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Abstract In Forensic investigation, identification of vari-

ous types of ridge details are essential in order to fix the

criminals associated in various crimes. Even though several

methods and labeling agents are available to visualize

latent finger prints (LFPs) there is still simple, accurate,

cost-effective, and non-destructive tool is required. In the

present work, CeO2 nanopowders (NPs) are prepared via

simple solution combustion route using Tamarindus indica

fruit extract as a fuel. The optimized NPs are utilized for

visualization of LFPs on various surfaces by powder

dusting method. Results revealed that visualized LFPs

exhibit Level 3 features such as pores and ridge contours

under normal light with high sensitivity and without

background hindrance. The photometric characteristics of

the prepared samples exhibit blue color emission and

highly useful in warm light emitting diodes. The photo-

catalytic studies were carried out with different Methylene

blue (MB) dye concentration and pH values. The obtained

results reveal that the CeO2 NPs exhibits an excellent

catalytic properties which can act as a good catalytic

reagent. The findings demonstrate that the prepared NPs

are quite useful as a labeling agent for visualization of

LFPs, efficient catalysts for dye degradation as well as

solid-state lighting applications.
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Introduction

Fingerprints (FPs) have provided a vital source of forensic

evidence for human identification and individualization.

The patterns on the FPs are individual to each person and

remain same throughout lifespan. Normally most of FPs

seen in the daily life is latent and invisible to naked eyes; as

a result, some certain methods are necessary to recognize

personal identification in forensic science. Till date

numerous methods (chemical, optical) have been estab-

lished to recognize LFPs. However, the recognition was

restricted only level 1 and level 2 ridge details due to the

poor image qualities (Saif et al. 2015; Sharma et al. 2014;

Wang et al. 2015a, b, c).

Further, the level 1 and 2 features are easily forged, by

the generation and use of artificial skin imprints. However,

the analysis of level 3 features required some efficient nano

powders with uniform particle size and morphology

(Basavaraj et al. 2017; Dhanalakshmi et al. 2017;

Venkatachalaiah et al. 2017). Hence, there is an urgent

need to progress a simple and efficient route in developing

LFPs with superior sensitivity, little background, extraor-

dinary efficiency, lesser toxicity and stress-free detection of

LFPs, which is the essential requirement for forensic
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investigators. Further, most of the available literature for

the detection of LFPs is due to excited ultraviolet (UV)

radiation; rare earth doped fluorescent nanopowders can

enhance FPs contrast. Conversely, UV light has many

drawbacks including high background interference owing

to the significant auto-fluorescence from the substrates,

photo damage to the skin and eyes of the operators, and the

possibility of severe irradiation-induced damage. There-

fore, NPs are highly essential for the recognition of level 3

ridge details under normal light in the field of forensic

science (Darshan et al. 2016; Suresh et al. 2017).

In recent years, the change in physiochemical properties

of bulk material to corresponding nano regime has created

numerous interest for material scientists. Due to its versa-

tile applications in gas sensors, fuel cells, solar cells and

very good photocatalytic activity, Cerium oxide nanopar-

ticles have attracted much attention in recent years (Choi

et al. 2006; Lehnen et al. 2014; Liu et al. 2013; Sathya-

murthy et al. 2005; Sun et al. 2005). Its diverse applications

is due to the efficiency of transfer of elevated oxygen from

reduced to oxidized state (Lin et al. 2013; Zhou and

Rahaman 1997). Till date, various reports of CeO2 syn-

thesis routes are available in the literatures. In the recent

years, bio-synthesis route using plant extracts is found to be

environmental friendly, novel and inexpensive. Further, it

does not require high pressure and high temperature

(Derakhshandeh and Soleimannejad 2016; Huang et al.

2005; Maensiri et al. 2014; Maensiri et al. 2007; Wang

et al. 2010). With no 4f electron CeO2 would be a good

host material for photoluminescent materials (Jamshidi

et al. 2013; Weber 1973). Ling Li et al. reported violet/blue

emission of cerium composited with silicon for its good

compatibility with the silicon-based materials used in the

fabrication of optoelectronics devices (Li et al. 2015;

Arumugam et al. 2015; Ketzial and Nesaraj 2011; Malle-

shappa et al. 2015; Lee et al. 2014; Lopez and Mendoza

2013).

Till date, limited reports are available for the synthesis

of CeO2 NPs by solution combustion method using Ta-

marindus indica fruit extract as fuel. Further, the optimized

product is utilized for visualization of LFPs on both porous

and non-porous surfaces. Finally, the photocatalytic

degradation is examined using MB as a dye. The detailed

investigation on the mechanism related to the photocat-

alytic degradation is discussed.

Experimental

Fruit extract

Tamarindus indica fruit is collected from the local market

of Tumkur and dried for about 5 days under the sunlight.

100 g of T. indica fruit was soaked in water for * 16 h.

The obtained solution is kept in reflex for * 5 h and then

washed several times with distilled water and filtered.

Finally, the obtained T. indica fruit extract was stored in

refrigerator until further use.

Fig. 1 Schematic representation to show various steps involved in extraction of fuel and synthesis of CeO2 NPs by solution combustion route
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Fig. 2 a–f LFPs visualized by

staining calcined CeO2 (15 ml)

NPs on various non-porous

surfaces and (a*, b*, b1*, b2*, c*,
d*, e* and f1*, f2*) shows the
enlarged views of FPs which

exhibits various ridge prints
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Synthesis

A simple solution combustion route is used to prepare pure

CeO2 NPs using T. indica fruit extract as fuel. Initially,

Cerium (III) nitrate [(Ce(NO3)3�6H2O): 0.5 g] is taken in a

petri dish and 5 ml of T. indica fuel is added (1 g of extract

is dissolved in 250 ml of water and stirred for 10 min). The

precursor solution is stirred thoroughly using magnetic

stirrer (* 5–10 min) till homogeneous mixture is

obtained. The resultant reaction mixture is placed in a

preheated muffle furnace maintained at a temperature

of * 450 ± 10 �C. The mixture undergoes dehydration

with liberation of large amount of gases. Finally, a product

is left behind in the petri dish. The portion of obtained

Fig. 3 LFPs aged on the surface of glass for various periods of time, stained by calcined CeO2 (15 ml) NPs under normal light a 1 day,

b 1 week, c 2 weeks and d 3 weeks

Fig. 4 Various ridge levels of

FP patterns visualized by

staining optimized calcined

CeO2 (15 ml) NP on glass

surface under normal light
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product is calcined at * 800 �C for 3 h. The same

experimental procedure is repeated for different concen-

trations of T. indica extract (5, 10, 15, 20 and 30 ml). The

prepared as-formed and calcined CeO2 NPs were used for

further characterization. Figure 1 shows the schematic

representation of the steps involved for the extraction of T.

indica fuel and synthesis of CeO2 NPs.

Characterization

The powder X-ray diffraction (PXRD) measurements were

performed on the Shimadzu made X-ray diffractometer

(Shimadzu 7000) with graphite monochromatized Cu–Ka

radiation (k = 0.15406 nm) to study the phase and purity

of the prepared samples. The surface morphology is studied

Fig. 5 Overlapped and various ridge details of FP patterns visualized using calcined CeO2 (15 ml) NP on aluminium foil surface

Fig. 6 Comparison of FP images visualized by staining Fe2O3, TiO2 and calcined CeO2 (15 ml) NP on glass surface under visible light
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by Hitachi made table top scanning electron microscope

(SEM) (Hitachi-TM 3000). Transmission electron micro-

scope (TEM) (Hitachi H-8100, Kevex sigma TM Quasar,

USA) is used to estimate the crystallite size of the material.

Spectrophotometer (Lambda-35, Perkin Elmer) is used to

study the diffuse reflectance of the prepared material.

Spectroflourimeter equipped with Fluorolog-3 (Jobin–

Yvon) is utilized to measure the photoluminescence (PL)

properties. The Fourier transform infrared (FTIR) spectrum

is recorded in Bruker alpha made FTIR instrument. The

Jobin–YVON Horiba LABRAM-HR-Visible micro Raman

system is used for Raman studies with He–Ne laser

(* 632.8 nm) as the source.

Visualization of LFPs using CeO2 NPs as labeling

agents

The LFPs are collected from healthy donor on various

surfaces including porous and non-porous surfaces. The

hands of the donor are washed thoroughly with soap and

dried before impression. Subsequently, the washed fingers

are gently pressed against various porous and non-porous

surfaces to acquire LFPs. Thereafter, the obtained LFPs are

stained by optimized CeO2 (15 ml) NP using soft feature

brush with smooth powder brushing method. Finally,

developed FPs are visualized under normal light using a

Nikon D3100/AF-S Nikkor 50 mm f/2.8G ED lens digital

camera.
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Results and discussion

In order to inspect its suitability for recognizing latent

fingerprints (LFPs), optimized CeO2 NPs were stained on

the LFPs developed on various non-porous substrates,

namely stainless steel, glass, mobile screen and aluminium

foil. In the present studies, all FPs were extracted from the

same donor. Figure 2 display the LFPs images visualized

by staining CeO2 NPs illuminated under normal white

light. A complete ridge details including type 1, 2 and 3

patterns with good adhesion, well-defined ridge flow and

ridge orientation field is observed. Further, the FPs were

well defined in terms of finger ridge details which due to

their nano-sized CeO2. FP types have been described into

three groups; (i) level 1 features are described by finger-

print ridge flow and general morphological information, (ii)

level 2 features provide pattern matching followed detec-

tion of individual fingerprint ridges, (iii) level 3 features is

defined as all attributes of a ridge, including shape, width,

pores and curvature. Further, the stability of the prepared

powders are assessed by aging the FPs up to 21 days and

displayed comparable brightness (Fig. 3). The brightness

of the CeO2 NPs-stained LFPs specifies that the NPs are

physically and chemically steady in ambient conditions.

Figure 4 displays detailed ridge patterns (type 1, 2 and 3)

developed on glass which consists of clear and distinct

ridges of FPs can be undoubtedly detected under normal

visible light. The level 2 details, such as the ridge bifur-

cation, island, scar, eye, bridge, ridge end, termination,

lake and sweat pores, were clearly distinguished. Further,

overlapped LFPs can be recognized on aluminium foil

surfaces and shown in Fig. 5. The images clearly evident

that the recognition of various ridge features includes level

Table 1 Estimated average crystallite size, strain, and energy gap (Eg) values of the as-formed and calcined CeO2 NP

Sample Fuel conc. (ml) Crystallite size (nm) Strain X 10-3 Energy gap (Eg) eV

Scherrer’s method W–H plots

As-formed 5 7 15 11 3.24

10 5 7 10 3.60

15 5 6 3 3.45

20 6 8 3 3.38

30 5 6 3 3.69

800 �C 5 41 18 71 2.86

10 39 18 29 3.16

15 71 44 26 3.19

20 81 45 36 3.20

30 45 31 22 2.86
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(800 �C) (Inset: Packing diagram)
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1, level 2 and also level 3 identification. Further, LFPs

developed on glass were compared with commercially

available (Fe2O3 and TiO2) powders and shown in Fig. 6.

According to the detailed results obtained in the present

study, we can observe the FP types specifically ridge flow,

sweat pore, terminates, bifurcation and lack corresponding

to the levels 1–3. Therefore, it is authorized that the

probability for the recognition of the foremost ridge details

of FPs in different surfaces was well established by opti-

mized CeO2 NPs. The high-quality FP images developed

on non-porous surfaces display the possible usage of CeO2

NPs fabricated via green synthesis route for forensic

application.

Figure 7a, b shows the PXRD patterns of as-formed and

calcined (800 �C) CeO2 NPs. All the diffraction patterns

are well indexed to JCPDS card No. 81-0792 (Malleshappa
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Å
,

V
=

1
5
7
.8
9
Å
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et al. 2014). The observed XRD peaks are well matched

with the cubic planes (111), (200), (220), (311), (222),

(400) and (311). No secondary or impurity peaks were

present in the samples, which confirms the single cubic

phase of CeO2. However a small lower angle (28.51�) peak
shift in the plane (111) is observed due to compressive

stress. The average crystallite size (D) is estimated using

Scherrer’s relation:

D ¼ kk
b cos h

; ð1Þ

where k is the wavelength of the X-ray radiation (1.54 Å),

K is the constant (0.9), b is the full-width at half-maximum

(FWHM), and h is the diffracting angle. The estimated

values of D are tabulated in Table 1. The lattice strain

present in the product is estimated using the Williamson

and Hall (W–H) plots using the following relation:

b cos h ¼ kk
D

þ 4e sin h; ð2Þ

where k is the wavelength of X-rays (1.54 Å), b is the full

width at half maximum (in radians), h is the diffraction

angle, k is the shape factor (0.9), D is the crystallite size,

and e is the micro-strain. The plots of bcosh v/s 4sinh are

shown in Fig. 7c, d. The slope of line gives the strain (e)
and intercept (k k/D) on Y axis gives crystallite size. The

estimated values of D and lattice strain present in the

samples are listed in Table 1.

One of the drawbacks of the diffraction patterns is

accurate determination of crystal structure because of the

overlapping of the diffraction peaks. Therefore, Rietveld

refinement analysis is used to create the virtual separation

of the overlapped peaks (Fig. 8). The Rietveld refinement

method is used to calculate the entire powder pattern of the

sample with the different refinable parameters and to

minimize the difference between the observed and calcu-

lated pattern by least square method. The lattice parameters

are evaluated by performing Rietveld refinement using

FULLPROF suit program (Konysheva et al. 2010;
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Fig. 10 a, c Diffuse reflectance spectra and b, d energy band gap plots of as-formed and calcined CeO2 NPs
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Fig. 11 a, c Raman spectra and b, d enlarged portion of Raman spectra of as-formed and calcined CeO2 NPs

Table 3 Estimated Oxygen vacancies and crystallite size of CeO2 NPs

CeO2 Conc. (ml) 463 Peak area 600 Peak area AreaOxygen vacancies/areaF2g (%) Crystallite size (Raman shift)

As-formed 5 3460740 5928.18 0.171 10.27

10 966704.5 1874.74 0.194 7.78

15 179867.2 2274.19 1.260 15.53

20 110568.5 660.32 0.597 12.86

30 303690.6 428.47 0.141 9.22

Calcined at 800 �C 5 1269350.0 9281.99 0.731 23.78

10 278712.5 3776.97 1.360 22.62

15 110219.9 917.794 0.833 20.95

20 162636 2975.44 1.830 20.13

30 554577.3 4039.91 0.728 19.07
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Malleshappa et al. 2016; Shivaram et al. 2014; Xiaoyuan

et al. 2001).

Pseudo-Voigt function has been used to fit the several

parameters like one scale factor, one zero shifting, six

background, three cell parameters, five shape and width of

the peaks, one global thermal factor and two asymmetric

factors. The refined parameters namely occupancy, atomic

functional positions for CeO2 NPs are studied. The

obtained results are in good agreement with the theoriti-

cally calculated ones. The space group used for the par-

ticular pattern is Fm-3m (No. 225). The refined parameters

are tabulated in the Table 2. The obtained Rp, Rwp, RBraggs,

and v2 values indicate the good fit of the profile.

Figures 9a, b shows the FTIR spectra of the as-formed

and calcined CeO2 NPs prepared at different concentrations

of T. indica extract (5–30 ml). From the figure, it is

observed that the principal vibrational modes of CeO2 NPs

were in good agreement with the reported literature. In the

calcined sample, a diffuse band observed at 2918 cm-1 is

due to the stretching vibration of the physically associated

water (O–H) molecule. Another bending vibrational band

of physically adsorbed water molecules is observed around

1619 cm-1. A weak broad peak observed at 314 cm-1

which is assigned to the Ce–O stretching band (Binet et al.

1994; Khan et al. 2013; Sahu and Rao 2000). The peak at

1350 cm-1 is a characteristic vibration mode of CeO2

(Ketzial and Nesaraj 2011; Yan and Zhu 2008).

The diffuse reflectance (DR) spectra of the as-formed

and calcined samples of CeO2 NPs are shown in Fig. 10a,

c. The spectra are recorded in the range of 200–1100 nm

wavelength at room temperature. It can be seen from the

Fig. 10a, c that a strong absorption peak is observed in the

range of 350–400 nm.

To determine the energy band gap, Kubelka–Munk

function is used (Yuan et al. 2016). The Kubelka–Munk

function F (R?) and band gap energy (hm) is estimated by

utilizing the following equations:

F R1ð Þ ¼ 1� R1ð Þ2

2R1
; ð3Þ

hm ¼ 1240

k
; ð4Þ

where R? is the reflection coefficient of the sample and k is
the absorption wavelength. The energy band gap values

were evaluated and are summarized in Table 1. The energy

band gap (Eg) values of as-formed CeO2 NPs are found to

be in the range of * 3.24–3.69 eV and that for calcined

sample it was found to be * 2.86–3.20 eV, which is much

lesser than the as-formed CeO2 due to oxygen vacancies

present in the sample (Fig. 10b, d), therefore, which gives

Fig. 12 SEM micrographs of a–c as-formed and d–f calcined (800 �C) CeO2 (5, 15 and 30 ml) NPs
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the evidence for the quantum confinement of calcined

CeO2 NPs. The decrease in Eg also indicate the red shift in

the calcined sample (Table 1) (Li et al. 2015; Jorge et al.

2012; Periyat et al. 2011).

Figure 11a, c shows the Raman spectra of as—formed

and calcined CeO2 NPs and its enlarged portions are shown

in Fig. 11b, d. The spectra exhibit four characteristic

modes at * 254, 460, 546 and 612 cm-1 (Balakrishnan

et al. 2013). The mode at * 254 and 460 cm-1 are

attributed to twice degenerated 2TA and first order F2g,

respectively. An F2g mode confirms the fluorite cubic

structure of the prepared samples and also signifies

the symmetrical stretching vibration of the CeO8 vibra-

tional unit. A broad and asymmetric mode at * 460 cm-1

is red shifted as compared to bulk form owing to oxygen

defects, phonon confinement, size distribution, deviation in

phonon relaxation and strain present in the sample (Xu

et al. 2017; Lopez et al. 2015). The other modes at * 546

and 612 cm-1 are due to oxygen vacancies (intrinsic and

extrinsic). The relative intensities of Raman modes

at * 460, 546 and 612 cm-1 are calculated based on the

relation (Arumugam et al. 2015):

Oxygen vacancies

F2g
¼ AreaRCe�O

ð Þ
Area F2g

: ð5Þ

The rate of oxygen vacancies is estimated and given in

Table 3. The probable reaction mechanism for intrinsic

oxygen vacancies are:

CeCe þ 2Oo ! V0000 þ 2V��
o þ CeO2; ð6Þ

CeCe ! V0000
Ce þ Ce����i ; ð7Þ

Oo ! V��
o þ O0

i: ð8Þ

Besides, the average crystallite size of the CeO2 powder

scale down to nano range leads to more oxygen loss (Jiang

et al. 2012).

Figure 12 shows the SEM micrographs of as-formed and

calcined CeO2 NPs. It can be observed from the Fig. 12a–c

Fig. 13 a TEM, b enlarged

view, c HRTEM image and

d SAED pattern of as-formed

CeO2 (15 ml) NPs
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that the particles are porous in nature. Particles are mostly

containing voids with different sizes due to the evolution of

large amount of gases during the combustion. The porosity

and size of the voids increase with increase in temperature

as observed in Fig. 12d–f. TEM, HRTEM images and

SAED patterns of as-formed CeO2 NPs are shown Fig. 13.

The particles with agglomeration are observed in Fig. 13a.

The estimated crystallite size varies between * 5 and

20 nm which is in good agreement with the PXRD results.

The interplanar distance (d) was found to be

around * 0.32–0.34 nm (Fig. 13c). The polycrystalline

nature of the sample was further confirmed by SAED

patterns. Figure 14 shows the TEM, HRTEM images and

SAED patterns of calcined CeO2 NPs. It is evident that in

calcined samples the crystallinity has been increased as

shown in Fig. 14a, b. The interplanar spacing d value is

found to be * 0.33 nm.

Photoluminescence excitation spectrum of as—formed

CeO2 NPs upon 530 nm emission wavelength as shown in

inset of Fig. 15a. The spectrum exhibit a sharp peak at *

386 nm. Figure 15a shows the PL emission spectra of as—

formed CeO2 NPs prepared with various fuel concentration

under kExc = 386 nm. The spectra exhibits peaks at * 362,

391 and 441 nm may be attributed to surface defects,

charge transition from the 4f band to the valence band of

CeO2 and oxygen vacancies (Li et al. 2008; Dang et al.

2010; Luo et al. 2015). The emission spectra of calcined

CeO2 NPs excited under 386 nm wavelength as shown in

Fig. 15b, e. The spectra exhibits characteristic peaks at *
485, 528 and 542 nm are believed to be due to surface

defects and oxygen vacancies (Li et al. 2011; Arunkumar

et al. 2014; Morshed et al. 1997; Maensiri et al. 2007).

The Commission Internationale de L’Eclairage (CIE)

diagram of as—formed and calcined CeO2 NPs is shown in

Fig. 16a. In general, the emission color of any phosphor

can be represented by the (x, y) chromaticity co-ordinates

(Sayed et al. 2011). The CIE co-ordinates are estimated

using PL emission spectra and the values are listed in a

Table 4. It is noticed that the CIE co-ordinates of as-

formed and calcined samples were located in the blue

Fig. 14 a, b TEM, c HRTEM

image and d SAED pattern of

calcined CeO2 (15 ml) NPs
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region. The correlated color temperature (CCT) is one of

the important parameters to know the color appearance of

the light emitted by a source, relating it is color with

respect to a reference light source when it is heated up to a

specific temperature, in Kelvin (K) (Guo et al. 2012). The

CCT is calculated and shown in Fig. 16b by the method as

reported earlier (Shrivastava et al. 2015). The obtained

values are summarized in Table 4.

Photocatalytic studies are carried out using

150 9 75 mm batch reactor at room temperature. Methy-

lene blue is used as dye for photo degradation of CeO2 NPs

as catalyst. The particle size of as-formed CeO2 NPs pre-

pared with T. indica fuel (15 ml) was very small (5.2 nm)

compared to other concentrations of the fuel; due to this

reason, CeO2 NPs with 15 ml samples were considered for

photocatalytic activity. When solution of CeO2 NPs with

dye was exposed to UV light, electron transfer from

valence to conduction band by absorbing UV light. The e-–

h? pairs offers efficient path for oxidation and reduction

reactions to degradation of MB dye. The generated elec-

trons react with molecular oxygen and produce hydrogen-

peroxide molecules in the aqueous medium and expressed

by the following reactions. Conversely, the generated holes

produce hydroxyl radicals from the water. These hydroxyl

radicals act as an influential oxidizing agent to degradation

of pollutant MB. The effect of pH concentration on the

photocatalytic activity is also studied in detail. It is clear

from the literature that photocatalytic activity depends on

the pH value of solution. Here, four different pH concen-

trations effect on photocatalytic activity was studied. Sur-

face property of CeO2 and dislocation of dye molecule

varies with the different pH value. In basic media, there is
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an increase in hydroxyl radicals which leads to the increase

in photocatalytic activity (Arul et al. 2015; Khan et al.

2014; Lei et al. 2015).

Figure 17a shows the effect of catalytic load on the

catalytic activity of CeO2 NPs. To study the effect of

catalytic load 5 ppm in 100 ml of water is maintained

constant with varying catalytic load. The catalytic load

increased up to 150 mg; the percentage of degradation was

also increased and then remains constant for 200 mg cat-

alytic load owing to the formation of turbidity in the

solution which reduces the penetration of light through the

solution. The following reactions explain the splitting of

water molecule and dye degradation into organic acid and

by-products.

hþvb þ OH ! OH�; ð9Þ

e�CB þ O ! O��
2 ; ð10Þ

OH�;O��
2

� �
þMBdye ! Degradation of dye, ð11Þ

H2Oþ e� ! Hþ OH þ e�; ð12Þ
H2O þ hm ! Hþ OH, ð13Þ
OHþ OH ! H2O2; ð14Þ
H þ H ! H2; ð15Þ
H2O2 þ hm ! OH þ OH, ð16Þ

OHþMB� OHþ OH ! MB� OHð Þ2þOH

! MB� OHð Þ3; ð17Þ

MB� OHð Þ3! amines; organics acids; etc
! Co2 þ H2O: ð18Þ

Figure 17b shows the effect of pH on catalytic activity

of CeO2 NPs. To study the effect of pH, 5 ppm dye

Table 4 Photometric values of as-formed and calcined CeO2 NPs

Sample Fuel conc. (ml) CIE CCT CCT (K)

X Y U1 V1

As-formed 5 0.1786 0.1011 0.1853 0.2360 2362

10 0.1572 0.0812 0.1718 0.1998 2119

15 0.1589 0.0747 0.1777 0.1880 1963

20 0.1640 0.0901 0.1748 0.2161 2239

30 0.1633 0.0966 0.1716 0.2270 2500

800 �C 5 0.1642 0.1491 0.1472 0.3009 7784

10 0.1640 0.1640 0.1545 0.2780 5853

15 0.1630 0.1630 0.1554 0.2722 5248

20 0.1643 0.1643 0.1580 0.2687 4800

30 0.1634 0.1634 0.1565 0.2701 4996
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Fig. 17 Effect of a catalytic load and b pH value on photocatalytic
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concentration was maintained constant in 100 ml of water

with 100 mg of catalytic load by varying pH

concentrations. For pH 9, CeO2 NPs have shown good

photocatalytic activity while for pH 3 it exhibit poor

activity which confirms that in basic medium activity it was

more when compared with the acidic medium (Magesh

et al. 2009; Wetchakun et al. 2012). Figure 18 shows the

schematic representation of the mechanism involved in

photocatalytic degradation of the MB dye using CeO2 NPs

as photocatalyst.

Figure 19 shows the cyclic voltagrams (CVs) of as-

formed CeO2 NPs modified carbon paste electrode recor-

ded in 0.5 mM dopamine concentration in PBS buffer of

pH 7. The bare carbon paste electrode shows only a small

oxidation peak centered at 0.2 V. Whereas, CeO2 NPs

modified carbon paste electrode shows well-defined oxi-

dation peak at 0.2 V and also corresponding reduction peak

around 0.13 V (Fig. 19c). These results confirm that pres-

ence of CeO2 NPs on electrode assists in catalytic oxida-

tion of dopamine. With increase in dopamine

concentration, the anodic peak current also increases as

shown in Fig. 20. This confirms that the redox peak cor-

responds to surface confined species (Li et al. 2015). The

ratio of anodic and cathodic peak current was approxi-

mately equal to one, which indicates that the electro-

chemical reaction is highly reversible (Wei et al. 2006).

The electrochemical sensing results obtained for modified

electrodes CeO2 NPs reveals the highly stable and can be

used to fabricate good electrochemical sensing devices.

Fig. 18 Schematic

representation to show the

mechanism of photocatalytic

degradation of MB using CeO2

NPs

Fig. 19 CV plots of a bare carbon paste electrode in PBS buffer of

pH = 7, b a ? 0.5 mM dopamine, c calcined CeO2 NPs modified

carbon paste electrode in PBS buffer of pH 7, d c ? 0.5 mM

dopamine

Fig. 20 CV plots of calcined CeO2 NPs modified carbon paste

electrode in PBS buffer of pH = 7 with dopamine concentrations

ranging from 0.5 to 0.25 mM
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Conclusions

A simple green combustion route is used to prepare CeO2

NPs using T. indica fruit extract as fuel. The structural,

optical and catalytic properties of as-formed as well as

calcined CeO2 NPs are studied in detail. A cubic phase of

prepared CeO2 NPs is confirmed by PXRD patterns. The

crystallite size, energy band gap and PL properties are

highly dependent on concentration of fuel. The prepared

CeO2 NPs are highly pores and irregular shape with large

number of surface voids. The particle size was estimated

from TEM and found to be in the range of 5–40 nm which

is in good agreement with PXRD results. From the

CIE chromaticity diagrams, a blue color emission from the

prepared sample is noticed. Further, modified electrodes by

CeO2 NPs exhibit enhanced electrochemical sensing

properties and, hence, can be used to fabricate the elec-

trochemical sensing devices. The CeO2 NPs also showed

good photocatalytic activity with respect to variation in pH

and catalytic load. The above results clearly confirmed that

the product obtained in green combustion route is quite

useful for multifunctional applications.
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