Skip to main content

Advertisement

Log in

Effect of inclusion of nanoparticles on unsteady heat transfer

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

New geometry with rectangular inner cylinder containing cold flow has been simulated in this article. Freezing phenomenon has been simulated and NEPCM was mixture of CuO and water. Time-dependent solid fraction term was added to energy equation. Software based on FEM with adaptive grid was implemented for modeling the problem. Diameter of nanomaterial and amplitude of outer wall were assumed as variable. To reach the reliability of assumption of neglecting buoyancy term, comparison with experimental data was illustrated. Providing greater value of A makes the freezing time to reduce about 5.82% which is associated with existence of more NEPCM near the rectangular cylinder when A = 0.3. Influence of A on Tave has no sensible impact for t < 70 s and t > 320 s. Increasing diameter of nano-powder can augment the conductivity but experimental observation shows that there is optimum value for this factor. As dp augments from 30 to 50 nm and 40 nm, the time of solidification alters from 186.57 s to 222.77 s and 149.37 s. With rise of dp, at first, the time declines about 19.98% then time augments about 49.16%. When A = 0.3 and dp = 40 nm, the quickest process takes place and it takes 149.37 s to reach full freezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghong Qin.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest

Ethical stardard

This article does not contain any studies with human participants or animals performed by the author.

Informed constent

In this article, no patient care was involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y. Effect of inclusion of nanoparticles on unsteady heat transfer. Appl Nanosci 13, 957–970 (2023). https://doi.org/10.1007/s13204-021-01960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01960-y

Keywords

Navigation