Skip to main content
Log in

Rheology of mixed convective Casson nanofluid in a convectively heated stratified medium

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

A mathematical framework for mixed convective non-Newtonian nanoliquid subjected to hydromagnetic characteristics is addressed in this attempt. The well-known Buongiorno nanoliquid model which elaborates thermophoretic and Brownian diffusions aspect is opted for formulation. In addition, heat generation, double stratification and convective conditions are retained. Apposite variables are introduced for dimensionless procedure. Homotopy scheme is employed to attain convergent expressions. Graphs are presented for description of sundry variables effect versus dimensionless quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\({u,}\,{v}\) :

Velocity components

\(\rho_{\text{f}}\) :

Density of base liquid

\(x,\,\;y\) :

Space coordinates

\(\nu\) :

Kinematic viscosity

\(\mu\) :

Dynamic viscosity

\(\alpha\) :

Thermal diffusivity

\(k\) :

Thermal conductivity

\((\rho c)_{\text{f}}\) :

Liquid heat capacity

\(\tau\) :

Heat capacity ratio

\(\pi_{\text{c}}\) :

Critical value of non-Newtonian model

\(p_{\text{y}}\) :

Fluid yield stress

\(u_{\text{w}} (x)\) :

Stretching velocity

\(c\) :

Stretching rate

\(\lambda\) :

Thermal buoyancy parameter

\(D_{\text{B}}\) :

Brownian movement coefficient

\(D_{\text{T}}\) :

Thermophoresis diffusion coefficient

\(\sigma\) :

Electrical conductivity

\(B_{0}\) :

Magnetic field strength

T :

Temperature

C :

Concentration

\(a_{1} ,\;a_{2} ,\;d_{1} ,\;d_{2}\) :

Dimensional constants

\(C_{{{\text{f}}_{x} }} \;Re_{x}^{{\tfrac{1}{2}}}\) :

Dimensionless drag force

\(Nu\;Re_{x}^{{ - \tfrac{1}{2}}}\) :

Dimensionless heat transfer rate

\(Sh\;Re_{x}^{{ - \tfrac{1}{2}}}\) :

Dimensionless mass transfer rate

\(T_{\text{f}}\) :

Hot fluid temperature

\(C_{\text{f}}\) :

Hot fluid concentration

\(T_{\infty }\) :

Ambient fluid temperature

\(C_{\infty }\) :

Ambient fluid concentration

\(T_{0}\) :

Reference temperature

\(C_{0}\) :

Reference concentration

\(\pi\) :

Deformation rate

\(\beta\) :

Material parameter of Casson fluid

\(\gamma_{1}\) :

Thermal Biot number

\(N_{\text{t}}\) :

Thermophoretic variable

\(\gamma_{2}\) :

Solutal Biot number

\(N_{\text{b}}\) :

Brownian motion variable

\(Ha\) :

Hartman number

\(N\) :

Buoyancy ratio parameter

\(Sc\) :

Schmidt number

\(S_{1}\) :

Thermal stratified variable

\(S_{2}\) :

Solutal stratified variable

\(Pr\) :

Prandtl number

\(Re_{x}\) :

Reynolds numbers

\(f(\eta )\) :

Dimensionless velocity

\(\theta (\eta )\) :

Dimensionless temperature

\(\phi (\eta )\) :

Dimensionless concentration

\(\hbar_{f} ,\;\hbar_{\theta } ,\;\hbar_{\phi }\) :

Auxiliary variables

\(\eta\) :

Dimensionless variable

References

  • Abbasi FM, Hayat T, Ahmad B (2015) Peristalsis of silver–water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug delivery. J Mol Liq 207:248–255

    Article  CAS  Google Scholar 

  • Alshomrani AS, Irfan M, Salem A, Khan M (2018) Chemically reactive flow and heat transfer of magnetite Oldroyd-B nanofluid subject to stratifications. Appl Nanosci 8:1743–1754

    Article  CAS  Google Scholar 

  • Animasaun IL, Adebile EA, Fagbade AI (2016) Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J Niger Math Soc 35:1–17

    Article  Google Scholar 

  • Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  • Chen C (2010) On the analytic solution of MHD flow and heat transfer for two types of viscoelastic fluid over a stretching sheet with energy dissipation, internal heat source and thermal radiation. Int J Heat Mass Transf 53:4264–4273

    Article  CAS  Google Scholar 

  • Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: ASME international mechanical engineering congress expo, pp 99–105

  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718

    Article  CAS  Google Scholar 

  • Fotukian SM, Esfahany MN (2010) Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube. Int J Heat Fluid Flow 31:606–612

    Article  CAS  Google Scholar 

  • Godson L, Raja B, Lal DM, Wongwises S (2010) Enhancement of heat transfer using nanofluids-an overview. Renew Sust Energy Rev 14:629–641

    Article  CAS  Google Scholar 

  • Hamid A, Hashim Y, Khan M (2018) Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-Williamson nanofluid. J Mol Liq 262:435–442

    Article  CAS  Google Scholar 

  • Hayat T, Shafiq A, Alsaedi A (2016) Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation. Alex Eng J 55:2229–2240

    Article  Google Scholar 

  • Hayat T, Khalid H, Waqas M, Alsaedi A, Ayub M (2017) Homotopic solutions for stagnation point flow of third-grade nanoliquid subject to magnetohydrodynamics. Results Phys 7:4310–4317

    Article  Google Scholar 

  • Hussain T, Shehzad SA, Alsaedi A, Hayat T, Ramzan M (2015) Flow of Casson nanofluid with viscous dissipation and convective conditions: a mathematical model. J Cent South Univ 22:1132–1140

    Article  CAS  Google Scholar 

  • Liao S (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    Google Scholar 

  • Mabood F, Das K (2019) Outlining the impact of melting on MHD Casson fluid flow past a stretching sheet in a porous medium with radiation. Heliyon 5:e01216

    Article  Google Scholar 

  • Mahanthesh B, Gireesh BJ, Shehzad SA, Rauf A, Kumar PBS (2018) Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Phys B 537:98–104

    Article  CAS  Google Scholar 

  • Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

    Article  CAS  Google Scholar 

  • Pal D, Mandal G (2015) Hydromagnetic convective-radiative boundary layer flow of nanofluids induced by a non-linear vertical stretching/shrinking sheet with viscous-Ohmic dissipation. Powder Technol 279:61–74

    Article  CAS  Google Scholar 

  • Patterson C, Syed M, Takemura Y (2018) Harmonic decomposition of magneto-optical signal from suspensions of superparamagnetic nanoparticles. J Magn Magn Mater 451:248–253

    Article  CAS  Google Scholar 

  • Qayyum S, Hayat T, Alsaedi A (2018) Thermal radiation and heat generation/absorption aspects in third grade magneto-nanofluid over a slendering stretching sheet with Newtonian conditions. Phys B 537:139–149

    Article  CAS  Google Scholar 

  • Sadiq MA, Waqas M, Hayat T, Alsaedi A (2019) Modeling and analysis of Maxwell nanofluid considering mixed convection and Darcy–Forchheimer relation. Appl Nanosci. https://doi.org/10.1007/s13204-019-00968-9

    Article  Google Scholar 

  • Sezer N, Atieh MA, Koc M (2019) A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol 344:404–431

    Article  CAS  Google Scholar 

  • Shahsavani E, Afrand M, Kalbasi R (2018) Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes. J Therm Anal Calorim 131:1177–1185

    Article  CAS  Google Scholar 

  • Sithole H, Mondal H, Goqo S, Sibanda P, Motsa S (2018) Numerical simulation of couple stress nanofluid flow in magneto-porous medium with thermal radiation and a chemical reaction. Appl Math Comput 339:820–836

    Google Scholar 

  • Waqas M (2019) A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2019.165646

    Article  Google Scholar 

  • Waqas M, Farooq M, Khan MI, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772

    Article  Google Scholar 

  • Waqas M, Hayat T, Alsaedi A (2018a) A theoretical analysis of SWCNT–MWCNT and H2O nanofluids considering Darcy–Forchheimer relation. Appl Nanosci. https://doi.org/10.1007/s13204-018-0833-6

    Article  Google Scholar 

  • Waqas M, Hayat T, Shehzad SA, Alsaedi A (2018b) Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms. Phys B 529:33–40

    Article  CAS  Google Scholar 

  • Waqas M, Shehzad SA, Hayat T, Khan MI, Alsaedi A (2019a) Simulation of magnetohydrodynamics and radiative heat transport in convectively heated stratified flow of Jeffrey nanofluid. J Phys Chem Solids 133:45–51

    Article  CAS  Google Scholar 

  • Waqas M, Jabeen S, Hayat T, Khan MI, Alsaedi A (2019b) Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation. J Magn Magn Mater 485:197–204

    Article  CAS  Google Scholar 

  • Waqas M, Khan MI, Hayat T, Farooq S, Alsaedi A (2019c) Interaction of thermal radiation in hydromagnetic viscoelastic nanomaterial subject to gyrotactic microorganisms. Appl Nanosci. https://doi.org/10.1007/s13204-018-00938-7

    Article  Google Scholar 

  • Xing M, Yu J, Wang R (2015) Thermo-physical properties of water-based single-walled carbon nanotube nanofluid as advanced coolant. Appl Therm Eng 87:344–351

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mudassar Gulzar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulzar, M.M., Waqas, M., Asghar, Z. et al. Rheology of mixed convective Casson nanofluid in a convectively heated stratified medium. Appl Nanosci 10, 3227–3233 (2020). https://doi.org/10.1007/s13204-019-01166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01166-3

Keywords

Navigation