M5G2 52.43 52.41 49.00 72.39 − 1.58 3.30
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the green color and increasing yellow color content. M1G2 
shows better Hl intensity (Ha = 89.71), a low substation per-
centage compared to the color; Ry color (Ry = 80.48). High 
replacement of UDW decreased shapely the Ha for M5G2 
paste (Hl = 72.39) with high content of yellowish color and 
poor green color content.  

Setting time and water consistency

Increasing substitution leads to increase in water/powder 
ratio. NPW acts as an inert filler, while UDW is a positive 
hydraulic filler. 3.0% wt.% NPW enlarges the consistency 
and elongates the setting time for the MxGx blends-group 
II, by default. Pastes have the following order: M0 ˂ M1G2 
˂ M2G2 ˂ M3G2 ˂ M4G2 ˂ M5T2, as shown in Fig. 13. 
Replacement of clinker/cement content by any filler enlarges 
the cement setting period, and the role of UDW as hydraulic 
fillers is a preferable additive as they form calcium-alumi-
nate and calcium-sulfoaluminate during the pre-hydration 
process and reduce the acoustic emission behavior (Kurda 
et al. 2019; Abdelzaher and Awad 2022; Standard 2005). 
M1G2 showed good workability and almost the same water/
cement ratio, which may be attributed to the low substitu-
tion ratio of inert/hydraulic filler ratio, which better regu-
lates the blend setting behavior. Additionally, hydration 
process increases the solidification of blends and reduces 
early cracking. In contrast, M5G2 blend reflected the low-
est workability due to a high replacement of inert/hydrau-
lic filler ratio, although it was in the nanoscale. Increasing 

inert/hydraulic filler content has a lower behavior on cement 
hydration phases. A high surface area fills open pores in the 
WC matrix and increases water demand.

SEM morphology

Figure 14 shows the morphology of MxGx-Group II paste 
composites. Clearly, notice that the morphology of WC 
reflects good surface microstructure under the SEM appara-
tus with an arranged Skelton structure. MxGx-Group II paste 
composite morphologies are varied during SEM operation, 
as the appearance of small amounts of linkage fibrous proves 
the presence of C–S–H gel and C–A–H phase (Abdelza-
her and Shehata 2022; Abdelzaher 2021; Elkhouly et al. 
2022). M1G1 (3.0% UDW) composite reports that low fiber 
structure density leads to less solidification than the WC, 
as high content of UDW, while reducing porosity content 
due to the NPW effect. As a substation of filler, increase 
the morphology changes badly at 3.0% wt. NPW filed the 
open pores without any hydraulic properties and UDW as 
substation increase, precipitated on the WC surface without 
extra hydraulic promotion. SEM reports that M3G2 (10.0% 
UDW), M4G2 (15.0% UDW), and M5G1 (20.0% UDW) 
composites have less fiber content and weak surface micro-
structure. We summarized the density of the fiber content 
quantitatively for MxGx-Group II paste composite in the 
following order: WC ˃ M1G2 ˃ M2G2 ˃ M3G2 ˃ M4G2 ˃ 
M5G2.

Fig. 12   Whiteness Reflection (Ry) profile of proposed blends for Group II
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Compressive mechanical strength (CMS)

Figure 15 shows the CMS of MxGx-Group II paste com-
posites hydrated for 3, 7, and 28 days, respectively. Clearly, 
notice that the CMS varies with substitution level due to the 
replacement of hydraulic cementitious material by inert filler 
(NPW) and medium hydraulic filler (UDW). NPW 3.0% 
wt. % showed a decrement in CMS at early and late age of 
hydration, which may be attributed to the high ratio from 
inert filler and medium hydraulic filler. In addition, the high 
surface area of NPW and UDW fills the open pores of the 
WC microstructure, leading to solidification and hardness of 
MxGx-Group II paste composites but lower the control sam-
ple. Paste composites have the following order at an early 
age (3 days of hydration) the CMS scale, e.g., M0 (28 MPa) 
˃ M1G1 (24 MPa) = M2G1 (24 MPa) ˃ M3G1 (19 MPa) ˃ 
M4G1 (12 MPa) ˃ M5G1 (8 MPa). At late age of hydration 
(curing for 28 days), both M4G1 and M5G1 pastes failed 
in the CMS test and recorded 51 and 42 MPa, respectively, 
which was attributed to the high ratio of substitution from 
hydraulic cementitious material. The addition of UDW pro-
duces extra Alite clinker, but at limited ratios, as mentioned 
earlier that UDW can reach 8.0% wt. % substitution while 
saving the hydraulic properties (Kim et al. 2018).

Porosity

The pore volumes of MxGx-Group II paste composites 
after 3, 7, and 28 days of hydration are shown in Fig. 16. 
Eventually, NPW combined with UDW affect negatively on 
MxGx-Group II paste composites’ microstructure and rear-
range the interior molecule structures, lead to weakness the 
surface area and decrease solidification. Porosity decreases 

with curing age, MxGx-Group II paste composites have the 
following order: M0 ˃ M1G2 ˃ M2G2 ˃ M3G2 ˃ M4G2 ˃ 
M5G2, which was also observed during CMS measure-
ments. It was clear that the porosity sharply decreased by 
27.2% for M1G1 as compared to M0 paste. At late hydra-
tion age (28 days of curing), porosity decreases sharply 
and recorded to less than 22.0%, e.g.: M0 (4.52%) ˃ M1G1 
(6.87%) ˃ M2G1 (9.88%) ˃ M3G1 (11.37%) ˃ M4G1 
(12.64%) ˃ M5G1 (15.24%). By default, decreasing com-
posites permeability delays the alkali (Cl−, Na, and K) ion 
penetration and reduces the alkali attack phenomena, e.g., 
corrosion, this will lead to increase composites half-life time 
and cracking occurrence (Burwell et al. 1963).

Conclusion

Solid-waste recycling is a major challenge nowadays. 
Reaching sustainability in raw material resources is the 
SDGs for industry, innovation, and infrastructure. The 
current practical investigation based on the 2050 vision 
is to reduce raw material consumption and CO2 emis-
sions. NPW is an inert filler that can reduce the plastic 
waste dangerous worldwide and open room of recycling 
thesis waste in one of the most material consumption in 
the world, e.g., white cement industry. Two composite 
groups were proposed, with 1.0% and 3.0% fixed wt.% 
NPW incorporated with UDW from 1.0 to 20.0% (as sub-
station). MIG1 (1.0% NPW + 1.0% UDW), (M2G1 (1.0% 
NPW + 5.0% UDW) and M1G2 (3.0% NPW + 1.0% UDW) 
showed better workability, whiteness reflection (Ry), and 
microstructure. In addition, NPW filled WC open pores 
enhance the physicomechanical features and reduce alkali 

Fig. 13   Setting time and water constancy of profile of proposed blends for Group II
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Fig. 14   The morphology of MxGx-Group II paste composites



5534	 Applied Nanoscience (2023) 13:5521–5536

1 3

leaching, improving sulfate attack properties. It recom-
mend that until 3% of NPW can be applicable in the 

cement sector with additional physicomechanical features 
than the neat white cement.

Fig. 15   The compressive mechanical strength of MxGx-Group II paste composites

Fig. 16   The porosity of MxGx-Group II paste composites
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