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Abstract
CdxZn1−xO (0 ≤ x ≤ 0.20) thin films are deposited on soda lime glass substrates using spray pyrolysis technique. To check 
the thermal stability, CdxZn1−xO thin films are subjected to annealing. Both the as-deposited and annealed CdxZn1−xO thin 
films are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray 
analysis (EDAX) to check the structural, surface morphological and compositional properties, respectively. XRD analysis 
reveals that the both as-deposited and annealed CdxZn1−xO thin films are (002) oriented with wurtzite structure. SEM stud-
ies confirm that as-deposited, as well as annealed CdxZn1−xO thin films are free from pinholes and cracks. Compositional 
analysis shows the deficiency in Cd content after annealing. Optical properties evaluated from UV–Vis spectroscopy shows 
red shift in the band gap for CdxZn1−xO thin films. Electrical property measured using two probe method shows a decrease 
in the resistance after Cd incorporation. The results indicate that cadmium can be successfully incorporated in zinc oxide 
thin films to achieve structural changes in the properties of films.
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Introduction

Exploration of wide band gap compound semiconductor 
material produced lot of benefits to human life. Materials 
like AlxGa1−xN, BN and ZnO attracted the interest for device 
applications like UV-LEDs (Kinoshita et al. 2000), lasers 
(Watanabe et al. 2004) and thin-film transistors (Xu et al. 
2016). Among different wide band gap materials, earth-
abundant ZnO is a very important material, which finds 
application in solar cells (Bi et al. 2013). Large exciton 
binding energy of 60 meV, which can be increased up to 
100 meV in superlattices, makes it an important candidate 
for lasers and LEDs (Tsukazaki et al. 2005). ZnO reflects 
the thermal infrared heat and can be exploited to prepare 
EMI shielding coatings, and heat/microwave reflecting coat-
ings for windows (Miao et al. 2014). To develop ZnO-based 

opto-electronic devices, it is an important requirement to 
alter the electrical and optical properties. ZnO is a well 
known n-type semiconductor material, this n-type conduc-
tivity further increased by dopants like In (Pati et al. 2015), 
Ga (Chin et al. 2016), Al (Kumar et al. 2014), etc. It is also 
possible to produce p-type ZnO by doping Bi (Sadananda 
et al. 2013), As (Ryu et al. 2000), P (Kim et al. 2003), etc. 
Optical band gap of ZnO can be widened by alloying with 
Mg, which can reach up to 4.5 eV (Takagi et al. 2003). In 
addition, band gap can be engineered to lower values using 
Cd (Ma et al. 2011). The ZnO (hexagonal) and CdO (cubic) 
have very different crystal structure, and also, low thermo-
dynamic solubility (~ 2 mol.%) of CdO in CdO–ZnO sys-
tem make it very difficult to grow single-phase hexagonal 
CdxZn1−xO thin films with high Cd concentration (Ishihara 
et al. 2006). Different methods can be employed to grow 
mixed CdxZn1−xO thin films, such as molecular beam epi-
taxy (Wang et al. 2006), sputtering (Ma et al. 2011), pulsed 
laser deposition (Makino et al. 2013) and spray pyrolysis 
(Vijayalakshmi et al. 2008). Compared to different methods, 
the spray pyrolysis method is simplest industrially applicable 
method to produce metal oxide thin films. Using spray pyrol-
ysis technique, very large area thin film can be grown with 
very high growth rate. Until now, very limited number of 
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work is done on preparation of [CdxZn1−xO (0 ≤ x ≤ 0.20)] 
thin film using spray pyrolysis technique. Thus, the present 
work focuses on the deposition of CdxZn1−xO thin films 
using spray pyrolysis technique and annealing effect on the 
properties of CdxZn1−xO thin films. Further, both as-depos-
ited and annealed CdxZn1−xO thin films are characterized to 
check phase purity, surface morphology, optical and electri-
cal properties.

Experimental details

CdxZn1−xO thin films are deposited on top of the well-
cleaned soda lime glass using spray pyrolysis tech-
nique. The precursor materials zinc diacetate dihy-
drate (Zn(CH3COO)2·2H2O) and cadmium chloride 
(CdCl2·21/2H2O) are dissolved in distilled water at different 
molar ratio to get CdxZn1−xO (0 ≤ x ≤ 0.20) thin films. The 
precursor solution atomized using spray nozzle was sprayed 
at a rate of 2 ml/min on preheated glass substrate held at 
optimized temperature of ~ 400 °C. The distance between 
the spray nozzle and glass substrate is fixed as 30 cm and air 
is used as carrier gas at the pressure of 2 bar. The atomized 
droplets reach the hot glass substrate and oxidizes on glass 
substrate to form highly adherent CdxZn1−xO thin films.

The thin film thickness is measured using gravimetric 
method and is maintained ~ 600 nm. The phase and crys-
tallinity of the CdxZn1−xO thin films are analysed using 
X-ray diffractometer (Rigaku Miniflex 600). The surface 
morphology and chemical composition of the grown film 
are analysed using field-emission scanning electron micro-
scope (Carl-Zeiss FE-SEM). The optical transmittance of 
CdxZn1−xO thin films is measured using UV–Vis spectro-
photometer (Princeton SpectraPro-2300i). The electrical 
measurements are carried out using computer-interfaced 
Keithley source meter.

Results and discussion

X‑ray diffraction

The XRD studies reveal that prepared CdxZn1−xO thin 
films are polycrystalline in nature. It is observed that films 

have hexagonal wurtzite structure with preferred orienta-
tion along c-axis. Sharper peak along (002) plane indicates 
the good crystallinity of the thin film. The absence of CdO 
peak confirms the proper distribution of Cd throughout the 
thin film without forming any separate impurity phase. 
The Cd content dependence of the (002) peak positions of 
CdxZn1−xO thin films are listed in Table 1. Peak position of 
pure ZnO thin film is matching with the standard JCPDS 
file [Card No. 01-079-020]. With addition of Cd, the (002) 
peak slightly shifts towards a lower angle, proves the sub-
stitution of Zn2+ by Cd2+ atoms. The interplanar distance 
‘d’ is tabulated in the table, which is calculated from the 
Bragg’s equation (Santhosh et al. 2017):

where n is the order of diffraction, hkl the Miller indices 
of the plane of diffraction. The cell volume ( v ) and lattice 
parameter’s ‘a’ and ‘c’ for hexagonal structure can be cal-
culated from relations (Makino et al. 2013), (Santhosh et al. 
2017):

The estimated cell volume, a- and c-lattice parameters 
using XRD data are plotted as function of Cd concentra-
tion, shown in the Fig. 1. When the Cd content increases, 
a slight increase in interplanar distance, cell volume, a- 
and c-lattice parameter can be observed. Since the cati-
onic radii of Cd2+ (0.97 Å) is different from that of Zn2+ 
(0.74 Å), the crystal show a change. The calculated aver-
age grain size is tabulated in Table 1, which shows that 
the average grain size increases when Cd concentration 
increases.

Further, to check thermal stability, all the deposited thin 
films are subjected to air annealing for 4 h at 400 °C. Fig. 2 
shows the XRD spectrum of annealed thin films with vari-
ous Cd concentration. The XRD patterns reveal that the 
annealed films are also hexagonal in crystal structure with 
polycrystalline nature. It also shows that preferred orien-
tation of deposited CdxZn1−xO thin films is unaffected by 
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Table 1   Structural parameters 
of CdxZn1−xO estimated from 
XRD

Sample name As-deposited samples Annealed samples

2θ (°) D (nm) d (Å) 2θ (°) D (nm) d (Å)

ZnO 34.34 24.00 2.608 34.33 26.00 2.608
Cd0.05Zn0.95O 34.31 26.00 2.610 34.32 28.00 2.609
Cd0.1Zn0.9O 34.24 27.00 2.618 34.28 34.00 2.616
Cd0.2Zn0.8O 34.18 26.00 2.619 34.21 27.00 2.617
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annealing. From Table 1, it can be observed that the shift 
in the peak position of (002) plane is less for annealed 
CdxZn1−xO thin films than as-deposited thin films. Figure 1 
also shows that the cell volume, a- and c-lattice parameters 
of annealed thin films are reduced as compared with the 
as-deposited CdxZn1−xO thin films. This may be because 
of reduction in the Cd concentration, due to re-evaporation 
during annealing treatment. For all the composition of 
CdxZn1−xO thin films, grain size increases after annealing, 
which may be because of recrystallization process taking 
place during annealing.

Scanning electron microscope

Fig. 3 shows the high-resolution SEM images of the as-
deposited CdxZn1−xO thin films. It shows that all the thin 
films are free from pinhole and cracks. It also shows that 
the films are composed of tightly packed and randomly 
arranged nanostructures. The as-deposited pure ZnO thin 
films consists of arbitrarily arranged nanostructures, which 
seems like randomly arranged hexagonal platelets, as 
shown in Fig. 3a. With addition of 5 at.% Cd, the surface 

morphology changes to the tightly packed granular struc-
ture, which is visible in Fig. 3b. As the Cd concentration 
is further increased to 10 and 20 at.%, discrete structure 
of smaller and larger tightly packed nanostructure can be 
observed as shown in Fig. 3c, d.

Annealing process changes the microstructure and 
nature of distribution of the crystallites in the thin films. It 
also helps proper oxidation of the unreacted metal ions and 
desorption of gaseous impurities. Fig. 4 shows the SEM 
images of annealed CdxZn1−xO thin films. The plate-like 
structure of pure ZnO modifies to randomly shaped granu-
lar structure after annealing. In all the remaining samples, 
recrystallization can be observed clearly, in which smaller 
clusters are agglomerated to form bigger clusters as shown 
in Fig. 4.

Elemental analysis

The compositional studies of prepared CdxZn1−xO thin films 
are carried out using EDX, spectra are shown in Fig. 5. The 
EDX spectra confirms the presence of Cd, Zn and oxygen. 
Impurities like sodium and silicon, which is from glass 
substrate also can be observed. It can be observed that 
the amount of Cd in prepared CdxZn1−xO thin film is less 
than that in the starting solution. Compositional informa-
tion of as-deposited thin films are tabulated in Table 2. It is 
observed that the atomic concentration of Cd further reduces 
after annealing because of evaporation of Cd on annealing. 
This result is in agreement with XRD analysis.

Optical properties

The optical transmittance for all the as-deposited CdxZn1−xO 
thin film at room temperature is shown in Fig. 6a. The as-
deposited pure ZnO samples are highly transparent in vis-
ible region with transmittance of > 95%. As the Cd con-
centration increases, the transmittance value decreases and 
reaches ~ 60% at 20 at.%. The decrease in transmittance 
may be because of increase in surface roughness, which 
causes the scattering of light and it also may be because 
of increase in free electron absorption, which is consist-
ent with the decrease in resistivity. The band gap values 
are determined from plots of (αhν)2 vs. (hν). The band gap 
value is determined from extrapolation of linear portion 
of (αhν)2 to the (hν) axis. It is observed that the band gap 
value decreases as Cd increases. The obtained band gap 
values are tabulated in Table 3. The decrease in band gap 
values is because of substitution of Zn2+ ions by Cd2+ ions 
in ZnO lattice. After annealing, the transmittance value 

Fig. 1   Cadmium content dependence of a lattice parameter-a, b lat-
tice parameter-c and c cell volume
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Fig. 2   XRD spectra of annealed CdxZn1−xO thin films a 0%, b 5 at.%, c 10 at.%, d 20 at.%

Fig. 3   FE-SEM image of as-
deposited CdxZn1−xO thin films 
a 0%, b 5 at.%, c 10 at.% and d 
20 at.%
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Fig. 4   FE-SEM image of 
annealed CdxZn1−xO thin films 
a 0%, b 5 at.%, c 10 at.% and d 
20 at.%

Fig. 5   EDAX spectra of 
annealed CdxZn1−xO thin films 
for different cadmium concen-
tration a 0%, b 5 at.%, c 10 at.% 
and d 20 at.%
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remains almost constant, but slight increase in the band 
gap is observed. The tauc’s plot for annealed CdxZn1−xO is 
shown in Fig. 6b. The slight increase in band gap may be 
because of evaporation of Cd from ZnO lattice, as observed 
from XRD and EDX analysis.

Electrical properties

All the as-deposited thin films show n-type conductiv-
ity, which is tested using hot-probe experiment. The I–V 
measurement of thin films with aluminium co-planar 
contacts shows the linear ohmic nature of the thin film 
(shown in Fig. 7). The measured resistance, calculated 
conductivity of the CdxZn1−xO thin film is tabulated in 
Table 4. Conductivity of CdxZn1−xO thin film increases 
with increase in Cd concentration up to 10 at.%. The 
Cd atom may occupy interstitial position in ZnO lattice 
and donates two electrons to conduction band, which is 
responsible for increase in conductivity. With 20 at.% Cd 
concentration, the conductivity decreases, which may be 
because of decrease in crystallinity, as observed from 
XRD. After annealing, decrease in the conductivity is 

observed for all the CdxZn1−xO thin films. The decrease 
in the conductivity is because of evaporation of Cd, as 
observed from EDX analysis.

Table 2   Atomic percentage of Cd and Zn in CdxZn1−xO thin films

Sample name As-deposited sample Annealed samples

Zn (at.%) Cd (at.%) Zn (at.%) Cd (at.%)

ZnO 100 0 100 0
Cd0.05Zn0.95O 95.45 4.54 97.10 2.89
Cd0.1Zn0.9O 92.40 7.6 94.45 5.55
Cd0.2Zn0.8O 86.92 13.08 88.98 10.24

Fig. 6   a Transmittance spectra, b Tauc’s plots of annealed CdxZn1−xO thin films

Table 3   Band gap of as-deposited and annealed CdxZn1−xO thin films

Sample name As-deposited CdxZn1−xO 
(eV)

Annealed 
CdxZn1−xO 
(eV)

ZnO 3.27 3.30
Cd0.05Zn0.95O 3.22 3.23
Cd0.1Zn0.9O 3.00 3.10
Cd0.2Zn0.8O 2.83 2.87

Fig. 7   I–V characteristic curve of as-deposited ZnO and 
Cd0.05Zn0.95O thin films
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Conclusion

Thin film of CdxZn1−xO (0 ≤ x ≤ 0.20) are deposited on soda 
lime glass substrates. The deposited films were wurtzite in 
structure with orientation along (002) direction. The shift in 
the (002) peak position confirms the incorporation of Cd in 
ZnO lattice. Annealing process does not affect the preferred 
orientation of the CdxZn1−xO thin film. After annealing, 
slight change in the surface morphology and reduction in Cd 
content was observed. Red shift in the band gap values was 
observed with increase in Cd concentration. It is particu-
larly interesting to note that the electrical conductivity of as-
deposited ZnO thin films increases after Cd incorporation.
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